-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrefit_baselines.py
56 lines (36 loc) · 1.37 KB
/
refit_baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import argparse
import joblib
import os
from itertools import product
from joblib import Parallel, delayed
from multiprocessing import Queue
from utils import run_cv_loop
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--ngpus', type=int)
NAME = 'BASELINES_REFIT'
RUNNER_PATH = 'runner.py'
DEBUG = True
TIMEOUT = 3600 * 24
HARD_TIMEOUT = 3600 * 36
NTHREADS = 8
SEED = 42
# benchmark_params
data_path = 'data/processed'
benchmark_path = 'runs'
def get_baseline(name, benchmark_path, data_path, dataset, task, rewrite=False):
gpu = q.get()
params = joblib.load(os.path.join(benchmark_path, 'baselines_and_params.pkl'))[dataset, task]['params']
params = {**params, **{'lr': 0.015, 'ntrees': 20000, 'es': 500}}
run_cv_loop(name, gpu, benchmark_path, data_path, dataset, task, 'default', params, rewrite=rewrite)
q.put(gpu)
if __name__ == '__main__':
args = parser.parse_args()
q = Queue(maxsize=args.ngpus)
for i in range(args.ngpus):
q.put([i])
data_info = joblib.load(os.path.join(data_path, 'data_info.pkl'))
datasets = ['otto', 'dionis', 'helena', 'sf-crime', 'moa', 'scm20d', 'rf1', 'delicious', 'mediamill', ]
tasks = product(datasets, ['cb', 'xgb'])
Parallel(n_jobs=args.ngpus, backend="threading")(
delayed(get_baseline)(NAME, benchmark_path, data_path, ds, fr, rewrite=False) for (ds, fr) in tasks
)