diff --git a/citations/citations_14112025.csv b/citations/citations_14112025.csv new file mode 100644 index 0000000..a55219d --- /dev/null +++ b/citations/citations_14112025.csv @@ -0,0 +1,470 @@ +dataset_id,number_of_citations +ds000247,5.0 +ds000117,81.0 +ds001784,3.0 +ds000248,5.0 +ds001787,12.0 +ds000246,2.0 +ds001810,6.0 +ds001785,2.0 +ds001849,2.0 +ds001868,0.0 +ds002094,31.0 +ds001971,1.0 +ds002158,3.0 +ds002034,6.0 +ds002218,1.0 +ds002181,1.0 +ds002001,5.0 +ds002338,14.0 +ds002550,2.0 +ds002578,3.0 +ds002336,8.0 +ds002312,0.0 +ds002718,12.0 +ds002680,8.0 +ds002691,2.0 +ds002712,2.0 +ds002721,14.0 +ds002723,2.0 +ds002722,3.0 +ds002720,2.0 +ds002725,4.0 +ds002778,71.0 +ds002761,1.0 +ds002833,0.0 +ds002791,0.0 +ds002814,6.0 +ds002799,12.0 +ds002724,2.0 +ds002893,2.0 +ds002844,0.0 +ds003004,9.0 +ds002908,1.0 +ds003029,26.0 +ds003039,2.0 +ds003061,8.0 +ds003078,1.0 +ds003082,6.0 +ds003104,0.0 +ds003194,3.0 +ds003195,4.0 +ds003343,1.0 +ds003352,4.0 +ds003374,4.0 +ds003190,3.0 +ds003380,2.0 +ds003392,0.0 +ds003420,2.0 +ds003458,0.0 +ds003474,9.0 +ds003478,41.0 +ds003421,3.0 +ds003483,2.0 +ds003490,16.0 +ds003498,7.0 +ds003505,6.0 +ds003506,4.0 +ds003516,3.0 +ds003509,7.0 +ds003517,5.0 +ds002885,1.0 +ds003519,3.0 +ds003522,5.0 +ds003523,3.0 +ds003552,0.0 +ds003565,3.0 +ds003555,10.0 +ds003518,0.0 +ds003568,7.0 +ds003570,1.0 +ds003574,2.0 +ds003602,0.0 +ds003620,4.0 +ds003626,7.0 +ds003633,2.0 +ds003638,1.0 +ds003655,5.0 +ds003670,7.0 +ds003688,13.0 +ds003682,2.0 +ds003690,6.0 +ds003694,1.0 +ds003702,4.0 +ds003703,1.0 +ds003708,1.0 +ds003710,1.0 +ds003722,0.0 +ds003739,5.0 +ds003751,7.0 +ds003753,0.0 +ds003766,1.0 +ds003768,21.0 +ds003774,8.0 +ds003775,12.0 +ds003800,4.0 +ds003801,2.0 +ds003805,3.0 +ds003810,2.0 +ds003822,0.0 +ds003816,2.0 +ds003825,3.0 +ds003844,0.0 +ds003846,5.0 +ds003848,2.0 +ds003876,3.0 +ds003885,3.0 +ds003922,1.0 +ds003887,3.0 +ds003645,3.0 +ds003944,7.0 +ds003947,8.0 +ds003987,1.0 +ds003969,3.0 +ds004000,9.0 +ds004010,0.0 +ds004015,3.0 +ds004012,1.0 +ds004011,1.0 +ds004018,0.0 +ds004017,1.0 +ds004019,1.0 +ds004024,1.0 +ds004022,2.0 +ds004033,1.0 +ds004040,2.0 +ds004043,1.0 +ds004075,1.0 +ds004067,1.0 +ds004078,7.0 +ds004080,3.0 +ds004105,0.0 +ds004100,24.0 +ds004107,2.0 +ds004117,2.0 +ds004106,0.0 +ds004118,0.0 +ds004119,0.0 +ds004120,0.0 +ds004121,1.0 +ds004122,1.0 +ds004123,1.0 +ds004127,1.0 +ds004152,2.0 +ds004147,2.0 +ds004151,2.0 +ds004148,19.0 +ds004166,1.0 +ds004212,4.0 +ds004186,11.0 +ds004229,0.0 +ds004200,1.0 +ds004252,1.0 +ds004262,2.0 +ds004256,1.0 +ds004276,2.0 +ds004264,0.0 +ds004278,0.0 +ds004279,3.0 +ds004284,2.0 +ds004295,2.0 +ds004306,2.0 +ds004315,1.0 +ds004317,1.0 +ds004330,2.0 +ds004324,0.0 +ds004346,0.0 +ds004347,0.0 +ds004348,3.0 +ds004350,2.0 +ds004356,2.0 +ds004362,4.0 +ds004357,3.0 +ds004367,1.0 +ds004368,0.0 +ds004369,1.0 +ds004381,2.0 +ds004370,1.0 +ds004389,3.0 +ds004388,4.0 +ds004395,8.0 +ds004408,2.0 +ds004398,1.0 +ds004446,1.0 +ds004447,1.0 +ds004457,2.0 +ds004448,1.0 +ds004460,1.0 +ds004473,1.0 +ds004475,2.0 +ds004477,0.0 +ds004444,1.0 +ds004502,3.0 +ds004483,2.0 +ds004504,78.0 +ds004505,5.0 +ds004514,3.0 +ds004511,3.0 +ds004515,4.0 +ds004519,3.0 +ds004521,3.0 +ds004517,3.0 +ds004520,3.0 +ds004532,0.0 +ds004563,2.0 +ds004561,3.0 +ds004551,3.0 +ds004554,0.0 +ds004572,2.0 +ds004577,4.0 +ds004574,1.0 +ds004579,1.0 +ds004580,1.0 +ds004582,0.0 +ds004584,5.0 +ds004587,1.0 +ds004588,2.0 +ds004595,1.0 +ds004598,1.0 +ds004603,1.0 +ds004624,0.0 +ds004621,2.0 +ds004625,2.0 +ds004626,1.0 +ds004635,3.0 +ds004602,6.0 +ds004642,2.0 +ds004657,1.0 +ds004660,2.0 +ds004661,0.0 +ds004696,1.0 +ds004703,2.0 +ds004706,3.0 +ds004745,0.0 +ds004738,1.0 +ds004752,4.0 +ds004718,1.0 +ds004770,1.0 +ds004784,1.0 +ds004774,0.0 +ds004771,4.0 +ds004785,1.0 +ds004789,5.0 +ds004796,4.0 +ds004802,2.0 +ds004809,4.0 +ds004816,2.0 +ds004817,0.0 +ds004819,1.0 +ds004837,0.0 +ds004840,2.0 +ds004841,0.0 +ds004843,1.0 +ds004844,0.0 +ds004850,0.0 +ds004849,0.0 +ds004842,1.0 +ds004851,0.0 +ds004852,0.0 +ds004855,1.0 +ds004853,0.0 +ds004854,0.0 +ds004859,1.0 +ds004860,1.0 +ds004865,0.0 +ds004883,4.0 +ds004940,0.0 +ds004942,1.0 +ds004902,12.0 +ds004951,1.0 +ds004944,1.0 +ds004977,1.0 +ds004993,0.0 +ds004980,1.0 +ds004995,1.0 +ds004952,2.0 +ds004998,1.0 +ds005021,0.0 +ds005007,0.0 +ds005028,1.0 +ds005034,1.0 +ds005048,3.0 +ds005065,2.0 +ds005059,0.0 +ds005079,1.0 +ds005083,1.0 +ds005087,1.0 +ds005089,1.0 +ds005095,7.0 +ds005106,1.0 +ds005107,1.0 +ds005114,0.0 +ds005121,1.0 +ds005131,0.0 +ds005169,1.0 +ds005170,1.0 +ds005189,0.0 +ds005207,1.0 +ds005234,4.0 +ds005241,1.0 +ds005185,2.0 +ds005261,3.0 +ds005262,0.0 +ds005273,1.0 +ds005274,0.0 +ds005279,0.0 +ds005280,0.0 +ds005285,1.0 +ds005284,0.0 +ds005289,0.0 +ds005291,0.0 +ds005293,0.0 +ds005292,0.0 +ds005286,2.0 +ds005296,1.0 +ds005305,3.0 +ds005307,2.0 +ds005340,1.0 +ds005342,1.0 +ds005345,3.0 +ds005343,1.0 +ds005363,1.0 +ds005356,1.0 +ds005383,1.0 +ds005397,1.0 +ds005385,4.0 +ds005403,2.0 +ds005406,0.0 +ds005407,0.0 +ds005408,0.0 +ds005398,5.0 +ds005410,1.0 +ds005411,1.0 +ds005416,0.0 +ds005420,0.0 +ds005415,1.0 +ds005429,0.0 +ds005486,1.0 +ds005489,0.0 +ds005473,0.0 +ds005448,0.0 +ds005491,0.0 +ds005505,1.0 +ds005494,0.0 +ds005506,2.0 +ds005507,1.0 +ds005509,2.0 +ds005511,2.0 +ds005508,3.0 +ds005510,1.0 +ds005512,3.0 +ds005514,1.0 +ds005515,0.0 +ds005520,0.0 +ds005516,70.0 +ds005522,0.0 +ds005523,0.0 +ds005530,0.0 +ds005555,0.0 +ds005540,0.0 +ds005545,1.0 +ds005557,0.0 +ds005558,0.0 +ds005574,1.0 +ds005586,2.0 +ds005592,0.0 +ds005594,1.0 +ds005620,0.0 +ds005624,1.0 +ds005628,0.0 +ds005642,0.0 +ds005648,0.0 +ds005662,0.0 +ds005670,0.0 +ds005672,3.0 +ds005688,1.0 +ds005691,2.0 +ds005692,3.0 +ds005697,4.0 +ds005787,0.0 +ds005795,0.0 +ds005810,0.0 +ds005811,4.0 +ds005815,1.0 +ds005841,1.0 +ds005857,0.0 +ds005863,0.0 +ds005866,1.0 +ds005868,1.0 +ds005872,0.0 +ds005873,2.0 +ds005565,1.0 +ds005876,1.0 +ds005907,0.0 +ds005931,1.0 +ds005932,0.0 +ds005946,0.0 +ds005953,0.0 +ds005960,2.0 +ds006012,0.0 +ds006018,2.0 +ds006035,1.0 +ds006040,0.0 +ds006036,2.0 +ds006065,1.0 +ds006104,0.0 +ds006107,1.0 +ds006126,0.0 +ds006142,0.0 +ds005779,0.0 +ds006159,0.0 +ds006171,0.0 +ds006233,0.0 +ds006234,1.0 +ds006260,1.0 +ds006253,1.0 +ds006269,0.0 +ds006334,0.0 +ds006317,0.0 +ds006366,0.0 +ds006367,0.0 +ds006392,1.0 +ds006374,0.0 +ds006370,0.0 +ds006394,1.0 +ds006434,0.0 +ds006437,0.0 +ds006446,0.0 +ds006468,0.0 +ds006466,0.0 +ds006480,0.0 +ds006502,0.0 +ds006525,0.0 +ds006547,0.0 +ds006519,0.0 +ds006095,0.0 +ds006554,0.0 +ds006563,0.0 +ds006593,0.0 +ds006647,0.0 +ds006629,0.0 +ds006648,0.0 +ds006720,0.0 +ds006695,0.0 +ds006735,0.0 +ds006761,0.0 +ds006768,0.0 +ds006777,0.0 +ds006780,0.0 +ds006801,0.0 +ds006802,0.0 +ds006803,0.0 +ds006817,0.0 +ds006839,0.0 +ds006850,0.0 +ds006861,0.0 +ds006848,0.0 +ds006866,0.0 +ds006890,0.0 +ds006910,0.0 +ds006923,0.0 diff --git a/citations/dataset_modalities_lookup.csv b/citations/dataset_modalities_lookup.csv index 9d60c8d..b1b3160 100644 --- a/citations/dataset_modalities_lookup.csv +++ b/citations/dataset_modalities_lookup.csv @@ -149,13 +149,13 @@ ds001894,"anat,dwi,func",2025-09-17T12:07:15.476446 ds001926,"anat,fmap,func",2025-09-17T12:07:15.476511 ds001019,"anat,func",2025-09-17T12:07:15.476576 ds001945,anat,2025-09-17T12:07:15.476635 -ds001810,eeg,2025-09-17T12:24:47.163323 +ds001810,eeg,2025-11-14T16:54:47.411626 ds001882,"anat,func",2025-09-17T12:07:15.476795 ds001883,"anat,func",2025-09-17T12:07:15.476864 ds000158,"anat,func",2025-09-17T12:07:15.476929 ds001242,"anat,dwi,func",2025-09-17T12:07:15.476993 ds001966,"anat,fmap,func",2025-09-17T12:07:15.477064 -ds001971,eeg,2025-09-17T12:24:48.164739 +ds001971,eeg,2025-11-14T16:54:48.470583 ds001978,"anat,fmap,func",2025-09-17T12:07:15.477302 ds001972,anat,2025-09-17T12:07:15.477402 ds001984,"anat,fmap,func",2025-09-17T12:07:15.477485 @@ -176,10 +176,10 @@ ds002013,"anat,func",2025-09-17T12:07:15.478526 ds002080,"anat,dwi,func",2025-09-17T12:07:15.478580 ds002041,"anat,func,pet",2025-09-17T12:07:15.478635 ds002087,dwi,2025-09-17T12:07:15.478693 -ds002094,eeg,2025-09-17T12:24:48.832730 +ds002094,eeg,2025-11-14T16:54:49.234176 ds001946,"anat,fmap,func",2025-09-17T12:07:15.478805 -ds001849,eeg,2025-09-17T12:24:49.489123 -ds002034,eeg,2025-09-17T12:24:50.205733 +ds001849,eeg,2025-11-14T16:54:49.953254 +ds002034,eeg,2025-11-14T16:54:50.600150 ds001725,"anat,func",2025-09-17T12:07:15.479003 ds002154,func,2025-09-17T12:07:15.479078 ds002076,"anat,func",2025-09-17T12:07:15.479153 @@ -193,7 +193,7 @@ ds001482,"anat,func",2025-09-17T12:07:15.479716 ds002207,anat,2025-09-17T12:07:15.479786 ds001563,anat,2025-09-17T12:07:15.479854 ds000216,"anat,func",2025-09-17T12:07:15.479922 -ds002218,eeg,2025-09-17T12:24:51.188550 +ds002218,eeg,2025-11-14T16:54:51.622805 ds002237,"anat,func",2025-09-17T12:07:15.480057 ds001928,"anat,dwi,func",2025-09-17T12:07:15.480123 ds002242,"anat,func",2025-09-17T12:07:15.480190 @@ -213,7 +213,7 @@ ds002338,"anat,eeg,func",2025-09-17T12:07:15.480995 ds002345,"anat,func",2025-09-17T12:07:15.481066 ds000030,"anat,beh,dwi,func",2025-09-17T12:07:15.481134 ds002278,"fmap,func",2025-09-17T12:07:15.481230 -ds001787,eeg,2025-09-17T12:24:51.811748 +ds001787,eeg,2025-11-14T16:54:52.379784 ds000006,"anat,func",2025-09-17T12:07:15.481375 ds000007,"anat,func",2025-09-17T12:07:15.481444 ds000009,"anat,dwi,func",2025-09-17T12:07:15.481512 @@ -241,7 +241,7 @@ ds000249,"anat,fmap,func",2025-09-17T12:07:15.482987 ds000253,"anat,func",2025-09-17T12:07:15.483058 ds000256,"anat,fmap,func",2025-09-17T12:07:15.483129 ds000258,"anat,func",2025-09-17T12:07:15.483205 -ds001107,,2025-09-17T12:24:52.721962 +ds001107,,2025-11-14T16:54:53.428980 ds001167,"anat,func",2025-09-17T12:07:15.483340 ds001218,"anat,fmap,func",2025-09-17T12:07:15.483406 ds001226,"anat,dwi,func",2025-09-17T12:07:15.483473 @@ -256,7 +256,7 @@ ds001417,"anat,func",2025-09-17T12:07:15.484028 ds001430,"anat,fmap,func",2025-09-17T12:07:15.484095 ds001491,"anat,func",2025-09-17T12:07:15.484179 ds002165,"anat,func",2025-09-17T12:07:15.484252 -ds002181,eeg,2025-09-17T12:24:53.046799 +ds002181,eeg,2025-11-14T16:54:53.720776 ds002232,"anat,fmap,func",2025-09-17T12:07:15.484409 ds002236,"anat,func",2025-09-17T12:07:15.484501 ds002270,"anat,fmap,func",2025-09-17T12:07:15.484580 @@ -288,8 +288,8 @@ ds002596,"anat,func",2025-09-17T12:07:15.486053 ds002683,"anat,fmap,func",2025-09-17T12:07:15.486106 ds002685,"anat,dwi,fmap,func",2025-09-17T12:07:15.486170 ds002687,"anat,func",2025-09-17T12:07:15.486228 -ds002691,eeg,2025-09-17T12:24:53.786077 -ds002680,eeg,2025-09-17T12:24:54.442120 +ds002691,eeg,2025-11-14T16:54:54.476596 +ds002680,eeg,2025-11-14T16:54:55.063895 ds002655,"anat,fmap,func",2025-09-17T12:07:15.486401 ds002294,"anat,fmap,func",2025-09-17T12:07:15.486454 ds002702,anat,2025-09-17T12:07:15.486507 @@ -299,11 +299,11 @@ ds002712,"anat,beh,derivatives,meg",2025-09-17T12:07:15.486664 ds002717,anat,2025-09-17T12:07:15.486719 ds002718,"anat,eeg",2025-09-17T12:07:15.486775 ds002732,"anat,func",2025-09-17T12:07:15.486829 -ds002723,eeg,2025-09-17T12:24:55.430937 -ds002720,eeg,2025-09-17T12:24:56.039246 -ds002722,eeg,2025-09-17T12:24:56.670419 -ds002721,eeg,2025-09-17T12:24:57.366310 -ds002724,eeg,2025-09-17T12:24:58.050863 +ds002723,eeg,2025-11-14T16:54:56.131182 +ds002720,eeg,2025-11-14T16:54:56.996321 +ds002722,eeg,2025-11-14T16:54:57.667038 +ds002721,eeg,2025-11-14T16:54:58.453885 +ds002724,eeg,2025-11-14T16:54:59.194767 ds002725,"anat,eeg,func",2025-09-17T12:07:15.487155 ds002750,"anat,func",2025-09-17T12:07:15.487214 ds002749,func,2025-09-17T12:07:15.487270 @@ -349,15 +349,15 @@ ds002896,"anat,func",2025-09-17T12:07:15.489446 ds002898,"anat,fmap,func,pet",2025-09-17T12:07:15.489501 ds002862,anat,2025-09-17T12:07:15.489554 ds002912,anat,2025-09-17T12:07:15.489606 -ds002885,meg,2025-09-17T12:24:58.969665 +ds002885,meg,2025-11-14T16:55:00.244958 ds002939,anat,2025-09-17T12:07:15.489732 ds002938,"anat,fmap,func",2025-09-17T12:07:15.489785 ds002940,"anat,func",2025-09-17T12:07:15.489838 ds002941,"anat,func",2025-09-17T12:07:15.489894 ds002982,anat,2025-09-17T12:07:15.489956 -ds002893,eeg,2025-09-17T12:24:59.618859 +ds002893,eeg,2025-11-14T16:55:00.962655 ds002995,"anat,fmap,func",2025-09-17T12:07:15.490086 -ds003004,eeg,2025-09-17T12:25:00.228459 +ds003004,eeg,2025-11-14T16:55:01.583100 ds003005,"anat,func",2025-05-11T17:18:17.870986 ds003007,func,2025-09-17T12:07:15.490214 ds002748,"anat,func",2025-09-17T12:07:15.490285 @@ -368,8 +368,8 @@ ds003017,"anat,fmap,func",2025-09-17T12:07:15.490482 ds003012,"anat,fmap,func",2025-09-17T12:07:15.490548 ds002351,"anat,func",2025-09-17T12:07:15.490612 ds002994,"anat,fmap,func",2025-09-17T12:07:15.490677 -ds002791,eeg,2025-09-17T12:25:00.883920 -ds002833,eeg,2025-09-17T12:25:01.956875 +ds002791,eeg,2025-11-14T16:55:02.340598 +ds002833,eeg,2025-11-14T16:55:03.415003 ds003023,"anat,fmap,func",2025-09-17T12:07:15.490872 ds002905,"anat,func",2025-09-17T12:07:15.490938 ds002990,"anat,func",2025-09-17T12:07:15.491003 @@ -400,13 +400,13 @@ ds003146,"anat,func",2025-09-17T12:07:15.492630 ds003136,"anat,fmap,func",2025-09-17T12:07:15.492697 ds002878,"anat,fmap,func",2025-09-17T12:07:15.492766 ds003095,"anat,func",2025-09-17T12:07:15.492832 -ds003190,eeg,2025-09-17T12:25:02.964756 +ds003190,eeg,2025-11-14T16:55:04.497511 ds003216,"anat,func",2025-09-17T12:07:15.492965 ds003171,"anat,dwi,func",2025-09-17T12:07:15.493031 ds003233,"anat,func",2025-09-17T12:07:15.493102 ds003242,".ipynb_checkpoints,anat,fmap,func",2025-09-17T12:07:15.493168 -ds003195,eeg,2025-09-17T12:25:04.021416 -ds003194,eeg,2025-09-17T12:25:05.022300 +ds003195,eeg,2025-11-14T16:55:05.681736 +ds003194,eeg,2025-11-14T16:55:07.253940 ds003325,anat,2025-09-17T12:07:15.493366 ds003170,"anat,fmap,func",2025-09-17T12:07:15.493431 ds003342,"anat,func",2025-09-17T12:07:15.493499 @@ -414,11 +414,11 @@ ds003340,"anat,fmap,func",2025-09-17T12:07:15.493566 ds003345,"anat,func",2025-09-17T12:07:15.493635 ds003346,"anat,fmap,func",2025-09-17T12:07:15.493702 ds003338,"anat,func",2025-09-17T12:07:15.493767 -ds003367,,2025-09-17T12:25:06.054014 -ds003374,ieeg,2025-09-17T12:25:06.393376 -ds003343,eeg,2025-09-17T12:25:07.400987 -ds003380,eeg,2025-09-17T12:25:08.360648 -ds003061,eeg,2025-09-17T12:25:08.993257 +ds003367,,2025-11-14T16:55:08.179316 +ds003374,ieeg,2025-11-14T16:55:08.631977 +ds003343,eeg,2025-11-14T16:55:09.499450 +ds003380,eeg,2025-11-14T16:55:10.516940 +ds003061,eeg,2025-11-14T16:55:11.090846 ds003082,"anat,meg",2025-09-17T12:07:15.494167 ds001839,"anat,func",2025-09-17T12:07:15.494232 ds001838,"anat,func",2025-09-17T12:07:15.494300 @@ -427,7 +427,7 @@ ds002169,"anat,fmap,func",2025-09-17T12:07:15.494450 ds001847,"anat,func",2025-09-17T12:07:15.494525 ds002382,"anat,func",2025-09-17T12:07:15.494588 ds002134,"anat,func",2025-09-17T12:07:15.494650 -ds003029,ieeg,2025-09-17T12:25:09.647080 +ds003029,ieeg,2025-11-14T16:55:11.811541 ds003097,"anat,dwi,func",2025-09-17T12:07:15.494855 ds002241,"anat,func",2025-09-17T12:07:15.494932 ds003416,"anat,dwi",2025-09-17T12:07:15.495005 @@ -443,8 +443,8 @@ ds001780,anat,2025-09-17T12:07:15.495618 ds002608,"anat,func",2025-09-17T12:07:15.495682 ds002158,"anat,eeg,fmap,func",2025-09-17T12:07:15.495746 ds003392,"anat,meg",2025-09-17T12:07:15.495816 -ds003420,eeg,2025-09-17T12:25:10.695406 -ds003421,eeg,2025-09-17T12:25:11.695891 +ds003420,eeg,2025-11-14T16:55:12.866878 +ds003421,eeg,2025-11-14T16:55:13.881343 ds003192,"anat,fmap,func",2025-09-17T12:07:15.496013 ds002116,"anat,func",2025-09-17T12:07:15.496076 ds003424,"anat,dwi,fmap,func",2025-09-17T12:07:15.496138 @@ -466,32 +466,32 @@ ds003454,func,2025-09-17T12:07:15.497091 ds003437,"anat,fmap,func",2025-09-17T12:07:15.497152 ds003455,"fmap,func",2025-09-17T12:07:15.497212 ds003453,"anat,fmap,func",2025-09-17T12:07:15.497278 -ds003458,eeg,2025-09-17T12:25:12.768233 +ds003458,eeg,2025-11-14T16:55:14.924548 ds003459,"anat,func",2025-09-17T12:07:15.497401 ds003463,anat,2025-09-17T12:07:15.497461 ds003464,"anat,func",2025-09-17T12:07:15.497522 ds003470,"anat,func",2025-09-17T12:07:15.497582 -ds003478,eeg,2025-09-17T12:25:13.359797 +ds003478,eeg,2025-11-14T16:55:15.519852 ds003466,"anat,func",2025-09-17T12:07:15.497705 ds003481,"anat,func",2025-09-17T12:07:15.497766 -ds003483,meg,2025-09-17T12:25:14.019566 -ds003490,eeg,2025-09-17T12:25:15.233632 +ds003483,meg,2025-11-14T16:55:16.258819 +ds003490,eeg,2025-11-14T16:55:17.545453 ds003465,"anat,fmap,func",2025-09-17T12:07:15.497953 ds003495,"anat,dwi,func",2025-09-17T12:07:15.498022 ds002835,"anat,fmap,func",2025-09-17T12:07:15.498086 -ds003506,eeg,2025-09-17T12:25:16.173353 -ds003474,eeg,2025-09-17T12:25:17.174762 +ds003506,eeg,2025-11-14T16:55:18.603775 +ds003474,eeg,2025-11-14T16:55:19.641811 ds003507,"anat,fmap,func",2025-09-17T12:07:15.498268 -ds003509,eeg,2025-09-17T12:25:17.842639 -ds003516,eeg,2025-09-17T12:25:18.794622 +ds003509,eeg,2025-11-14T16:55:20.245333 +ds003516,eeg,2025-11-14T16:55:21.410609 ds003468,"anat,func",2025-09-17T12:07:15.498452 -ds003517,eeg,2025-09-17T12:25:19.431552 -ds003518,eeg,2025-09-17T12:25:20.115659 +ds003517,eeg,2025-11-14T16:55:22.041126 +ds003518,eeg,2025-11-14T16:55:22.787738 ds003469,"anat,fmap,func",2025-09-17T12:07:15.498645 -ds003519,eeg,2025-09-17T12:25:21.079795 +ds003519,eeg,2025-11-14T16:55:23.735028 ds003521,"anat,func",2025-09-17T12:07:15.498775 -ds003522,eeg,2025-09-17T12:25:22.021281 -ds003523,eeg,2025-09-17T12:25:23.037893 +ds003522,eeg,2025-11-14T16:55:24.774021 +ds003523,eeg,2025-11-14T16:55:25.696673 ds003524,"anat,func",2025-09-17T12:07:15.498957 ds003542,"anat,func",2025-09-17T12:07:15.499023 ds003545,"anat,func",2025-09-17T12:07:15.499083 @@ -499,33 +499,33 @@ ds003540,"anat,func",2025-09-17T12:07:15.499143 ds003520,"anat,func",2025-09-17T12:07:15.499208 ds003548,"anat,func",2025-09-17T12:07:15.499271 ds003500,"anat,func",2025-09-17T12:07:15.499332 -ds001785,eeg,2025-09-17T12:25:24.037270 +ds001785,eeg,2025-11-14T16:55:26.747414 ds003552,"eeg,motion",2025-09-17T12:07:15.499453 ds003436,"anat,fmap,func",2025-09-17T12:07:15.499514 ds003382,"anat,dixon,fmap,func,pet,ute",2025-09-17T12:07:15.499574 -ds003555,eeg,2025-09-17T12:25:24.976690 +ds003555,eeg,2025-11-14T16:55:27.794848 ds003511,"anat,func",2025-09-17T12:07:15.499700 -ds003498,ieeg,2025-09-17T12:25:25.923025 +ds003498,ieeg,2025-11-14T16:55:28.855795 ds003505,"anat,dwi,eeg",2025-09-17T12:07:15.499823 ds003563,anat,2025-09-17T12:07:15.499890 -ds003565,eeg,2025-09-17T12:25:26.876269 +ds003565,eeg,2025-11-14T16:55:29.910926 ds003011,"anat,dwi,func",2025-09-17T12:07:15.500011 ds003568,"anat,meg",2025-09-17T12:07:15.500075 ds003569,"anat,func",2025-09-17T12:07:15.500137 -ds003570,eeg,2025-09-17T12:25:27.552983 +ds003570,eeg,2025-11-14T16:55:30.651423 ds002424,"anat,func",2025-09-17T12:07:15.500269 ds003574,"anat,eeg,func",2025-09-17T12:07:15.500334 ds003590,anat,2025-09-17T12:07:15.500396 -ds002814,eeg,2025-09-17T12:25:28.252129 +ds002814,eeg,2025-11-14T16:55:31.400666 ds000204,anat,2025-09-17T12:07:15.500527 ds002425,"anat,func",2025-09-17T12:07:15.500588 ds000232,"anat,func",2025-09-17T12:07:15.500649 ds002385,"anat,pet",2025-09-17T12:07:15.500711 ds002675,"anat,func",2025-09-17T12:07:15.500778 ds002684,anat,2025-09-17T12:07:15.500840 -ds002761,meg,2025-09-17T12:25:29.258729 +ds002761,meg,2025-11-14T16:55:32.517098 ds003176,"anat,fmap,func",2025-09-17T12:07:15.500963 -ds003352,meg,2025-09-17T12:25:29.947446 +ds003352,meg,2025-11-14T16:55:33.272342 ds003357,"anat,func",2025-09-17T12:07:15.501082 ds003381,"anat,func",2025-09-17T12:07:15.501145 ds003396,,2025-09-17T12:25:30.900047 @@ -534,7 +534,7 @@ ds003484,anat,2025-09-17T12:07:15.501318 ds003508,"anat,dwi",2025-09-17T12:07:15.501379 ds002603,"anat,fmap,func",2025-09-17T12:07:15.501435 ds002606,"anat,func",2025-09-17T12:07:15.501492 -ds002908,meg,2025-09-17T12:25:31.195719 +ds002908,meg,2025-11-14T16:55:34.322785 ds003043,"anat,fmap,func",2025-09-17T12:07:15.501608 ds003096,"anat,func",2025-09-17T12:07:15.501667 ds001371,"anat,fmap,func",2025-09-17T12:07:15.501726 @@ -549,9 +549,9 @@ ds003052,anat,2025-09-17T12:07:15.502225 ds003599,dwi,2025-09-17T12:07:15.502288 ds003606,"anat,func",2025-09-17T12:07:15.502350 ds003612,"anat,fmap,func",2025-09-17T12:07:15.502415 -ds003626,eeg,2025-09-17T12:25:32.233445 +ds003626,eeg,2025-11-14T16:55:35.382295 ds003094,"anat,func",2025-09-17T12:07:15.502542 -ds003620,eeg,2025-09-17T12:25:33.276732 +ds003620,eeg,2025-11-14T16:55:36.483751 ds003604,"anat,func",2025-09-17T12:07:15.502668 ds001161,"anat,func",2025-09-17T12:07:15.502735 ds003642,anat,2025-09-17T12:07:15.502801 @@ -560,32 +560,32 @@ ds003487,beh,2025-09-17T12:07:15.502924 ds003647,"anat,func",2025-09-17T12:07:15.502989 ds002843,"anat,fmap,func",2025-09-17T12:07:15.503047 ds003633,"anat,meg",2025-09-17T12:07:15.503108 -ds003655,eeg,2025-09-17T12:25:34.193277 +ds003655,eeg,2025-11-14T16:55:37.269614 ds003645,"anat,beh,eeg,meg",2025-09-17T12:07:15.503229 ds003669,"anat,fmap,func",2025-09-17T12:07:15.503290 ds003643,"anat,func",2025-09-17T12:07:15.503352 ds003682,"beh,meg,stim",2025-09-17T12:07:15.503416 ds003419,anat,2025-09-17T12:07:15.503482 -ds003690,eeg,2025-09-17T12:25:34.868824 -ds003688,ieeg,2025-09-17T12:25:35.545689 -ds003702,eeg,2025-09-17T12:25:36.538768 +ds003690,eeg,2025-11-14T16:55:38.094919 +ds003688,ieeg,2025-11-14T16:55:38.806497 +ds003702,eeg,2025-11-14T16:55:39.880866 ds003701,"anat,fmap,func",2025-09-17T12:07:15.503732 -ds003703,meg,2025-09-17T12:25:37.194064 -ds003708,ieeg,2025-09-17T12:25:37.820215 +ds003703,meg,2025-11-14T16:55:40.617571 +ds003708,ieeg,2025-11-14T16:55:41.365786 ds003707,"anat,fmap,func",2025-09-17T12:07:15.503912 ds003709,"anat,fmap,func",2025-09-17T12:07:15.503971 ds003714,"anat,fmap,func",2025-09-17T12:07:15.504033 ds003653,"anat,fmap",2025-09-17T12:07:15.504097 ds003711,"anat,func",2025-09-17T12:07:15.504162 -ds003670,eeg,2025-09-17T12:25:38.772906 -ds003710,eeg,2025-09-17T12:25:39.860857 +ds003670,eeg,2025-11-14T16:55:42.382055 +ds003710,eeg,2025-11-14T16:55:43.298446 ds003716,anat,2025-09-17T12:07:15.504354 -ds003694,meg,2025-09-17T12:25:40.823420 -ds003722,eeg,2025-09-17T12:25:41.501104 +ds003694,meg,2025-11-14T16:55:44.480201 +ds003722,eeg,2025-11-14T16:55:45.095182 ds003553,"anat,func",2025-09-17T12:07:15.504552 ds003554,"anat,func",2025-09-17T12:07:15.504621 ds003550,"anat,func",2025-09-17T12:07:15.504704 -ds003739,eeg,2025-09-17T12:25:42.183838 +ds003739,eeg,2025-11-14T16:55:45.759641 ds003745,"anat,fmap,func",2025-09-17T12:07:15.504836 ds003752,"fmap,func",2025-09-17T12:07:15.504895 ds003661,anat,2025-09-17T12:07:15.504961 @@ -603,8 +603,8 @@ ds003770,"anat,func",2025-09-17T12:07:15.505611 ds003772,"anat,fmap,func",2025-09-17T12:07:15.505667 ds003673,"anat,func",2025-09-17T12:07:15.505725 ds003499,"anat,fmap,func",2025-09-17T12:07:15.505784 -ds003774,eeg,2025-09-17T12:25:43.148256 -ds003775,eeg,2025-09-17T12:25:44.106257 +ds003774,eeg,2025-11-14T16:55:46.903507 +ds003775,eeg,2025-11-14T16:55:48.030964 ds003826,anat,2025-09-17T12:07:15.505948 ds003821,anat,2025-09-17T12:07:15.506002 ds003777,"anat,func",2025-09-17T12:07:15.506065 @@ -613,16 +613,16 @@ ds003778,"anat,func",2025-09-17T12:07:15.506182 ds003782,"anat,func",2025-09-17T12:07:15.506240 ds003791,"anat,func",2025-09-17T12:07:15.506298 ds003799,anat,2025-09-17T12:07:15.506355 -ds003816,eeg,2025-09-17T12:25:45.044764 +ds003816,eeg,2025-11-14T16:55:49.089135 ds003812,"fmap,func",2025-09-17T12:07:15.506473 -ds003810,eeg,2025-09-17T12:25:46.015660 -ds003800,eeg,2025-09-17T12:25:46.657279 +ds003810,eeg,2025-11-14T16:55:50.111661 +ds003800,eeg,2025-11-14T16:55:50.878614 ds003830,"anat,func",2025-09-17T12:07:15.506649 -ds003844,ieeg,2025-09-17T12:25:47.299405 -ds003822,eeg,2025-09-17T12:25:48.267035 -ds003825,eeg,2025-09-17T12:25:48.924237 +ds003844,ieeg,2025-11-14T16:55:51.623928 +ds003822,eeg,2025-11-14T16:55:52.676323 +ds003825,eeg,2025-11-14T16:55:53.400422 ds003846,"eeg,motion",2025-09-17T12:07:15.506886 -ds003805,eeg,2025-09-17T12:25:49.625630 +ds003805,eeg,2025-11-14T16:55:54.121082 ds003849,"anat,func",2025-09-17T12:07:15.507004 ds003850,func,2025-09-17T12:07:15.507062 ds003858,"anat,func",2025-09-17T12:07:15.507124 @@ -634,38 +634,38 @@ ds003990,"anat,func",2025-09-17T12:07:15.507418 ds003798,"anat,fmap,func",2025-09-17T12:07:15.507477 ds003592,"anat,func",2025-09-17T12:07:15.507539 ds003949,anat,2025-09-17T12:07:15.507597 -ds004000,eeg,2025-09-17T12:25:50.227679 +ds004000,eeg,2025-11-14T16:55:54.821406 ds004007,"anat,func",2025-09-17T12:07:15.507717 ds004006,"anat,func",2025-09-17T12:07:15.507774 -ds003947,eeg,2025-09-17T12:25:50.952695 -ds003944,eeg,2025-09-17T12:25:51.660834 +ds003947,eeg,2025-11-14T16:55:55.555048 +ds003944,eeg,2025-11-14T16:55:56.342863 ds004009,"anat,fmap,func",2025-09-17T12:07:15.507953 -ds004010,eeg,2025-09-17T12:25:52.319933 +ds004010,eeg,2025-11-14T16:55:56.918961 ds003020,"anat,func",2025-09-17T12:07:15.508075 -ds003987,eeg,2025-09-17T12:25:53.053903 +ds003987,eeg,2025-11-14T16:55:57.688067 ds003967,anat,2025-09-17T12:07:15.508190 ds003972,"anat,fmap,func",2025-09-17T12:07:15.508251 ds003950,"anat,func",2025-09-17T12:07:15.508314 -ds003969,eeg,2025-09-17T12:25:53.999016 +ds003969,eeg,2025-11-14T16:55:58.751355 ds003959,dwi,2025-09-17T12:07:15.508429 -ds004011,meg,2025-09-17T12:25:54.659670 +ds004011,meg,2025-11-14T16:55:59.505390 ds003988,"anat,dwi,fmap,func",2025-09-17T12:07:15.508562 -ds004018,eeg,2025-09-17T12:25:55.296510 -ds004019,eeg,2025-09-17T12:25:55.992043 -ds004024,eeg,2025-09-17T12:25:56.659328 +ds004018,eeg,2025-11-14T16:56:00.082004 +ds004019,eeg,2025-11-14T16:56:00.852893 +ds004024,eeg,2025-11-14T16:56:01.584618 ds004022,"eeg,fnirs",2025-09-17T12:07:15.508803 ds004038,anat,2025-09-17T12:07:15.508862 -ds004040,eeg,2025-09-17T12:25:57.747725 -ds004043,eeg,2025-09-17T12:25:58.670415 +ds004040,eeg,2025-11-14T16:56:02.456831 +ds004043,eeg,2025-11-14T16:56:03.461715 ds003965,"anat,fmap,func",2025-09-17T12:07:15.509044 ds003831,"anat,func",2025-09-17T12:07:15.509102 ds004044,"anat,fmap,func",2025-09-17T12:07:15.509160 ds004056,"anat,fmap,func",2025-09-17T12:07:15.509217 ds003993,"anat,func",2025-09-17T12:07:15.509275 -ds004067,eeg,2025-09-17T12:25:59.359521 +ds004067,eeg,2025-11-14T16:56:04.209090 ds004021,"anat,func",2025-09-17T12:07:15.509392 -ds004075,eeg,2025-09-17T12:26:00.002939 -ds004015,eeg,2025-09-17T12:26:00.673767 +ds004075,eeg,2025-11-14T16:56:05.039508 +ds004015,eeg,2025-11-14T16:56:05.654798 ds004092,"anat,func",2025-09-17T12:07:15.509576 ds004073,"anat,fmap,func",2025-09-17T12:07:15.509636 ds003401,"anat,func",2025-09-17T12:07:15.509694 @@ -675,26 +675,26 @@ ds004042,"anat,fmap,func",2025-09-17T12:07:15.509876 ds003929,"anat,func",2025-09-17T12:07:15.509940 ds004078,"anat,dwi,func,meg",2025-09-17T12:07:15.509997 ds003696,func,2025-09-17T12:07:15.510054 -ds004033,eeg,2025-09-17T12:26:01.360212 +ds004033,eeg,2025-11-14T16:56:06.582768 ds004101,"anat,func",2025-09-17T12:07:15.510176 ds004102,"anat,fmap,func",2025-09-17T12:07:15.510237 ds004097,"anat,dwi,fmap,func",2025-09-17T12:07:15.510299 -ds004107,meg,2025-09-17T12:26:02.327722 +ds004107,meg,2025-11-14T16:56:07.561741 ds004109,"anat,fmap,func",2025-09-17T12:07:15.510417 ds004116,"anat,func",2025-09-17T12:07:15.510477 ds004114,"anat,func",2025-09-17T12:07:15.510536 ds003823,beh,2025-09-17T12:07:15.510596 -ds004106,eeg,2025-09-17T12:26:03.308511 +ds004106,eeg,2025-11-14T16:56:08.493904 ds003922,"anat,meg",2025-09-17T12:07:15.510723 -ds004121,eeg,2025-09-17T12:26:04.265472 -ds004123,eeg,2025-09-17T12:26:05.249369 -ds004122,eeg,2025-09-17T12:26:06.251778 -ds004120,eeg,2025-09-17T12:26:07.194837 -ds004119,eeg,2025-09-17T12:26:08.175442 -ds004118,eeg,2025-09-17T12:26:09.186549 -ds004105,eeg,2025-09-17T12:26:10.252393 +ds004121,eeg,2025-11-14T16:56:09.551445 +ds004123,eeg,2025-11-14T16:56:10.520064 +ds004122,eeg,2025-11-14T16:56:11.439656 +ds004120,eeg,2025-11-14T16:56:12.394292 +ds004119,eeg,2025-11-14T16:56:13.445836 +ds004118,eeg,2025-11-14T16:56:15.005122 +ds004105,eeg,2025-11-14T16:56:16.080190 ds004086,"anat,fmap,func",2025-09-17T12:07:15.511262 -ds003039,eeg,2025-09-17T12:26:11.242528 +ds003039,eeg,2025-11-14T16:56:17.055892 ds004094,"anat,beh,fmap,func",2025-09-17T12:07:15.511388 ds003404,"anat,fmap,func",2025-09-17T12:07:15.511454 ds001379,"anat,fmap,func",2025-09-17T12:07:15.511519 @@ -708,15 +708,15 @@ ds004144,"anat,func",2025-09-17T12:07:15.511962 ds004147,"beh,eeg",2025-09-17T12:07:15.512024 ds004131,anat,2025-09-17T12:07:15.512086 ds004130,anat,2025-09-17T12:07:15.512145 -ds004148,eeg,2025-09-17T12:26:11.940202 +ds004148,eeg,2025-11-14T16:56:17.673501 ds004142,"anat,func",2025-09-17T12:07:15.512265 ds004152,"beh,eeg",2025-09-17T12:07:15.512325 -ds004151,eeg,2025-09-17T12:26:12.956662 +ds004151,eeg,2025-11-14T16:56:18.652843 ds004158,"anat,fmap,func",2025-09-17T12:07:15.512441 ds004161,"anat,dwi,func",2025-09-17T12:07:15.512501 ds003848,"anat,ieeg",2025-09-17T12:07:15.512562 -ds004117,eeg,2025-09-17T12:26:13.596304 -ds004166,eeg,2025-09-17T12:26:14.796701 +ds004117,eeg,2025-11-14T16:56:19.410421 +ds004166,eeg,2025-11-14T16:56:20.459814 ds004169,"anat,func",2025-09-17T12:07:15.512756 ds004068,"anat,fmap,func",2025-09-17T12:07:15.512817 ds003999,"anat,func",2025-09-17T12:07:15.512873 @@ -725,23 +725,23 @@ ds004187,anat,2025-09-17T12:07:15.512989 ds004194,anat,2025-09-17T12:07:15.513047 ds003789,"anat,func",2025-09-17T12:07:15.513107 ds004200,"beh,eeg",2025-09-17T12:07:15.513166 -ds004186,eeg,2025-09-17T12:26:15.856080 +ds004186,eeg,2025-11-14T16:56:21.514849 ds004217,"anat,fmap,func",2025-09-17T12:07:15.513284 ds004219,"anat,func",2025-09-17T12:07:15.513342 ds004226,"anat,fmap,func",2025-09-17T12:07:15.513400 ds003354,"anat,fmap,func",2025-09-17T12:07:15.513459 -ds003602,eeg,2025-09-17T12:26:16.983608 +ds003602,eeg,2025-11-14T16:56:22.610877 ds004228,"anat,func",2025-09-17T12:07:15.513580 -ds004229,meg,2025-09-17T12:26:17.660920 +ds004229,meg,2025-11-14T16:56:23.343070 ds004230,"anat,pet",2025-09-17T12:07:15.513701 -ds003876,ieeg,2025-09-17T12:26:18.284531 -ds004215,,2025-09-17T12:26:19.318006 +ds003876,ieeg,2025-11-14T16:56:24.011181 +ds004215,,2025-11-14T16:56:25.178030 ds004081,"anat,fmap,func",2025-09-17T12:07:15.513872 ds002643,"anat,fmap,func",2025-09-17T12:07:15.513930 -ds004252,eeg,2025-09-17T12:26:19.644572 +ds004252,eeg,2025-11-14T16:56:25.500446 ds004145,anat,2025-09-17T12:07:15.514052 ds004254,anat,2025-09-17T12:07:15.514117 -ds004127,ieeg,2025-09-17T12:26:20.272781 +ds004127,ieeg,2025-11-14T16:56:26.226383 ds003836,"anat,func",2025-09-17T12:07:15.514232 ds004259,"anat,fmap,func",2025-09-17T12:07:15.514289 ds004256,"beh,eeg",2025-09-17T12:07:15.514345 @@ -749,167 +749,167 @@ ds004262,"beh,eeg",2025-09-17T12:07:15.514404 ds004264,"beh,eeg",2025-09-17T12:07:15.514460 ds004265,"anat,func",2025-09-17T12:07:15.514522 ds002989,"anat,func",2025-09-17T12:07:15.514581 -ds004100,ieeg,2025-09-17T12:26:20.909933 -ds004278,meg,2025-09-17T12:26:21.914950 +ds004100,ieeg,2025-11-14T16:56:26.833434 +ds004278,meg,2025-11-14T16:56:27.995761 ds004280,"anat,func",2025-09-17T12:07:15.514762 ds004283,"anat,fmap,func",2025-09-17T12:07:15.514824 ds004173,anat,2025-09-17T12:07:15.514884 ds004276,"beh,meg",2025-09-17T12:07:15.514941 ds004213,"anat,func",2025-09-17T12:07:15.514999 ds003659,func,2025-09-17T12:07:15.515057 -ds004295,eeg,2025-09-17T12:26:22.657437 +ds004295,eeg,2025-11-14T16:56:28.621669 ds004301,"anat,func",2025-09-17T12:07:15.515177 ds004299,"anat,dwi,fmap,func",2025-09-17T12:07:15.515236 -ds003638,eeg,2025-09-17T12:26:23.299146 -ds003753,eeg,2025-09-17T12:26:23.913903 -ds003801,eeg,2025-09-17T12:26:24.628146 -ds003885,eeg,2025-09-17T12:26:25.266308 -ds003887,eeg,2025-09-17T12:26:25.954854 -ds004315,eeg,2025-09-17T12:26:26.624311 -ds004317,eeg,2025-09-17T12:26:27.238681 +ds003638,eeg,2025-11-14T16:56:29.372756 +ds003753,eeg,2025-11-14T16:56:29.981337 +ds003801,eeg,2025-11-14T16:56:30.722609 +ds003885,eeg,2025-11-14T16:56:31.470118 +ds003887,eeg,2025-11-14T16:56:32.188999 +ds004315,eeg,2025-11-14T16:56:32.820646 +ds004317,eeg,2025-11-14T16:56:33.567620 ds004302,"anat,func",2025-09-17T12:07:15.515706 ds004286,"anat,beh,func",2025-09-17T12:07:15.515764 -ds004330,meg,2025-09-17T12:26:27.903639 +ds004330,meg,2025-11-14T16:56:34.132351 ds004331,"anat,func",2025-09-17T12:07:15.515879 ds004332,anat,2025-09-17T12:07:15.515937 ds004339,anat,2025-09-17T12:07:15.515993 -ds004347,eeg,2025-09-17T12:26:28.823472 +ds004347,eeg,2025-11-14T16:56:35.209642 ds004346,"anat,meg",2025-09-17T12:07:15.516109 -ds004348,eeg,2025-09-17T12:26:29.433837 +ds004348,eeg,2025-11-14T16:56:35.973869 ds004349,"anat,func",2025-09-17T12:07:15.516231 -ds004350,eeg,2025-09-17T12:26:30.532391 +ds004350,eeg,2025-11-14T16:56:37.035799 ds004359,"anat,fmap,func",2025-09-17T12:07:15.516354 -ds004356,eeg,2025-09-17T12:26:31.462713 +ds004356,eeg,2025-11-14T16:56:38.068061 ds002979,"anat,fmap,func",2025-09-17T12:07:15.516468 -ds004367,eeg,2025-09-17T12:26:32.108253 -ds004368,eeg,2025-09-17T12:26:32.954772 -ds004362,eeg,2025-09-17T12:26:34.208591 +ds004367,eeg,2025-11-14T16:56:38.809409 +ds004368,eeg,2025-11-14T16:56:39.557548 +ds004362,eeg,2025-11-14T16:56:40.675649 ds004192,"anat,fmap,func",2025-09-17T12:07:15.516711 -ds004212,meg,2025-09-17T12:26:34.939157 +ds004212,meg,2025-11-14T16:56:41.335263 ds004285,"anat,func",2025-09-17T12:07:15.516835 ds004401,"anat,pet",2025-09-17T12:07:15.516895 ds004393,"anat,func",2025-09-17T12:07:15.516951 ds004392,"anat,func",2025-09-17T12:07:15.517009 ds004400,"anat,func",2025-09-17T12:07:15.517078 -ds004408,eeg,2025-09-17T12:26:35.928206 -ds004398,meg,2025-09-17T12:26:36.554781 +ds004408,eeg,2025-11-14T16:56:42.480117 +ds004398,meg,2025-11-14T16:56:43.303704 ds004440,"anat,func",2025-09-17T12:07:15.517251 -ds004306,eeg,2025-09-17T12:26:37.165383 +ds004306,eeg,2025-11-14T16:56:44.052314 ds004441,"anat,dwi",2025-09-17T12:07:15.517383 -ds004444,eeg,2025-09-17T12:26:38.125838 -ds004446,eeg,2025-09-17T12:26:39.090542 -ds004447,eeg,2025-09-17T12:26:40.061489 -ds004448,eeg,2025-09-17T12:26:40.988405 +ds004444,eeg,2025-11-14T16:56:44.982992 +ds004446,eeg,2025-11-14T16:56:46.050837 +ds004447,eeg,2025-11-14T16:56:47.198961 +ds004448,eeg,2025-11-14T16:56:48.244989 ds004443,"anat,fmap,func",2025-09-17T12:07:15.517676 ds004455,"anat,func",2025-09-17T12:07:15.517736 ds004406,"anat,fmap,func",2025-09-17T12:07:15.517798 ds004456,"anat,fmap,func",2025-09-17T12:07:15.517854 ds004458,func,2025-09-17T12:07:15.517911 ds004460,"eeg,motion",2025-09-17T12:07:15.517968 -ds004369,eeg,2025-09-17T12:26:41.995660 +ds004369,eeg,2025-11-14T16:56:49.169446 ds004466,"anat,fmap,func",2025-09-17T12:07:15.518086 ds004470,anat,2025-09-17T12:07:15.518145 ds004471,anat,2025-09-17T12:07:15.518205 ds004473,"anat,beh,ieeg",2025-09-17T12:07:15.518262 -ds004477,eeg,2025-09-17T12:26:42.728695 +ds004477,eeg,2025-11-14T16:56:49.854544 ds004489,"anat,fmap,func",2025-09-17T12:07:15.518379 ds004199,anat,2025-09-17T12:07:15.518445 ds004498,func,2025-09-17T12:07:15.518510 -ds004502,eeg,2025-09-17T12:26:43.376275 -ds004504,eeg,2025-09-17T12:26:44.033784 +ds004502,eeg,2025-11-14T16:56:50.559709 +ds004504,eeg,2025-11-14T16:56:51.146984 ds004312,"anat,fmap,func",2025-09-17T12:07:15.518679 ds004450,"anat,fmap,func",2025-09-17T12:07:15.518733 ds004496,anat,2025-09-17T12:07:15.518790 ds004509,"anat,func",2025-09-17T12:07:15.518845 ds004510,func,2025-09-17T12:07:15.518898 -ds004080,ieeg,2025-09-17T12:26:44.771206 +ds004080,ieeg,2025-11-14T16:56:51.763842 ds004511,"beh,eeg",2025-09-17T12:07:15.519005 ds004493,"anat,func",2025-09-17T12:07:15.519058 ds004484,"anat,func",2025-09-17T12:07:15.519111 ds004478,"anat,func",2025-09-17T12:07:15.519165 -ds004519,eeg,2025-09-17T12:26:45.964670 +ds004519,eeg,2025-11-14T16:56:52.783724 ds004488,"anat,fmap,func",2025-09-17T12:07:15.519274 -ds004520,eeg,2025-09-17T12:26:46.741016 +ds004520,eeg,2025-11-14T16:56:53.531258 ds004516,"anat,func",2025-09-17T12:07:15.519383 -ds004521,eeg,2025-09-17T12:26:47.407719 +ds004521,eeg,2025-11-14T16:56:54.206427 ds004507,anat,2025-09-17T12:07:15.519497 ds004360,"anat,fmap,func",2025-09-17T12:07:15.519550 ds004529,"anat,func",2025-09-17T12:07:15.519602 ds004513,"anat,dwi,func,pet",2025-09-17T12:07:15.519655 -ds004532,eeg,2025-09-17T12:26:47.990411 -ds004017,eeg,2025-09-17T12:26:48.952616 +ds004532,eeg,2025-11-14T16:56:54.946312 +ds004017,eeg,2025-11-14T16:56:56.007825 ds004539,func,2025-09-17T12:07:15.519822 ds004261,"fmap,func",2025-09-17T12:07:15.519875 ds003691,"anat,fmap,func",2025-09-17T12:07:15.519927 ds004505,"anat,eeg",2025-09-17T12:07:15.519980 ds004544,"anat,func",2025-09-17T12:07:15.520033 -ds004381,eeg,2025-09-17T12:26:49.952113 +ds004381,eeg,2025-11-14T16:56:56.949161 ds004465,"anat,func",2025-09-17T12:07:15.520138 -ds004551,ieeg,2025-09-17T12:26:50.966562 +ds004551,ieeg,2025-11-14T16:56:57.930702 ds004552,anat,2025-09-17T12:07:15.520251 ds004271,"fmap,func",2025-09-17T12:07:15.520307 ds004553,"anat,fmap,func",2025-09-17T12:07:15.520362 -ds004554,eeg,2025-09-17T12:26:51.997219 +ds004554,eeg,2025-11-14T16:56:58.956127 ds004556,"anat,func",2025-09-17T12:07:15.520469 ds004557,"anat,func",2025-09-17T12:07:15.520528 -ds004357,eeg,2025-09-17T12:26:52.695133 +ds004357,eeg,2025-11-14T16:56:59.562175 ds004560,anat,2025-09-17T12:07:15.520662 ds004196,"anat,fmap,func",2025-09-17T12:07:15.520720 ds004386,"anat,func",2025-09-17T12:07:15.520780 -ds004561,eeg,2025-09-17T12:26:53.303154 +ds004561,eeg,2025-11-14T16:57:00.176573 ds004564,"anat,func",2025-09-17T12:07:15.520897 -ds004457,ieeg,2025-09-17T12:26:53.921341 +ds004457,ieeg,2025-11-14T16:57:00.872172 ds004574,"beh,eeg",2025-09-17T12:07:15.521008 -ds004572,eeg,2025-09-17T12:26:54.934638 -ds004577,eeg,2025-09-17T12:26:55.908707 -ds004579,eeg,2025-09-17T12:26:56.871952 +ds004572,eeg,2025-11-14T16:57:01.879872 +ds004577,eeg,2025-11-14T16:57:02.818675 +ds004579,eeg,2025-11-14T16:57:03.796089 ds004580,"beh,eeg",2025-09-17T12:07:15.521258 ds004395,"beh,eeg",2025-09-17T12:07:15.521312 ds004588,"eeg,eye_tracker",2025-09-17T12:07:15.521380 ds004590,"anat,fmap,func",2025-09-17T12:07:15.521443 -ds004584,eeg,2025-09-17T12:26:57.698306 -ds004515,eeg,2025-09-17T12:26:58.394809 +ds004584,eeg,2025-11-14T16:57:04.548004 +ds004515,eeg,2025-11-14T16:57:05.234319 ds004603,"beh,eeg",2025-09-17T12:07:15.521621 ds004597,"anat,fmap,func",2025-09-17T12:07:15.521694 -ds004284,eeg,2025-09-17T12:26:59.099237 +ds004284,eeg,2025-11-14T16:57:05.972342 ds004305,"anat,dwi,fmap",2025-09-17T12:07:15.521836 ds004592,"anat,func",2025-09-17T12:07:15.521901 ds004620,anat,2025-09-17T12:07:15.521971 -ds004624,ieeg,2025-09-17T12:26:59.755563 -ds004563,eeg,2025-09-17T12:27:00.882611 -ds004598,eeg,2025-09-17T12:27:01.958178 -ds004483,meg,2025-09-17T12:27:03.094401 +ds004624,ieeg,2025-11-14T16:57:06.603649 +ds004563,eeg,2025-11-14T16:57:07.645254 +ds004598,eeg,2025-11-14T16:57:08.768238 +ds004483,meg,2025-11-14T16:57:09.749564 ds004482,"anat,fmap,func",2025-09-17T12:07:15.522252 ds004627,"anat,fmap,func",2025-09-17T12:07:15.522306 ds004631,"anat,func",2025-09-17T12:07:15.522368 ds004327,"anat,fmap,func",2025-09-17T12:07:15.522423 ds004632,"anat,dwi",2025-09-17T12:07:15.522477 -ds004635,eeg,2025-09-17T12:27:03.742099 +ds004635,eeg,2025-11-14T16:57:10.356605 ds004640,dwi,2025-09-17T12:07:15.522587 ds004616,"anat,func",2025-09-17T12:07:15.522643 ds004644,anat,2025-09-17T12:07:15.522701 ds004645,"anat,func",2025-09-17T12:07:15.522763 -ds004602,eeg,2025-09-17T12:27:04.359086 +ds004602,eeg,2025-11-14T16:57:11.055666 ds004647,"anat,func",2025-09-17T12:07:15.522877 -ds004595,eeg,2025-09-17T12:27:05.033965 -ds004642,ieeg,2025-09-17T12:27:05.664061 +ds004595,eeg,2025-11-14T16:57:11.723037 +ds004642,ieeg,2025-11-14T16:57:12.436586 ds004650,anat,2025-09-17T12:07:15.523050 ds004648,"anat,func",2025-09-17T12:07:15.523109 ds004475,"anat,eeg,headmodel",2025-09-17T12:07:15.523167 ds004341,"anat,fmap,func",2025-09-17T12:07:15.523228 -ds004279,eeg,2025-09-17T12:27:06.987475 +ds004279,eeg,2025-11-14T16:57:13.428686 ds004656,"anat,func",2025-09-17T12:07:15.523339 -ds004657,eeg,2025-09-17T12:27:07.985646 -ds004660,eeg,2025-09-17T12:27:09.046719 -ds004661,eeg,2025-09-17T12:27:09.647581 +ds004657,eeg,2025-11-14T16:57:14.326343 +ds004660,eeg,2025-11-14T16:57:15.522634 +ds004661,eeg,2025-11-14T16:57:16.144307 ds004662,"anat,func",2025-09-17T12:07:15.523569 -ds004626,eeg,2025-09-17T12:27:10.308565 +ds004626,eeg,2025-11-14T16:57:16.808520 ds004604,"anat,func",2025-09-17T12:07:15.523680 ds004533,"anat,func",2025-09-17T12:07:15.523737 ds004692,"anat,fmap,func",2025-09-17T12:07:15.523794 ds004698,"anat,fmap,func",2025-09-17T12:07:15.523851 ds004693,"anat,func",2025-09-17T12:07:15.523906 -ds004696,ieeg,2025-09-17T12:27:11.000229 +ds004696,ieeg,2025-11-14T16:57:17.409709 ds004697,"anat,fmap,func",2025-09-17T12:07:15.524016 ds004589,"anat,func",2025-09-17T12:07:15.524072 ds004663,"anat,fmap,func",2025-09-17T12:07:15.524130 @@ -919,41 +919,41 @@ ds004706,"beh,eeg",2025-09-17T12:07:15.524302 ds004469,"anat,func",2025-09-17T12:07:15.524357 ds004717,"anat,apt,asl,dwi",2025-09-17T12:07:15.524409 ds004720,"anat,func",2025-09-17T12:07:15.524467 -ds004738,meg,2025-09-17T12:27:11.991907 +ds004738,meg,2025-11-14T16:57:18.437953 ds004742,dwi,2025-09-17T12:07:15.524578 ds004744,dwi,2025-09-17T12:07:15.524635 ds004743,"anat,fmap,func",2025-09-17T12:07:15.524692 ds004725,"anat,func",2025-09-17T12:07:15.524746 -ds004745,eeg,2025-09-17T12:27:12.935167 +ds004745,eeg,2025-11-14T16:57:19.395481 ds004737,"anat,dwi,fmap,func",2025-09-17T12:07:15.524870 ds004562,beh,2025-09-17T12:07:15.524926 -ds004752,"eeg,ieeg",2025-09-17T12:27:13.570844 -ds004324,eeg,2025-09-17T12:27:14.579369 +ds004752,"eeg,ieeg",2025-11-14T16:57:19.997204 +ds004324,eeg,2025-11-14T16:57:21.016836 ds004467,"anat,func",2025-09-17T12:07:15.525092 ds004767,anat,2025-09-17T12:07:15.525144 ds004746,"anat,fmap,func",2025-09-17T12:07:15.525201 ds004594,"anat,func",2025-09-17T12:07:15.525255 ds004670,"anat,func",2025-09-17T12:07:15.525308 -ds004770,ieeg,2025-09-17T12:27:15.580143 -ds004771,eeg,2025-09-17T12:27:16.525252 +ds004770,ieeg,2025-11-14T16:57:22.024921 +ds004771,eeg,2025-11-14T16:57:22.930879 ds004775,"anat,func",2025-09-17T12:07:15.525473 ds004710,func,2025-09-17T12:07:15.525536 ds004636,"anat,fmap,func",2025-09-17T12:07:15.525592 ds004776,anat,2025-09-17T12:07:15.525647 -ds004785,eeg,2025-09-17T12:27:17.190634 +ds004785,eeg,2025-11-14T16:57:23.573554 ds004786,"anat,fmap,func",2025-09-17T12:07:15.525759 ds004787,"anat,fmap,func",2025-09-17T12:07:15.525823 ds004789,"beh,ieeg",2025-09-17T12:07:15.525878 -ds004621,eeg,2025-09-17T12:27:17.837261 +ds004621,eeg,2025-11-14T16:57:24.183948 ds004798,"anat,fmap,func",2025-09-17T12:07:15.525990 ds004808,"anat,func",2025-09-17T12:07:15.526049 -ds004802,eeg,2025-09-17T12:27:18.544337 +ds004802,eeg,2025-11-14T16:57:24.813081 ds004809,"beh,ieeg",2025-09-17T12:07:15.526164 ds004542,"anat,fmap,func",2025-09-17T12:07:15.526220 ds004791,"anat,func",2025-09-17T12:07:15.526276 -ds004817,eeg,2025-09-17T12:27:19.217354 -ds004816,eeg,2025-09-17T12:27:19.935984 -ds004819,ieeg,2025-09-17T12:27:20.570674 +ds004817,eeg,2025-11-14T16:57:25.477837 +ds004816,eeg,2025-11-14T16:57:26.096711 +ds004819,ieeg,2025-11-14T16:57:26.926769 ds004815,"anat,fmap,func",2025-09-17T12:07:15.526498 ds004814,"anat,fmap,func",2025-09-17T12:07:15.526556 ds004783,"anat,func",2025-09-17T12:07:15.526613 @@ -967,31 +967,31 @@ ds004274,"anat,func",2025-09-17T12:07:15.527011 ds003138,"anat,dwi,fmap",2025-09-17T12:07:15.527067 ds004715,"anat,func",2025-09-17T12:07:15.527121 ds004712,"anat,dwi,fmap,func,swi",2025-09-17T12:07:15.527177 -ds004840,eeg,2025-09-17T12:27:21.513648 -ds004841,eeg,2025-09-17T12:27:22.502883 -ds004842,eeg,2025-09-17T12:27:23.457500 -ds004843,eeg,2025-09-17T12:27:24.411543 -ds004844,eeg,2025-09-17T12:27:25.030638 -ds004849,eeg,2025-09-17T12:27:25.993981 -ds004850,eeg,2025-09-17T12:27:26.628052 +ds004840,eeg,2025-11-14T16:57:27.895652 +ds004841,eeg,2025-11-14T16:57:28.937545 +ds004842,eeg,2025-11-14T16:57:29.921377 +ds004843,eeg,2025-11-14T16:57:30.791877 +ds004844,eeg,2025-11-14T16:57:31.490090 +ds004849,eeg,2025-11-14T16:57:32.536186 +ds004850,eeg,2025-11-14T16:57:33.158709 ds004851,"eeg,eye,pos",2025-09-17T12:07:15.527625 -ds004852,eeg,2025-09-17T12:27:27.278578 -ds004853,eeg,2025-09-17T12:27:27.908620 -ds004854,eeg,2025-09-17T12:27:28.575902 -ds004855,eeg,2025-09-17T12:27:29.311346 +ds004852,eeg,2025-11-14T16:57:34.071615 +ds004853,eeg,2025-11-14T16:57:34.662462 +ds004854,eeg,2025-11-14T16:57:35.433325 +ds004855,eeg,2025-11-14T16:57:36.047701 ds004848,"anat,fmap,func",2025-09-17T12:07:15.527908 -ds004859,ieeg,2025-09-17T12:27:29.956409 -ds004860,eeg,2025-09-17T12:27:30.909851 +ds004859,ieeg,2025-11-14T16:57:36.745891 +ds004860,eeg,2025-11-14T16:57:37.607866 ds004865,"beh,ieeg",2025-09-17T12:07:15.528071 ds004866,"anat,excluded,func",2025-09-17T12:07:15.528124 ds004495,"fmap,func",2025-09-17T12:07:15.528177 ds004666,"anat,dwi",2025-09-17T12:07:15.528233 -ds004902,eeg,2025-09-17T12:27:31.557370 -ds004784,eeg,2025-09-17T12:27:32.696541 +ds004902,eeg,2025-11-14T16:57:38.248050 +ds004784,eeg,2025-11-14T16:57:39.240716 ds004889,"anat,dwi",2025-09-17T12:07:15.528393 ds004884,"anat,func",2025-09-17T12:07:15.528464 -ds004883,eeg,2025-09-17T12:27:33.368592 -ds004012,meg,2025-09-17T12:27:34.154980 +ds004883,eeg,2025-11-14T16:57:39.923037 +ds004012,meg,2025-11-14T16:57:40.543484 ds004654,pet,2025-09-17T12:07:15.528641 ds004730,pet,2025-09-17T12:07:15.528701 ds004731,pet,2025-09-17T12:07:15.528759 @@ -1010,62 +1010,62 @@ ds002620,"fmap,func",2025-09-17T12:07:15.529444 ds003872,"anat,dwi,fmap,func",2025-09-17T12:07:15.529501 ds003835,"anat,fmap,func",2025-09-17T12:07:15.529566 ds003684,"anat,fmap,func",2025-09-17T12:07:15.529625 -ds004935,,2025-09-17T12:27:34.809287 +ds004935,,2025-11-14T16:57:41.370506 ds003928,"anat,func",2025-09-17T12:07:15.529740 ds003871,"anat,func",2025-09-17T12:07:15.529797 ds003851,"anat,func",2025-09-17T12:07:15.529853 ds003715,"anat,func",2025-09-17T12:07:15.529908 ds004937,"anat,beh",2025-09-17T12:07:15.529964 ds004943,"anat,func",2025-09-17T12:07:15.530025 -ds004944,ieeg,2025-09-17T12:27:35.169994 -ds004625,eeg,2025-09-17T12:27:36.120121 +ds004944,ieeg,2025-11-14T16:57:41.725093 +ds004625,eeg,2025-11-14T16:57:42.594603 ds004946,"anat,fmap,func",2025-09-17T12:07:15.530210 ds004795,anat,2025-09-17T12:07:15.530265 ds004945,dwi,2025-09-17T12:07:15.530320 ds004630,"anat,fmap,func",2025-09-17T12:07:15.530383 ds004894,"anat,func",2025-09-17T12:07:15.530441 -ds004952,eeg,2025-09-17T12:27:36.768029 +ds004952,eeg,2025-11-14T16:57:43.297814 ds004959,"anat,func",2025-09-17T12:07:15.530581 ds004956,"anat,func",2025-09-17T12:07:15.530642 -ds004951,eeg,2025-09-17T12:27:37.844480 +ds004951,eeg,2025-11-14T16:57:44.190528 ds004962,"anat,dwi,perf",2025-09-17T12:07:15.530757 ds004958,"anat,fmap,func",2025-09-17T12:07:15.530816 ds004973,nirs,2025-09-17T12:07:15.530874 ds004796,"eeg,func",2025-09-17T12:07:15.530931 -ds004942,eeg,2025-09-17T12:27:38.798673 -ds004993,ieeg,2025-09-17T12:27:39.487240 +ds004942,eeg,2025-11-14T16:57:45.196068 +ds004993,ieeg,2025-11-14T16:57:45.820857 ds004872,beh,2025-09-17T12:07:15.531102 ds004892,"anat,beh,fmap,func",2025-09-17T12:07:15.531160 -ds004995,eeg,2025-09-17T12:27:40.413068 +ds004995,eeg,2025-11-14T16:57:46.779314 ds004996,"anat,func",2025-09-17T12:07:15.531272 ds005003,"anat,func",2025-09-17T12:07:15.531327 -ds004370,ieeg,2025-09-17T12:27:41.057066 +ds004370,ieeg,2025-11-14T16:57:47.492536 ds004605,"anat,dwi",2025-09-17T12:07:15.531438 ds004965,"anat,fmap,func",2025-09-17T12:07:15.531492 ds004998,"headmodel,meg,montage,sourcemodel",2025-09-17T12:07:15.531547 -ds005007,ieeg,2025-09-17T12:27:41.965805 +ds005007,ieeg,2025-11-14T16:57:48.407769 ds005012,"anat,fmap,func",2025-09-17T12:07:15.531655 -ds005021,eeg,2025-09-17T12:27:42.877762 +ds005021,eeg,2025-11-14T16:57:49.395770 ds005026,"anat,dwi,func",2025-09-17T12:07:15.531764 ds005027,"anat,func",2025-09-17T12:07:15.531818 ds005016,"anat,dwi,func",2025-09-17T12:07:15.531871 ds005017,"anat,func",2025-09-17T12:07:15.531925 ds004581,"anat,dwi",2025-09-17T12:07:15.531979 ds005050,"anat,func",2025-09-17T12:07:15.532033 -ds005034,eeg,2025-09-17T12:27:43.563249 +ds005034,eeg,2025-11-14T16:57:49.961183 ds005038,"fmap,func",2025-09-17T12:07:15.532140 ds005040,"anat,fmap,func",2025-09-17T12:07:15.532198 -ds005028,eeg,2025-09-17T12:27:44.681073 +ds005028,eeg,2025-11-14T16:57:50.931817 ds004765,"anat,dwi,func",2025-09-17T12:07:15.532303 -ds005048,eeg,2025-09-17T12:27:45.731477 +ds005048,eeg,2025-11-14T16:57:51.960162 ds005059,"beh,ieeg",2025-09-17T12:07:15.532413 ds005069,"anat,func",2025-09-17T12:07:15.532468 ds005072,"anat,func",2025-09-17T12:07:15.532524 ds005063,"anat,dwi",2025-09-17T12:07:15.532578 -ds005065,meg,2025-09-17T12:27:46.490391 +ds005065,meg,2025-11-14T16:57:52.733443 ds005077,"anat,func",2025-09-17T12:07:15.532685 ds005079,"beh,eeg",2025-09-17T12:07:15.532736 -ds005083,ieeg,2025-09-17T12:27:47.240041 +ds005083,ieeg,2025-11-14T16:57:53.331517 ds005047,"fmap,func",2025-09-17T12:07:15.532850 ds005085,"anat,fmap",2025-09-17T12:07:15.532903 ds004182,"anat,fmap,func",2025-09-17T12:07:15.532970 @@ -1075,34 +1075,34 @@ ds004797,"anat,func",2025-09-17T12:07:15.533137 ds004611,anat,2025-09-17T12:07:15.533192 ds005009,"anat,fmap,func",2025-09-17T12:07:15.533246 ds004869,"anat,pet",2025-09-17T12:07:15.533300 -ds005089,eeg,2025-09-17T12:27:48.074241 +ds005089,eeg,2025-11-14T16:57:54.027869 ds005093,"mrs,pet",2025-09-17T12:07:15.533415 ds004868,"anat,pet",2025-09-17T12:07:15.533470 ds005088,"anat,fmap,func",2025-09-17T12:07:15.533529 -ds005095,eeg,2025-09-17T12:27:48.793809 +ds005095,eeg,2025-11-14T16:57:54.642601 ds005096,anat,2025-09-17T12:07:15.533639 -ds005106,eeg,2025-09-17T12:27:49.843026 -ds005114,eeg,2025-09-17T12:27:50.563352 +ds005106,eeg,2025-11-14T16:57:55.651455 +ds005114,eeg,2025-11-14T16:57:56.253554 ds005115,"anat,fmap,func",2025-09-17T12:07:15.533808 ds005118,"fmap,func",2025-09-17T12:07:15.533862 -ds005121,eeg,2025-09-17T12:27:51.614504 +ds005121,eeg,2025-11-14T16:57:57.209934 ds005125,"anat,fmap,func",2025-09-17T12:07:15.533971 ds004125,"anat,func",2025-09-17T12:07:15.534025 ds005126,"anat,func",2025-09-17T12:07:15.534079 ds005131,"beh,eeg",2025-09-17T12:07:15.534142 -ds004977,ieeg,2025-09-17T12:27:52.463952 +ds004977,ieeg,2025-11-14T16:57:57.978391 ds005123,"anat,dwi,fmap,func",2025-09-17T12:07:15.534254 ds005138,pet,2025-09-17T12:07:15.534309 ds005139,"anat,func",2025-09-17T12:07:15.534365 ds005148,"anat,func",2025-09-17T12:07:15.534428 ds005169,"anat,ieeg",2025-09-17T12:07:15.534485 ds004917,"anat,dwi,fmap,func",2025-09-17T12:07:15.534540 -ds005170,eeg,2025-09-17T12:27:53.513648 +ds005170,eeg,2025-11-14T16:57:59.070231 ds005189,"beh,eeg,eyetrack",2025-09-17T12:07:15.534658 ds005191,anat,2025-09-17T12:07:15.534723 ds005056,anat,2025-09-17T12:07:15.534789 ds005194,"anat,func",2025-09-17T12:07:15.534846 -ds005207,eeg,2025-09-17T12:27:54.562003 +ds005207,eeg,2025-11-14T16:57:59.956387 ds004957,"anat,fmap,func",2025-09-17T12:07:15.534960 ds004928,"anat,func",2025-09-17T12:07:15.535021 ds005233,"anat,func",2025-09-17T12:07:15.535077 @@ -1111,10 +1111,10 @@ ds005165,"anat,fmap,func",2025-09-17T12:07:15.535204 ds005234,"anat,meg",2025-09-17T12:07:15.535259 ds005216,anat,2025-09-17T12:07:15.535313 ds005215,"anat,func",2025-09-17T12:07:15.535364 -ds005241,meg,2025-09-17T12:27:55.610979 +ds005241,meg,2025-11-14T16:58:00.944144 ds005143,func,2025-09-17T12:07:15.535471 ds003814,"anat,fmap,func",2025-09-17T12:07:15.535522 -ds005262,eeg,2025-09-17T12:27:56.686337 +ds005262,eeg,2025-11-14T16:58:02.173353 ds005237,"anat,fmap,func",2025-09-17T12:07:15.535627 ds005263,"anat,fmap,func",2025-09-17T12:07:15.535678 ds005264,"anat,fmap,func",2025-09-17T12:07:15.535730 @@ -1124,19 +1124,19 @@ ds005250,"anat,fmap,func",2025-09-17T12:07:15.535881 ds005267,"anat,fmap,func",2025-09-17T12:07:15.535931 ds005230,"anat,func",2025-09-17T12:07:15.535982 ds005270,"anat,dwi,func",2025-09-17T12:07:15.536033 -ds005273,eeg,2025-09-17T12:27:58.133025 +ds005273,eeg,2025-11-14T16:58:03.091905 ds005258,motion,2025-09-17T12:07:15.536134 ds005279,"anat,beh,meg",2025-09-17T12:07:15.536200 ds005107,"beh,meg",2025-09-17T12:07:15.536256 ds004587,"beh,eeg",2025-09-17T12:07:15.536306 -ds005296,eeg,2025-09-17T12:27:58.951375 +ds005296,eeg,2025-11-14T16:58:03.996740 ds005299,"anat,dwi,fmap",2025-09-17T12:07:15.536416 ds005239,"anat,fmap,func,motion",2025-09-17T12:07:15.536469 -ds004980,eeg,2025-09-17T12:27:59.698283 +ds004980,eeg,2025-11-14T16:58:04.641572 ds005304,"anat,func",2025-09-17T12:07:15.536574 ds005305,"behavior,eeg",2025-09-17T12:07:15.536634 -ds005274,eeg,2025-09-17T12:28:00.407524 -ds005342,eeg,2025-09-17T12:28:01.181291 +ds005274,eeg,2025-11-14T16:58:05.336506 +ds005342,eeg,2025-11-14T16:58:05.963930 ds005134,"anat,dwi,fmap,func",2025-09-17T12:07:15.536788 ds005355,"anat,func",2025-09-17T12:07:15.536840 ds005357,"anat,func",2025-09-17T12:07:15.536891 @@ -1146,32 +1146,32 @@ ds005364,"anat,dwi,fmap,func",2025-09-17T12:07:15.537070 ds005365,"anat,fmap,func",2025-09-17T12:07:15.537127 ds005375,"anat,func",2025-09-17T12:07:15.537186 ds005374,"anat,fmap,func",2025-09-17T12:07:15.537238 -ds005363,eeg,2025-09-17T12:28:01.901608 -ds005383,eeg,2025-09-17T12:28:03.144675 +ds005363,eeg,2025-11-14T16:58:06.647156 +ds005383,eeg,2025-11-14T16:58:07.690993 ds005366,"anat,func",2025-09-17T12:07:15.537405 -ds005385,eeg,2025-09-17T12:28:04.078207 -ds005397,eeg,2025-09-17T12:28:05.468310 +ds005385,eeg,2025-11-14T16:58:08.711308 +ds005397,eeg,2025-11-14T16:58:09.839255 ds005402,"anat,dwi,fmap,func",2025-09-17T12:07:15.537572 ds005075,"anat,func",2025-09-17T12:07:15.537639 -ds005403,eeg,2025-09-17T12:28:06.434417 +ds005403,eeg,2025-11-14T16:58:10.448826 ds005371,"anat,mrs",2025-09-17T12:07:15.537756 ds005127,"anat,misc",2025-09-17T12:07:15.537812 ds004054,"anat,pet",2025-09-17T12:07:15.537865 -ds005406,eeg,2025-09-17T12:28:07.359988 +ds005406,eeg,2025-11-14T16:58:11.256652 ds005236,"anat,dwi",2025-09-17T12:07:15.537976 ds005411,"beh,ieeg",2025-09-17T12:07:15.538028 -ds005398,ieeg,2025-09-17T12:28:08.192903 +ds005398,ieeg,2025-11-14T16:58:11.940135 ds005412,anat,2025-09-17T12:07:15.538136 -ds004388,eeg,2025-09-17T12:28:09.437471 -ds004389,eeg,2025-09-17T12:28:10.289595 -ds005307,eeg,2025-09-17T12:28:11.089133 +ds004388,eeg,2025-11-14T16:58:12.922790 +ds004389,eeg,2025-11-14T16:58:13.565142 +ds005307,eeg,2025-11-14T16:58:14.284494 ds004856,"anat,dwi,func,perf,pet",2025-09-17T12:07:15.538353 ds005418,"anat,func",2025-09-17T12:07:15.538410 ds005422,anat,2025-09-17T12:07:15.538461 ds005427,"anat,func",2025-09-17T12:07:15.538512 -ds005410,eeg,2025-09-17T12:28:11.870453 -ds005420,eeg,2025-09-17T12:28:12.614852 -ds005443,,2025-09-17T12:28:13.343896 +ds005410,eeg,2025-11-14T16:58:15.033189 +ds005420,eeg,2025-11-14T16:58:15.643064 +ds005443,,2025-11-14T16:58:16.327998 ds005238,"anat,func",2025-09-17T12:07:15.538727 ds005454,"anat,fmap,func",2025-09-17T12:07:15.538781 ds005455,"anat,func",2025-09-17T12:07:15.538834 @@ -1191,12 +1191,12 @@ ds005497,"anat,func",2025-09-17T12:07:15.539484 ds005496,"anat,func",2025-09-17T12:07:15.539538 ds004323,"anat,func",2025-09-17T12:07:15.539592 ds005504,"anat,func",2025-09-17T12:07:15.539646 -ds005520,eeg,2025-09-17T12:28:13.774465 +ds005520,eeg,2025-11-14T16:58:16.625389 ds005522,"beh,ieeg",2025-09-17T12:07:15.539763 ds005523,"beh,ieeg",2025-09-17T12:07:15.539818 ds005529,"BBB_data,anat",2025-09-17T12:07:15.539874 ds005469,"anat,beh,func",2025-09-17T12:07:15.539934 -ds005429,eeg,2025-09-17T12:28:14.484010 +ds005429,eeg,2025-11-14T16:58:17.219515 ds005295,"anat,fmap,func",2025-09-17T12:07:15.540042 ds005530,"anat,beh,eeg,fmap,func",2025-09-17T12:07:15.540096 ds005518,"anat,func",2025-09-17T12:07:15.540148 @@ -1205,37 +1205,37 @@ ds005386,"anat,fmap,func",2025-09-17T12:07:15.540250 ds005498,"anat,func",2025-09-17T12:07:15.540304 ds005533,anat,2025-09-17T12:07:15.540362 ds005525,"anat,fmap,func",2025-09-17T12:07:15.540416 -ds005555,eeg,2025-09-17T12:28:15.431481 +ds005555,eeg,2025-11-14T16:58:18.226801 ds005531,"anat,func",2025-09-17T12:07:15.540524 -ds005505,eeg,2025-09-17T12:28:16.176686 -ds005506,eeg,2025-09-17T12:28:16.908861 -ds005507,eeg,2025-09-17T12:28:17.591035 -ds005508,eeg,2025-09-17T12:28:18.300556 -ds005509,eeg,2025-09-17T12:28:19.142513 -ds005510,eeg,2025-09-17T12:28:19.934721 -ds005512,eeg,2025-09-17T12:28:20.746758 -ds005514,eeg,2025-09-17T12:28:21.544375 -ds005511,eeg,2025-09-17T12:28:22.348838 +ds005505,eeg,2025-11-14T16:58:18.949315 +ds005506,eeg,2025-11-14T16:58:19.676854 +ds005507,eeg,2025-11-14T16:58:20.399251 +ds005508,eeg,2025-11-14T16:58:21.269370 +ds005509,eeg,2025-11-14T16:58:21.996455 +ds005510,eeg,2025-11-14T16:58:22.895747 +ds005512,eeg,2025-11-14T16:58:23.668661 +ds005514,eeg,2025-11-14T16:58:24.442660 +ds005511,eeg,2025-11-14T16:58:25.243448 ds005557,"beh,ieeg",2025-09-17T12:07:15.541062 ds005558,"beh,ieeg",2025-09-17T12:07:15.541114 ds005540,"beh,eeg",2025-09-17T12:07:15.541170 -ds005486,eeg,2025-09-17T12:28:23.076042 -ds005261,meg,2025-09-17T12:28:24.308330 +ds005486,eeg,2025-11-14T16:58:26.096676 +ds005261,meg,2025-11-14T16:58:27.122358 ds005559,"anat,dwi,fmap,func",2025-09-17T12:07:15.541336 -ds005565,eeg,2025-09-17T12:28:24.958972 +ds005565,eeg,2025-11-14T16:58:27.713731 ds005573,"anat,func",2025-09-17T12:07:15.541444 ds005481,"anat,figures,log",2025-09-17T12:07:15.541496 -ds005545,ieeg,2025-09-17T12:28:25.630769 +ds005545,ieeg,2025-11-14T16:58:28.562353 ds005472,"anat,figures,fmap,func,log",2025-09-17T12:07:15.541609 ds005576,"anat,fmap,func",2025-09-17T12:07:15.541664 ds005588,"anat,func",2025-09-17T12:07:15.541716 ds005592,ieeg,2025-05-11T17:28:52.901231 -ds005586,eeg,2025-09-17T12:28:26.725409 +ds005586,eeg,2025-11-14T16:58:29.606985 ds005597,"anat,func",2025-09-17T12:07:15.541824 ds005415,"anat,beh,ieeg",2025-09-17T12:07:15.541878 ds005595,anat,2025-09-17T12:07:15.541929 ds005571,"anat,fmap,func",2025-09-17T12:07:15.541982 -ds005589,,2025-09-17T12:28:27.473260 +ds005589,,2025-11-14T16:58:30.281311 ds005600,"anat,fmap,func",2025-09-17T12:07:15.542097 ds005090,"anat,fmap",2025-09-17T12:07:15.542150 ds005596,"anat,func",2025-09-17T12:07:15.542207 @@ -1245,30 +1245,30 @@ ds005604,"anat,fmap,func",2025-09-17T12:07:15.542371 ds005590,"anat,pet",2025-09-17T12:07:15.542426 ds005605,pet,2025-09-17T12:07:15.542480 ds005616,anat,2025-09-17T12:07:15.542534 -ds005620,eeg,2025-09-17T12:28:28.507718 -ds005624,ieeg,2025-09-17T12:28:29.436703 +ds005620,eeg,2025-11-14T16:58:31.345558 +ds005624,ieeg,2025-11-14T16:58:32.105413 ds005619,"anat,pet",2025-09-17T12:07:15.542695 -ds005594,eeg,2025-09-17T12:28:30.454468 +ds005594,eeg,2025-11-14T16:58:33.104633 ds005581,"anat,func",2025-09-17T12:07:15.542803 ds005598,"anat,func",2025-09-17T12:07:15.542856 ds005381,anat,2025-09-17T12:07:15.542909 -ds005628,eeg,2025-09-17T12:28:31.134884 -ds005087,eeg,2025-09-17T12:28:31.879680 +ds005628,eeg,2025-11-14T16:58:33.693427 +ds005087,eeg,2025-11-14T16:58:34.346341 ds005128,"anat,fmap,func",2025-09-17T12:07:15.543074 ds005630,"anat,func",2025-09-17T12:07:15.543128 ds005635,"anat,func",2025-09-17T12:07:15.543184 ds005636,"anat,func",2025-09-17T12:07:15.543243 ds005468,"anat,func",2025-09-17T12:07:15.543299 ds005613,"anat,beh,dwi,fmap,func",2025-09-17T12:07:15.543351 -ds005340,eeg,2025-09-17T12:28:32.560826 +ds005340,eeg,2025-11-14T16:58:34.966801 ds005226,func,2025-09-17T12:07:15.543460 ds005639,"anat,fmap,func",2025-09-17T12:07:15.543514 -ds005670,ieeg,2025-09-17T12:28:33.258250 -ds005691,ieeg,2025-09-17T12:28:33.885511 -ds005688,eeg,2025-09-17T12:28:34.528792 -ds005672,eeg,2025-09-17T12:28:35.501131 -ds005692,eeg,2025-09-17T12:28:36.167138 -ds005697,eeg,2025-09-17T12:28:37.162404 +ds005670,ieeg,2025-11-14T16:58:35.579637 +ds005691,ieeg,2025-11-14T16:58:36.250906 +ds005688,eeg,2025-11-14T16:58:36.864145 +ds005672,eeg,2025-11-14T16:58:37.908780 +ds005692,eeg,2025-11-14T16:58:38.620318 +ds005697,eeg,2025-11-14T16:58:39.737633 ds005700,"anat,func",2025-09-17T12:07:15.543889 ds005625,"anat,func",2025-09-17T12:07:15.543944 ds005704,"anat,fmap,func",2025-09-17T12:07:15.543999 @@ -1277,42 +1277,42 @@ ds005684,"anat,func",2025-09-17T12:07:15.544106 ds005687,"anat,func,perf",2025-09-17T12:07:15.544157 ds005699,"anat,func",2025-09-17T12:07:15.544211 ds005713,"anat,dwi,func",2025-09-17T12:07:15.544266 -ds005416,eeg,2025-09-17T12:28:37.949595 +ds005416,eeg,2025-11-14T16:58:40.335754 ds005572,"dwi,fmap",2025-09-17T12:07:15.544374 ds005731,"anat,fmap,func",2025-09-17T12:07:15.544430 ds005747,"anat,func",2025-09-17T12:07:15.544485 ds005776,nirs,2025-09-17T12:07:15.544540 ds005777,nirs,2025-09-17T12:07:15.544595 -ds005779,eeg,2025-09-17T12:28:38.575105 +ds005779,eeg,2025-11-14T16:58:41.018861 ds005783,"anat,func",2025-09-17T12:07:15.544704 ds005577,"anat,dwi,fmap,func",2025-09-17T12:07:15.544758 -ds005787,eeg,2025-09-17T12:28:39.235132 +ds005787,eeg,2025-11-14T16:58:41.728294 ds005574,"anat,ieeg",2025-09-17T12:07:15.544867 ds005623,"anat,func",2025-09-17T12:07:15.544920 ds005733,"anat,fmap,func",2025-09-17T12:07:15.544973 -ds005815,eeg,2025-09-17T12:28:40.240658 -ds005811,eeg,2025-09-17T12:28:41.201875 -ds005356,meg,2025-09-17T12:28:42.228333 +ds005815,eeg,2025-11-14T16:58:42.780202 +ds005811,eeg,2025-11-14T16:58:43.665952 +ds005356,meg,2025-11-14T16:58:44.860812 ds005849,"anat,func",2025-09-17T12:07:15.545202 ds005345,"anat,eeg,func",2025-09-17T12:07:15.545257 ds005850,"anat,func",2025-09-17T12:07:15.545311 -ds005863,eeg,2025-09-17T12:28:43.226393 -ds005810,meg,2025-09-17T12:28:43.973117 -ds005866,eeg,2025-09-17T12:28:45.032597 -ds005868,eeg,2025-09-17T12:28:45.721901 +ds005863,eeg,2025-11-14T16:58:45.912806 +ds005810,meg,2025-11-14T16:58:46.510421 +ds005866,eeg,2025-11-14T16:58:47.474871 +ds005868,eeg,2025-11-14T16:58:48.124013 ds005876,"beh,eeg",2025-09-17T12:07:15.545581 ds005874,"anat,func",2025-09-17T12:07:15.545635 ds005880,"anat,func",2025-09-17T12:07:15.545689 ds005839,"anat,func",2025-09-17T12:07:15.545745 ds005185,"beh,eeg",2025-09-17T12:07:15.545799 -ds005178,eeg,2025-09-17T12:28:46.392804 +ds005178,,2025-11-14T16:58:48.838930 ds005891,"anat,func",2025-09-17T12:07:15.545904 ds005717,func,2025-09-17T12:07:15.545959 ds005882,"anat,func",2025-09-17T12:07:15.546010 ds005873,"ecg,eeg,emg,mov",2025-09-17T12:07:15.546066 ds005851,anat,2025-09-17T12:07:15.546118 ds005795,"anat,eeg,func",2025-09-17T12:07:15.546176 -ds005899,,2025-09-17T12:28:47.301919 +ds005899,,2025-11-14T16:59:36.298555 ds005754,"anat,beh,func",2025-09-17T12:07:15.546284 ds005883,"anat,fmap,func,physio",2025-09-17T12:07:15.546339 ds005884,"anat,fmap,func,physio",2025-09-17T12:07:15.546396 @@ -1320,60 +1320,60 @@ ds005895,"ct,pet",2025-09-17T12:07:15.546448 ds005203,"anat,fmap,func",2025-09-17T12:07:15.546498 ds005903,"anat,fmap,func",2025-09-17T12:07:15.546548 ds005405,"anat,fmap,func",2025-09-17T12:07:15.546598 -ds005907,eeg,2025-09-17T12:28:47.606647 +ds005907,eeg,2025-11-14T16:59:36.637150 ds005920,"anat,func",2025-09-17T12:07:15.546704 ds005521,"anat,func",2025-09-17T12:07:15.546753 ds005926,derivatives,2025-09-17T12:07:15.546803 -ds005927,,2025-09-17T12:28:48.398731 +ds005927,,2025-11-14T16:59:37.435080 ds005929,nirs,2025-09-17T12:07:15.546909 ds005930,nirs,2025-09-17T12:07:15.546960 -ds004774,ieeg,2025-09-17T12:28:49.017681 +ds004774,ieeg,2025-11-14T16:59:38.116957 ds005935,nirs,2025-09-17T12:07:15.547069 ds005752,"anat,dwi,func,perf",2025-09-17T12:07:15.547119 ds005917,"anat,dwi,func",2025-09-17T12:07:15.547169 -ds005946,eeg,2025-09-17T12:28:50.163412 -ds005343,eeg,2025-09-17T12:28:50.950209 +ds005946,eeg,2025-11-14T16:59:39.042981 +ds005343,eeg,2025-11-14T16:59:39.725790 ds004514,"eeg,nirs",2025-09-17T12:07:15.547320 -ds004517,eeg,2025-09-17T12:28:51.592266 -ds005953,ieeg,2025-09-17T12:28:52.278721 +ds004517,eeg,2025-11-14T16:59:40.421343 +ds005953,ieeg,2025-11-14T16:59:41.049078 ds005329,"anat,fmap,func",2025-09-17T12:07:15.547469 -ds005516,eeg,2025-09-17T12:28:53.373267 -ds005515,eeg,2025-09-17T12:28:54.337030 +ds005516,eeg,2025-11-14T16:59:42.015271 +ds005515,eeg,2025-11-14T16:59:42.836618 ds002312,"eyetrack,meg",2025-09-17T12:07:15.547629 ds005963,nirs,2025-09-17T12:07:15.547681 ds005964,nirs,2025-09-17T12:07:15.547732 -ds005931,ieeg,2025-09-17T12:28:55.386436 +ds005931,ieeg,2025-11-14T16:59:43.716100 ds005256,"anat,dwi,fmap,func",2025-09-17T12:07:15.547834 ds005664,"anat,dwi,fmap",2025-09-17T12:07:15.547884 ds005978,anat,2025-09-17T12:07:15.547934 ds005980,"anat,func",2025-09-17T12:07:15.547984 ds005875,"anat,func",2025-09-17T12:07:15.548039 ds006001,"anat,dwi",2025-09-17T12:07:15.548089 -ds005960,eeg,2025-09-17T12:28:57.151750 +ds005960,eeg,2025-11-14T16:59:44.726549 ds006005,"anat,func",2025-09-17T12:07:15.548187 ds006010,"anat,fmap,func",2025-09-17T12:07:15.548237 ds006012,"anat,meg",2025-09-17T12:07:15.548294 -ds006018,eeg,2025-09-17T12:28:58.201685 +ds006018,eeg,2025-11-14T16:59:45.457693 ds005431,"anat,dwi",2025-09-17T12:07:15.548400 ds006033,"anat,func",2025-09-17T12:07:15.548451 -ds006035,meg,2025-09-17T12:28:58.856575 -ds006036,eeg,2025-09-17T12:28:59.895283 +ds006035,meg,2025-11-14T16:59:46.191850 +ds006036,eeg,2025-11-14T16:59:47.090995 ds006039,"anat,func",2025-09-17T12:07:15.548602 ds006040,"anat,beh,dwi,eeg,func",2025-09-17T12:07:15.548667 ds005901,"anat,dwi,fmap,func",2025-09-17T12:07:15.548719 ds005896,"anat,dwi,func",2025-09-17T12:07:15.548769 -ds006071,,2025-09-17T12:29:00.627860 +ds006071,,2025-11-14T16:59:47.811700 ds006072,"anat,dwi,fmap,func",2025-09-17T12:07:15.548874 ds005166,"anat,beh,func",2025-09-17T12:07:15.548923 -ds006065,ieeg,2025-09-17T12:29:01.238072 +ds006065,ieeg,2025-11-14T16:59:48.467083 ds005857,"beh,eeg",2025-09-17T12:07:15.549027 ds005346,"anat,func",2025-09-17T12:07:15.549079 ds005892,"anat,fmap,func",2025-09-17T12:07:15.549131 ds006092,"anat,func",2025-09-17T12:07:15.549181 ds005894,"anat,func",2025-09-17T12:07:15.549232 -ds006104,eeg,2025-09-17T12:29:01.970126 +ds006104,eeg,2025-11-14T16:59:49.329228 ds006105,"anat,func",2025-09-17T12:07:15.549333 -ds006107,ieeg,2025-09-17T12:29:03.068820 +ds006107,ieeg,2025-11-14T16:59:50.465488 ds005341,"anat,dwi,fmap,func",2025-09-17T12:07:15.549439 ds003358,"anat,func",2025-09-17T12:07:15.549490 ds003877,anat,2025-09-17T12:07:15.549539 @@ -1381,15 +1381,15 @@ ds003892,"anat,func",2025-09-17T12:07:15.549594 ds003900,anat,2025-09-17T12:07:15.549647 ds003927,"anat,func",2025-09-17T12:07:15.549699 ds005737,dwi,2025-09-17T12:07:15.549751 -ds005648,eeg,2025-09-17T12:29:04.298815 +ds005648,eeg,2025-11-14T16:59:51.751507 ds005460,"anat,fmap,func",2025-09-17T12:07:15.549856 ds006123,anat,2025-09-17T12:07:15.549906 ds004669,"anat,func",2025-09-17T12:07:15.549956 -ds006126,eeg,2025-09-17T12:29:05.017593 +ds006126,eeg,2025-11-14T16:59:52.520692 ds005413,"anat,beh,fmap,func",2025-09-17T12:07:15.550065 ds006156,"anat,func",2025-09-17T12:07:15.550116 -ds006145,,2025-09-17T12:29:06.126290 -ds006171,eeg,2025-09-17T12:29:07.224988 +ds006145,,2025-11-14T16:59:53.561077 +ds006171,eeg,2025-11-14T16:59:54.566168 ds006179,"anat,func",2025-09-17T12:07:15.550298 ds006111,"anat,func",2025-09-17T12:29:07.966622 ds006181,"anat,dwi",2025-09-17T12:07:15.550412 @@ -1398,7 +1398,7 @@ ds006193,"anat,fmap,func",2025-09-17T12:07:15.550516 ds006207,"fmap,func",2025-09-17T12:07:15.550578 ds005947,"anat,fmap,func",2025-09-17T12:07:15.550630 ds006209,"anat,func",2025-09-17T12:07:15.550687 -ds006095,eeg,2025-09-17T12:29:09.057953 +ds006095,eeg,2025-11-14T16:59:55.191943 ds006211,"anat,fmap,func",2025-09-17T12:07:15.550803 ds006206,"anat,fmap,func",2025-09-17T12:07:15.550853 ds006128,"anat,func",2025-09-17T12:07:15.550914 @@ -1415,78 +1415,78 @@ ds006184,log,2025-09-17T12:07:15.551455 ds006182,"anat,dwi,figures,log",2025-09-17T12:07:15.551505 ds006143,"anat,dwi,figures,func",2025-09-17T12:07:15.551555 ds006243,func,2025-09-17T12:07:15.551605 -ds006138,,2025-09-17T12:29:09.857616 +ds006138,,2025-11-14T16:59:55.843467 ds006169,"anat,dwi",2025-09-17T12:07:15.551719 ds006248,anat,2025-09-17T12:07:15.551831 -ds006234,ieeg,2025-09-17T12:29:10.591261 -ds006233,ieeg,2025-09-17T12:29:11.954497 +ds006234,ieeg,2025-11-14T16:59:56.518061 +ds006233,ieeg,2025-11-14T16:59:57.616979 ds006159,"beh,eeg",2025-09-17T12:07:15.552020 -ds006253,ieeg,2025-09-17T12:29:13.227687 +ds006253,ieeg,2025-11-14T16:59:58.762157 ds006131,"anat,dwi,fmap,func,perf",2025-09-17T12:07:15.552133 -ds005841,eeg,2025-09-17T12:29:14.455098 -ds005407,eeg,2025-09-17T12:29:15.104252 -ds006260,eeg,2025-09-17T12:29:15.832931 +ds005841,eeg,2025-11-14T16:59:59.673105 +ds005407,eeg,2025-11-14T17:00:00.553178 +ds006260,eeg,2025-11-14T17:00:01.383249 ds006266,"anat,func",2025-09-17T12:07:15.552351 ds006265,"anat,func",2025-09-17T12:07:15.552405 ds006267,anat,2025-09-17T12:07:15.552459 -ds006142,eeg,2025-09-17T12:29:16.936320 -ds006269,eeg,2025-09-17T12:29:17.756895 +ds006142,eeg,2025-11-14T17:00:02.544855 +ds006269,eeg,2025-11-14T17:00:03.283493 ds006303,"anat,func",2025-09-17T12:07:15.552619 ds005137,anat,2025-09-17T12:07:15.552673 -ds006317,eeg,2025-09-17T12:29:18.978970 +ds006317,eeg,2025-11-14T17:00:04.331120 ds006318,derivatives,2025-09-17T12:07:15.552786 ds006334,"anat,meg",2025-09-17T12:07:15.552840 ds006067,"anat,fmap,func",2025-09-17T12:07:15.552894 -ds006367,eeg,2025-09-17T12:29:20.027742 -ds006366,eeg,2025-09-17T12:29:20.910238 +ds006367,eeg,2025-11-14T17:00:05.381184 +ds006366,eeg,2025-11-14T17:00:06.003036 ds006377,nirs,2025-09-17T12:07:15.553053 -ds006370,eeg,2025-09-17T12:29:21.683899 -ds005448,ieeg,2025-09-17T12:29:23.511477 -ds006392,ieeg,2025-09-17T12:29:22.424424 +ds006370,eeg,2025-11-14T17:00:06.951471 +ds005448,ieeg,2025-11-14T17:00:08.548359 +ds006392,ieeg,2025-11-14T17:00:07.581558 ds006394,"beh,eeg",2025-09-17T12:07:15.553219 ds006373,"fmap,func",2025-09-17T12:07:15.553272 ds005551,"anat,fmap,func",2025-09-17T12:07:15.553325 ds006401,"anat,func",2025-09-17T12:07:15.553377 ds006395,"anat,dwi,func",2025-09-17T12:07:15.553484 -ds006437,eeg,2025-09-17T12:29:24.747540 +ds006437,eeg,2025-11-14T17:00:09.575615 ds006444,"anat,mrs",2025-09-17T12:07:15.553595 -ds006446,eeg,2025-09-17T12:29:25.834805 -ds005642,eeg,2025-09-17T12:29:26.587822 -ds005280,eeg,2025-09-17T12:29:27.364993 -ds005284,eeg,2025-09-17T12:29:28.610461 -ds005285,eeg,2025-09-17T12:29:29.252293 -ds005473,eeg,2025-09-17T12:29:30.368505 -ds005293,,2025-09-17T12:29:31.559655 -ds005292,eeg,2025-09-17T12:29:31.901481 -ds005291,eeg,2025-09-17T12:29:33.132227 -ds005289,eeg,2025-09-17T12:29:33.853598 -ds005286,eeg,2025-09-17T12:29:35.038282 +ds006446,eeg,2025-11-14T17:00:10.625558 +ds005642,eeg,2025-11-14T17:00:11.369838 +ds005280,eeg,2025-11-14T17:00:12.092676 +ds005284,eeg,2025-11-14T17:00:13.243538 +ds005285,eeg,2025-11-14T17:00:13.963946 +ds005473,eeg,2025-11-14T17:00:15.038866 +ds005293,eeg,2025-11-14T17:00:15.936392 +ds005292,eeg,2025-11-14T17:00:16.971142 +ds005291,eeg,2025-11-14T17:00:18.047027 +ds005289,eeg,2025-11-14T17:00:18.741518 +ds005286,eeg,2025-11-14T17:00:19.806219 ds006459,nirs,2025-09-17T12:07:15.554270 ds006460,nirs,2025-09-17T12:07:15.554324 -ds006466,eeg,2025-09-17T12:29:35.800932 +ds006466,eeg,2025-11-14T17:00:20.584618 ds006045,"anat,func",2025-09-17T12:07:15.554433 ds006462,beh,2025-09-17T12:07:15.554489 ds006391,"anat,dwi,fmap,func",2025-09-17T12:07:15.554546 ds006472,"anat,fmap,func",2025-09-17T12:07:15.554601 -ds006480,eeg,2025-09-17T12:29:37.034941 +ds006480,eeg,2025-11-14T17:00:21.633179 ds006486,anat,2025-09-17T12:07:15.554709 ds006483,"anat,fmap,func",2025-09-17T12:29:37.732520 ds005658,"anat,func",2025-09-17T12:29:38.684852 -ds006319,,2025-09-17T12:29:39.425574 +ds006319,"anat,fmap,func",2025-11-14T17:00:22.257021 ds006512,"anat,fmap,func",2025-09-17T12:29:39.726222 ds006407,"anat,func",2025-09-17T12:29:40.790615 ds006519,"anat,ieeg",2025-09-17T12:29:41.522022 ds006525,"anat,eeg",2025-09-17T12:29:42.570916 ds006521,anat,2025-09-17T12:29:43.290750 ds005112,anat,2025-09-17T12:29:43.907700 -ds004940,,2025-09-17T12:29:44.961459 +ds004940,eeg,2025-11-14T17:00:23.215145 ds006545,nirs,2025-09-17T12:29:45.387239 -ds006547,eeg,2025-09-17T12:29:46.574380 +ds006547,eeg,2025-11-14T17:00:23.947233 ds006468,"anat,beh,meg",2025-09-17T12:29:47.583454 -ds006554,eeg,2025-09-17T12:29:48.337541 +ds006554,eeg,2025-11-14T17:00:24.866673 ds006557,anat,2025-09-17T12:29:49.057728 ds006556,anat,2025-09-17T12:29:49.970914 -ds006563,eeg,2025-09-17T12:29:50.732805 +ds006563,eeg,2025-11-14T17:00:25.578397 ds006212,func,2025-09-17T12:29:51.483065 ds006564,"anat,func",2025-09-17T12:29:52.530740 ds004974,"anat,func",2025-09-17T12:29:53.184855 @@ -1498,11 +1498,11 @@ ds006572,"anat,fmap,func",2025-09-17T12:29:58.145006 ds006594,"anat,fmap,func",2025-09-17T12:29:59.193888 ds006601,"anat,fmap,func",2025-09-17T12:30:00.152376 ds006583,"anat,fmap,func",2025-09-17T12:30:01.071054 -ds006434,eeg,2025-09-17T12:30:01.903259 +ds006434,eeg,2025-11-14T17:00:26.244455 ds006630,func,2025-09-17T12:30:02.566588 ds006613,"ct,pet",2025-09-17T12:30:03.232803 ds006638,derivatives,2025-09-17T12:30:04.228632 -ds006502,meg,2025-09-17T12:30:04.856942 +ds006502,meg,2025-11-14T17:00:27.059908 ds006636,"anat,fmap,func",2025-09-17T12:30:05.912140 ds006491,anat,2025-09-17T12:30:06.806384 ds006661,"anat,func",2025-09-17T12:30:07.789296 @@ -1512,3 +1512,64 @@ ds006670,"anat,dwi,fmap",2025-09-17T12:30:09.974844 ds006676,"anat,dwi",2025-09-17T12:30:10.703360 ds006644,func,2025-09-17T12:30:11.686394 ds005933,"anat,fmap,func",2025-09-17T12:30:12.667958 +ds006673,nirs,2025-11-14T17:00:28.263794 +ds006663,"anat,dwi,fmap,func",2025-11-14T17:00:28.846755 +ds006693,"anat,func",2025-11-14T17:00:29.854811 +ds006691,"ct,pet",2025-11-14T17:00:30.962908 +ds006695,eeg,2025-11-14T17:00:31.918181 +ds006629,meg,2025-11-14T17:00:32.524820 +ds004639,"anat,dwi,fmap,func",2025-11-14T17:00:33.202532 +ds006628,"anat,func",2025-11-14T17:00:34.216511 +ds006642,"anat,fmap,func",2025-11-14T17:00:34.830734 +ds005872,eeg,2025-11-14T17:00:35.875782 +ds005408,eeg,2025-11-14T17:00:36.858743 +ds006707,"anat,func",2025-11-14T17:00:37.559890 +ds006729,"anat,func",2025-11-14T17:00:38.500035 +ds006721,"anat,fmap",2025-11-14T17:00:39.489248 +ds006731,"anat,dwi,func",2025-11-14T17:00:40.652824 +ds005424,anat,2025-11-14T17:00:41.661550 +ds006735,eeg,2025-11-14T17:00:42.682566 +ds006746,anat,2025-11-14T17:00:43.311114 +ds006533,anat,2025-11-14T17:00:44.290966 +ds006761,eeg,2025-11-14T17:00:44.992466 +ds006648,eeg,2025-11-14T17:00:45.588197 +ds006647,eeg,2025-11-14T17:00:46.283333 +ds005483,"anat,pet",2025-11-14T17:00:47.023621 +ds006756,"anat,pet",2025-11-14T17:00:48.173241 +ds004402,"anat,func",2025-11-14T17:00:49.246056 +ds006777,eeg,2025-11-14T17:00:50.244635 +ds006780,eeg,2025-11-14T17:00:50.848492 +ds006801,eeg,2025-11-14T17:00:51.573552 +ds006803,eeg,2025-11-14T17:00:52.570286 +ds006798,"anat,func",2025-11-14T17:00:53.668383 +ds006812,"anat,mrs",2025-11-14T17:00:54.664189 +ds006815,"anat,fmap,func",2025-11-14T17:00:55.258099 +ds006821,"anat,fmap,func",2025-11-14T17:00:56.277255 +ds006826,"anat,func",2025-11-14T17:00:57.023826 +ds006465,,2025-11-14T17:00:57.696752 +ds006768,eeg,2025-11-14T17:00:58.057081 +ds005662,eeg,2025-11-14T17:00:58.687363 +ds006848,"beh,eeg",2025-11-14T17:00:59.383438 +ds006817,eeg,2025-11-14T17:01:00.029018 +ds006844,"anat,func",2025-11-14T17:01:00.705921 +ds006802,eeg,2025-11-14T17:01:01.359155 +ds006839,eeg,2025-11-14T17:01:02.029239 +ds006833,beh,2025-11-14T17:01:02.758371 +ds006850,eeg,2025-11-14T17:01:03.756789 +ds006861,eeg,2025-11-14T17:01:04.916766 +ds006866,eeg,2025-11-14T17:01:05.977305 +ds006890,ieeg,2025-11-14T17:01:06.723237 +ds006903,nirs,2025-11-14T17:01:07.672941 +ds005932,eeg,2025-11-14T17:01:08.407362 +ds006623,,2025-11-14T17:01:09.219806 +ds006902,nirs,2025-11-14T17:01:09.607521 +ds006917,pet,2025-11-14T17:01:10.245632 +ds006779,"anat,figures,func,log",2025-11-14T17:01:11.294621 +ds006923,eeg,2025-11-14T17:01:12.258147 +ds006744,"anat,figures,log,perf",2025-11-14T17:01:12.856246 +ds006688,"anat,dwi,fmap,func",2025-11-14T17:01:14.101397 +ds006926,"anat,fmap,func",2025-11-14T17:01:15.159441 +ds006935,anat,2025-11-14T17:01:15.919416 +ds006910,ieeg,2025-11-14T17:01:16.915220 +ds006914,,2025-11-14T17:01:17.827855 +ds006720,"anat,meg",2025-11-14T17:01:18.111412 diff --git a/citations/json/ds000246_citations.json b/citations/json/ds000246_citations.json index 80a34a2..d39db8f 100644 --- a/citations/json/ds000246_citations.json +++ b/citations/json/ds000246_citations.json @@ -1,26 +1,47 @@ { "dataset_id": "ds000246", - "num_citations": 1, - "date_last_updated": "2025-09-17T19:30:14.831679+00:00", + "num_citations": 2, + "date_last_updated": "2025-11-14T17:15:11.236411", "metadata": { - "total_cumulative_citations": 123, - "fetch_date": "2025-09-17T19:30:14.831679+00:00", + "total_cumulative_citations": 181, + "fetch_date": "2025-11-14T17:15:11.236411", "processing_version": "1.0" }, "citation_details": [ { "title": "MEG-BIDS, the brain imaging data structure extended to magnetoencephalography", - "author": "G Niso, KJ Gorgolewski, E Bock, et al.", + "author": "G Niso, KJ Gorgolewski, E Bock, TL Brooks, G Flandin", "venue": "Scientific data", "year": 2018, "url": "https://www.nature.com/articles/sdata2018110", - "cited_by": 123, + "cited_by": 176, "abstract": "We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with", "short_author": "G Niso, KJ Gorgolewski, E Bock, et al.", "confidence_scoring": { - "confidence_score": 0.6995742082595826, - "similarity_score": 0.6359765529632568, - "citation_text_length": 350, + "confidence_score": 0.7014782190322877, + "similarity_score": 0.6377074718475342, + "citation_text_length": 364, + "dataset_text_length": 2179, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.31867208003997805, + "similarity_score": 0.2759065628051758, + "citation_text_length": 386, "dataset_text_length": 2179, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -29,18 +50,18 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:45:49.011410+00:00", + "scoring_date": "2025-11-15T01:46:20.830688+00:00", "dataset_text_length": 2179, - "num_citations_scored": 1, + "num_citations_scored": 2, "summary_stats": { - "mean_confidence": 0.6995742082595826, - "median_confidence": 0.6995742082595826, - "std_confidence": 0.0, - "min_confidence": 0.6995742082595826, - "max_confidence": 0.6995742082595826, - "high_confidence_count": 0, - "medium_confidence_count": 1, - "low_confidence_count": 0 + "mean_confidence": 0.5100751495361329, + "median_confidence": 0.5100751495361329, + "std_confidence": 0.19140306949615482, + "min_confidence": 0.31867208003997805, + "max_confidence": 0.7014782190322877, + "high_confidence_count": 1, + "medium_confidence_count": 0, + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds000247_citations.json b/citations/json/ds000247_citations.json index a1b17f3..afedcd5 100644 --- a/citations/json/ds000247_citations.json +++ b/citations/json/ds000247_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds000247", - "num_citations": 3, - "date_last_updated": "2025-09-17T19:30:14.836478+00:00", + "num_citations": 5, + "date_last_updated": "2025-11-14T17:15:59.909657", "metadata": { - "total_cumulative_citations": 186, - "fetch_date": "2025-09-17T19:30:14.836478+00:00", + "total_cumulative_citations": 285, + "fetch_date": "2025-11-14T17:15:59.909657", "processing_version": "1.0" }, "citation_details": [ @@ -13,8 +13,8 @@ "author": "G Niso, F Tadel, E Bock, M Cousineau", "venue": "Frontiers in neuroscience", "year": 2019, - "url": "https://www.frontiersin.org/articles/10.3389/fnins.2019.00284/full", - "cited_by": 62, + "url": "https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.00284/full", + "cited_by": 104, "abstract": "We present a simple, reproducible analysis pipeline applied to resting-state magnetoencephalography (MEG) data from the Open MEG Archive (OMEGA). The data workflow", "short_author": "G Niso, F Tadel, E Bock, M Cousineau", "publisher": "Frontiers Media SA", @@ -34,58 +34,94 @@ }, { "title": "MEG-BIDS, the brain imaging data structure extended to magnetoencephalography", - "author": "G Niso, KJ Gorgolewski, E Bock, et al.", + "author": "G Niso, KJ Gorgolewski, E Bock, TL Brooks, G Flandin", "venue": "Scientific data", "year": 2018, "url": "https://www.nature.com/articles/sdata2018110", - "cited_by": 123, + "cited_by": 176, "abstract": "We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with", "short_author": "G Niso, KJ Gorgolewski, E Bock, et al.", "confidence_scoring": { - "confidence_score": 0.7032613277435303, - "similarity_score": 0.6393284797668457, - "citation_text_length": 350, + "confidence_score": 0.7041680932044984, + "similarity_score": 0.6401528120040894, + "citation_text_length": 364, "dataset_text_length": 2260, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, { - "title": "Comparative study of detection of ADHD using EEG signals", - "author": "V Anchana, KS Biju", - "venue": "2023 International Conference on Control, Communication and Computing (ICCC)", - "year": 2023, - "url": "https://ieeexplore.ieee.org/abstract/document/10165395/", - "cited_by": 1, - "abstract": "Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental irregularity which is complex, universal and heterogeneous. Inattention, hyperactivity and impulsiveness are", - "short_author": "V Anchana, KS Biju", - "pages": "1--6", - "pub_type": "inproceedings", - "bib_id": "anchana2023comparative", + "title": "Evaluating oscillatory mechanisms underlying flexible neural communication in the human brain", + "author": "V Madan Mohan, TF Varley, AM Harris, RFH Cash", + "venue": "bioRxiv", + "year": 2025, + "url": "https://www.biorxiv.org/content/10.1101/2025.10.16.682957.abstract", + "cited_by": 0, + "abstract": "How the brain orchestrates the flow of information between its multiple functional units flexibly, quickly, and accurately, remains a fundamental question in neuroscience. Multiple", + "short_author": "V Madan Mohan, TF Varley, AM Harris, RFH Cash", + "confidence_scoring": { + "confidence_score": 0.37965504705905917, + "similarity_score": 0.32870566844940186, + "citation_text_length": 365, + "dataset_text_length": 2260, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "M-ECG: Extracting Heart Signals with a Novel Computational Analysis of Magnetoencephalography Data", + "author": "A Izadysadr, HS Bagherzadeh, JR Stapleton-Kotloski", + "venue": "bioRxiv", + "year": 2025, + "url": "https://www.biorxiv.org/content/10.1101/2025.04.17.649325.abstract", + "cited_by": 0, + "abstract": "Magnetoencephalography (MEG) measures the magnetic fields generated by neural activity with high temporal and spatial resolution. Because of its focus on brain activity, other", + "short_author": "A Izadysadr, HS Bagherzadeh, JR Stapleton-Kotloski", "confidence_scoring": { - "confidence_score": 0.4327778573334218, - "similarity_score": 0.3746994435787201, + "confidence_score": 0.681436820626259, + "similarity_score": 0.5899885892868042, "citation_text_length": 370, "dataset_text_length": 2260, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.36505543470382695, + "similarity_score": 0.31606531143188477, + "citation_text_length": 386, + "dataset_text_length": 2260, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:45:52.036788+00:00", + "scoring_date": "2025-11-15T01:46:25.771679+00:00", "dataset_text_length": 2260, - "num_citations_scored": 3, + "num_citations_scored": 5, "summary_stats": { - "mean_confidence": 0.6484360713263353, - "median_confidence": 0.7032613277435303, - "std_confidence": 0.1585155242096468, - "min_confidence": 0.4327778573334218, + "mean_confidence": 0.5879168848991394, + "median_confidence": 0.681436820626259, + "std_confidence": 0.18127179182058809, + "min_confidence": 0.36505543470382695, "max_confidence": 0.8092690289020539, "high_confidence_count": 2, "medium_confidence_count": 1, - "low_confidence_count": 0 + "low_confidence_count": 2 } } } \ No newline at end of file diff --git a/citations/json/ds000248_citations.json b/citations/json/ds000248_citations.json index 4cf5165..4ab7df8 100644 --- a/citations/json/ds000248_citations.json +++ b/citations/json/ds000248_citations.json @@ -1,29 +1,47 @@ { "dataset_id": "ds000248", - "num_citations": 4, - "date_last_updated": "2025-09-17T19:30:14.818414+00:00", + "num_citations": 5, + "date_last_updated": "2025-11-14T17:15:52.947363", "metadata": { - "total_cumulative_citations": 133, - "fetch_date": "2025-09-17T19:30:14.818414+00:00", + "total_cumulative_citations": 196, + "fetch_date": "2025-11-14T17:15:52.947363", "processing_version": "1.0" }, "citation_details": [ { "title": "Tools for importing and evaluating BIDS-EEG formatted data", - "author": "A Delorme, D Truong", + "author": "A Delorme, D Truong, R Martinez-Cancino", "venue": "2021 10th International IEEE/EMBS Conference on Neural Engineering (NER)", "year": 2021, - "url": "https://ieeexplore.ieee.org/abstract/document/9441399/", - "cited_by": 9, - "abstract": "This article outlines a set of plug-in tools running on MATLAB to automatically import, preprocess, and evaluate the quality of electro-encephalography (EEG) data stored using the Brain", - "short_author": "A Delorme, D Truong", + "url": "https://drive.google.com/file/d/1-f7rhJeyTUKX2FIG0FNM0RvG3iNqYFV8/view", + "cited_by": 15, + "abstract": "MATLAB to automatically import, preprocess, and evaluate the quality of EEG data stored using the Brain Imaging Data Structure BIDS-EEG standard. As a proof of concept, we apply", + "short_author": "A Delorme, D Truong, R Martinez-Cancino", "pages": "210--213", "pub_type": "inproceedings", "bib_id": "delorme2021tools", "confidence_scoring": { - "confidence_score": 0.7810986059904099, - "similarity_score": 0.6762758493423462, - "citation_text_length": 374, + "confidence_score": 0.793280232846737, + "similarity_score": 0.6868227124214172, + "citation_text_length": 386, + "dataset_text_length": 2128, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "A Principled Field Theory of Consciousness: From Informational Free Energy to Fractal Dynamics", + "author": "D Solis", + "venue": "NA", + "year": 2025, + "url": "https://dubito-ergo.com/A_Principled_Field_Theory_of_Consciousness_From_Informational_Free_Energy_to_Fractal_Dynamics.pdf", + "cited_by": 0, + "abstract": "We propose a field theory of consciousness where subjective experience is modeled as a classical complex field C (r, t) emerging from neural dynamics. Unlike prior models, our theory", + "short_author": "D Solis", + "confidence_scoring": { + "confidence_score": 0.42161934614181523, + "similarity_score": 0.3650383949279785, + "citation_text_length": 325, "dataset_text_length": 2128, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -31,17 +49,17 @@ }, { "title": "MEG-BIDS, the brain imaging data structure extended to magnetoencephalography", - "author": "G Niso, KJ Gorgolewski, E Bock, et al.", + "author": "G Niso, KJ Gorgolewski, E Bock, TL Brooks, G Flandin", "venue": "Scientific data", "year": 2018, "url": "https://www.nature.com/articles/sdata2018110", - "cited_by": 123, + "cited_by": 176, "abstract": "We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with", "short_author": "G Niso, KJ Gorgolewski, E Bock, et al.", "confidence_scoring": { - "confidence_score": 0.7605413675308228, - "similarity_score": 0.6914012432098389, - "citation_text_length": 350, + "confidence_score": 0.7613269686698915, + "similarity_score": 0.6921154260635376, + "citation_text_length": 364, "dataset_text_length": 2128, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -66,18 +84,21 @@ } }, { - "title": "Contributions pour l'analyse automatique de signaux neuronaux", - "author": "M Jas", - "venue": "NA", - "year": 2018, - "url": "https://www.theses.fr/2018ENST0021", - "cited_by": 1, - "abstract": "Les expériences d’électrophysiologie ont longtemps reposé sur de petites cohortes de sujets pour découvrir des effets d’intérêt significatifs. Toutefois, la faible taille de l’échantillon se", - "short_author": "M Jas", + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", "confidence_scoring": { - "confidence_score": 0.556741338968277, - "similarity_score": 0.5061284899711609, - "citation_text_length": 298, + "confidence_score": 0.365006659179926, + "similarity_score": 0.3160230815410614, + "citation_text_length": 386, "dataset_text_length": 2128, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -86,18 +107,18 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:45:56.064878+00:00", + "scoring_date": "2025-11-15T01:46:30.892424+00:00", "dataset_text_length": 2128, - "num_citations_scored": 4, + "num_citations_scored": 5, "summary_stats": { - "mean_confidence": 0.6638184447586537, - "median_confidence": 0.6587169170379639, - "std_confidence": 0.10724811351430094, - "min_confidence": 0.556741338968277, - "max_confidence": 0.7810986059904099, + "mean_confidence": 0.579625134676695, + "median_confidence": 0.556892466545105, + "std_confidence": 0.17332498428444112, + "min_confidence": 0.365006659179926, + "max_confidence": 0.793280232846737, "high_confidence_count": 2, "medium_confidence_count": 2, - "low_confidence_count": 0 + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds001784_citations.json b/citations/json/ds001784_citations.json index b1ac987..47563b6 100644 --- a/citations/json/ds001784_citations.json +++ b/citations/json/ds001784_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds001784", - "num_citations": 1, - "date_last_updated": "2025-09-17T19:30:14.807826+00:00", + "num_citations": 3, + "date_last_updated": "2025-11-14T17:16:38.043310", "metadata": { - "total_cumulative_citations": 124, - "fetch_date": "2025-09-17T19:30:14.807826+00:00", + "total_cumulative_citations": 160, + "fetch_date": "2025-11-14T17:16:38.043310", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "Nature communications", "year": 2019, "url": "https://www.nature.com/articles/s41467-019-09557-4", - "cited_by": 124, + "cited_by": 155, "abstract": "Deep brain stimulation (DBS) is a circuit-oriented treatment for mental disorders. Unfortunately, even well-conducted psychiatric DBS clinical trials have yielded inconsistent symptom", "short_author": "AS Widge, S Zorowitz, I Basu, AC Paulk", "publisher": "Nature Publishing Group UK London", @@ -31,22 +31,61 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "Cingulate-centered flexible control: physiologic correlates and enhancement by internal capsule stimulation", + "author": "J Kim, AS Widge", + "venue": "bioRxiv", + "year": 2025, + "url": "https://www.biorxiv.org/content/10.1101/2025.10.15.682151.abstract", + "cited_by": 0, + "abstract": "The flexible deployment of cognitive control is essential for adaptive functioning in dynamic environments given limited cognitive resources. That flexibility depends on rapid detection", + "short_author": "J Kim, AS Widge", + "confidence_scoring": { + "confidence_score": 0.7124999794363976, + "similarity_score": 0.6168830990791321, + "citation_text_length": 354, + "dataset_text_length": 2195, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.3235830903053284, + "similarity_score": 0.28015851974487305, + "citation_text_length": 386, + "dataset_text_length": 2195, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:46:00.269910+00:00", + "scoring_date": "2025-11-15T01:46:35.717018+00:00", "dataset_text_length": 2195, - "num_citations_scored": 1, + "num_citations_scored": 3, "summary_stats": { - "mean_confidence": 0.7711449503898621, - "median_confidence": 0.7711449503898621, - "std_confidence": 0.0, - "min_confidence": 0.7711449503898621, + "mean_confidence": 0.6024093400438627, + "median_confidence": 0.7124999794363976, + "std_confidence": 0.19860826822663552, + "min_confidence": 0.3235830903053284, "max_confidence": 0.7711449503898621, - "high_confidence_count": 1, + "high_confidence_count": 2, "medium_confidence_count": 0, - "low_confidence_count": 0 + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds001787_citations.json b/citations/json/ds001787_citations.json index 4a22f69..9c766e2 100644 --- a/citations/json/ds001787_citations.json +++ b/citations/json/ds001787_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds001787", - "num_citations": 10, - "date_last_updated": "2025-09-17T12:53:17.442951", + "num_citations": 12, + "date_last_updated": "2025-11-14T17:19:01.038474", "metadata": { - "total_cumulative_citations": 83, - "fetch_date": "2025-09-17T12:53:17.442951", + "total_cumulative_citations": 91, + "fetch_date": "2025-11-14T17:19:01.038474", "processing_version": "1.0" }, "citation_details": [ @@ -35,7 +35,7 @@ "venue": "Frontiers in Neuroscience", "year": 2022, "url": "https://www.frontiersin.org/articles/10.3389/fnins.2022.765585/full", - "cited_by": 12, + "cited_by": 16, "abstract": "The functional role of the brain’s infraslow activity (ISA, 0.01–0.1 Hz) in human behavior has yet to be elucidated. To date, it has been shown that the brain’s ISA correlates with", "short_author": "D Sihn, SP Kim", "confidence_scoring": { @@ -128,7 +128,7 @@ "venue": "Multimedia Tools and Applications", "year": 2025, "url": "https://link.springer.com/article/10.1007/s11042-025-21065-w", - "cited_by": 0, + "cited_by": 1, "abstract": "Meditation has gained considerable attention for its potential benefits in promoting mental and emotional well-being. While numerous studies have investigated the neural correlates of", "short_author": "S Usgaonkar, D Reddy Edla, RR Reddy", "publisher": "Springer", @@ -163,13 +163,52 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, + { + "title": "Meditation-induced cognitive state classification using sparse brain connectivity features and electroencephalography", + "author": "S Usgaonkar, DR Edla, RR Reddy", + "venue": "Intelligent Data Analysis", + "year": 2025, + "url": "https://journals.sagepub.com/doi/abs/10.1177/1088467X251375810", + "cited_by": 0, + "abstract": "Brain-Computer Interface (BCI) technology offers potential for improving meditation practices via real-time neural feedback. Traditional EEG signal processing often fails to account for", + "short_author": "S Usgaonkar, DR Edla, RR Reddy", + "confidence_scoring": { + "confidence_score": 0.753919107913971, + "similarity_score": 0.6527438163757324, + "citation_text_length": 397, + "dataset_text_length": 677, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "REVE: A Foundation Model for EEG--Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects", + "author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "venue": "arXiv preprint arXiv:2510.21585", + "year": 2025, + "url": "https://arxiv.org/abs/2510.21585", + "cited_by": 0, + "abstract": "Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has", + "short_author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "journal": "arXiv preprint arXiv:2510.21585", + "pub_type": "article", + "bib_id": "ouahidi2025reve", + "confidence_scoring": { + "confidence_score": 0.5794401437044144, + "similarity_score": 0.5016797780990601, + "citation_text_length": 393, + "dataset_text_length": 677, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Closed-loop frontal midlineθ neurofeedback: A novel approach for training focused-attention meditation", "author": "T Brandmeyer, A Delorme", "venue": "Frontiers in Human Neuroscience", "year": 2020, "url": "https://www.frontiersin.org/articles/10.3389/fnhum.2020.00246/full", - "cited_by": 62, + "cited_by": 65, "abstract": "Cortical oscillations serve as an index of both sensory and cognitive processes and represent one of the most promising candidates for training and targeting the top-down mechanisms", "short_author": "T Brandmeyer, A Delorme", "confidence_scoring": { @@ -201,17 +240,17 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:46:06.671989+00:00", + "scoring_date": "2025-11-15T01:46:39.668880+00:00", "dataset_text_length": 677, - "num_citations_scored": 10, + "num_citations_scored": 12, "summary_stats": { - "mean_confidence": 0.6071638241112234, + "mean_confidence": 0.6170831243942182, "median_confidence": 0.6301243843138218, - "std_confidence": 0.11500658720030184, + "std_confidence": 0.11305977642994862, "min_confidence": 0.38616212189197546, "max_confidence": 0.7724185591936112, - "high_confidence_count": 2, - "medium_confidence_count": 7, + "high_confidence_count": 3, + "medium_confidence_count": 8, "low_confidence_count": 1 } } diff --git a/citations/json/ds001849_citations.json b/citations/json/ds001849_citations.json index 2424f23..434394f 100644 --- a/citations/json/ds001849_citations.json +++ b/citations/json/ds001849_citations.json @@ -1,20 +1,38 @@ { "dataset_id": "ds001849", - "num_citations": 1, - "date_last_updated": "2025-09-17T19:30:14.780061+00:00", + "num_citations": 2, + "date_last_updated": "2025-11-14T17:16:06.023304", "metadata": { - "total_cumulative_citations": 35, - "fetch_date": "2025-09-17T19:30:14.780061+00:00", + "total_cumulative_citations": 49, + "fetch_date": "2025-11-14T17:16:06.023304", "processing_version": "1.0" }, "citation_details": [ + { + "title": "A Dual Damped Sine (DDS) model for TMS-EEG: parametric validation against cosine similarity on OpenNeuro ds001849", + "author": "DE Jan-Cordón", + "venue": "Available at SSRN 5538173", + "year": 0, + "url": "https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5538173", + "cited_by": 0, + "abstract": "at OpenNeuro under accession ds001849. Raw and preprocessed data, together with metadata and documentation, can be accessed at: OpenNeuro – ds001849. Please cite the", + "short_author": "DE Jan-Cordón", + "confidence_scoring": { + "confidence_score": 0.6362160861492158, + "similarity_score": 0.5783782601356506, + "citation_text_length": 356, + "dataset_text_length": 164, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Identifying site-and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric", "author": "M Freedberg, JA Reeves, SJ Hussain, KA Zaghloul", "venue": "Plos one", "year": 2020, "url": "https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216185", - "cited_by": 35, + "cited_by": 49, "abstract": "The ability to interpret transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) is limited by artifacts, such as auditory evoked responses", "short_author": "M Freedberg, JA Reeves, SJ Hussain, KA Zaghloul", "confidence_scoring": { @@ -29,17 +47,17 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:46:14.694440+00:00", + "scoring_date": "2025-11-15T01:46:43.929040+00:00", "dataset_text_length": 164, - "num_citations_scored": 1, + "num_citations_scored": 2, "summary_stats": { - "mean_confidence": 0.6296004518866539, - "median_confidence": 0.6296004518866539, - "std_confidence": 0.0, + "mean_confidence": 0.6329082690179348, + "median_confidence": 0.6329082690179348, + "std_confidence": 0.0033078171312809213, "min_confidence": 0.6296004518866539, - "max_confidence": 0.6296004518866539, + "max_confidence": 0.6362160861492158, "high_confidence_count": 0, - "medium_confidence_count": 1, + "medium_confidence_count": 2, "low_confidence_count": 0 } } diff --git a/citations/json/ds002001_citations.json b/citations/json/ds002001_citations.json index aaeb471..170c5e4 100644 --- a/citations/json/ds002001_citations.json +++ b/citations/json/ds002001_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds002001", - "num_citations": 4, - "date_last_updated": "2025-09-17T19:30:14.758002+00:00", + "num_citations": 5, + "date_last_updated": "2025-11-14T17:16:55.245644", "metadata": { - "total_cumulative_citations": 14, - "fetch_date": "2025-09-17T19:30:14.758002+00:00", + "total_cumulative_citations": 21, + "fetch_date": "2025-11-14T17:16:55.245644", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "Plos one", "year": 2019, "url": "https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218529", - "cited_by": 9, + "cited_by": 10, "abstract": "Binocular rivalry (BR) is a dynamic visual illusion that provides insight into the cortical mechanisms of visual awareness, stimulus selection, and object identification. When dissimilar", "short_author": "EA Bock, JD Fesi, S Baillet, JD Mendola" }, @@ -24,7 +24,7 @@ "venue": "European Journal of Neuroscience", "year": 2023, "url": "https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.15955", - "cited_by": 5, + "cited_by": 6, "abstract": "Binocular rivalry is an example of bistable visual perception extensively examined in neuroimaging. Magnetoencephalography can track brain responses to phasic visual stimulations of", "short_author": "EA Bock, JD Fesi", "publisher": "Wiley Online Library", @@ -44,6 +44,19 @@ "abstract": "This chapter provides an overview ofthe discipline of Terminology with emphasis on applied terminology work in the context of multilingual EU law. The first part ofthe chapter outlines", "short_author": "M Bajčić" }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind" + }, { "title": "Hotel online reservation system", "author": "P Chantayasakorn", diff --git a/citations/json/ds002158_citations.json b/citations/json/ds002158_citations.json index 61174b0..47dfa7c 100644 --- a/citations/json/ds002158_citations.json +++ b/citations/json/ds002158_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds002158", - "num_citations": 2, - "date_last_updated": "2025-09-17T12:52:18.774597", + "num_citations": 3, + "date_last_updated": "2025-11-14T17:16:45.109022", "metadata": { - "total_cumulative_citations": 85, - "fetch_date": "2025-09-17T12:52:18.774597", + "total_cumulative_citations": 95, + "fetch_date": "2025-11-14T17:16:45.109022", "processing_version": "1.0" }, "citation_details": [ @@ -13,7 +13,7 @@ "author": "N Stevenson, S Miletic, B Forstmann", "venue": "NA", "year": 2025, - "url": "https://files.osf.io/v1/resources/rhfk3_v1/providers/osfstorage/682e08fbb13e17b5d98f3f69?format=pdf&action=download&direct&version=1", + "url": "https://osf.io/download/rhfk3", "cited_by": 1, "abstract": "Understanding how neural activity relates to behavior remains a central challenge in cognitive neuroscience. Joint modeling offers a principled method by simultaneously fitting", "short_author": "N Stevenson, S Miletic, B Forstmann", @@ -32,7 +32,7 @@ "venue": "Proceedings of the National Academy of Sciences", "year": 2020, "url": "https://www.pnas.org/doi/abs/10.1073/pnas.1918335117", - "cited_by": 84, + "cited_by": 89, "abstract": "The human capacity to compute the likelihood that a decision is correct—known as metacognition—has proven difficult to study in isolation as it usually cooccurs with decision making.", "short_author": "M Pereira, N Faivre, I Iturrate, M Wirthlin", "publisher": "National Academy of Sciences", @@ -49,22 +49,43 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.3061868539452553, + "similarity_score": 0.26509684324264526, + "citation_text_length": 386, + "dataset_text_length": 2337, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:46:32.282858+00:00", + "scoring_date": "2025-11-15T01:46:47.292724+00:00", "dataset_text_length": 2337, - "num_citations_scored": 2, + "num_citations_scored": 3, "summary_stats": { - "mean_confidence": 0.7596987149119377, - "median_confidence": 0.7596987149119377, - "std_confidence": 0.20196591675281528, - "min_confidence": 0.5577327981591225, + "mean_confidence": 0.6085280945897102, + "median_confidence": 0.5577327981591225, + "std_confidence": 0.26999740847599046, + "min_confidence": 0.3061868539452553, "max_confidence": 0.961664631664753, "high_confidence_count": 1, "medium_confidence_count": 1, - "low_confidence_count": 0 + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds002336_citations.json b/citations/json/ds002336_citations.json index 088a778..d9c9348 100644 --- a/citations/json/ds002336_citations.json +++ b/citations/json/ds002336_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds002336", - "num_citations": 6, - "date_last_updated": "2025-09-17T12:52:36.673569", + "num_citations": 8, + "date_last_updated": "2025-11-14T17:19:00.815047", "metadata": { - "total_cumulative_citations": 64, - "fetch_date": "2025-09-17T12:52:36.673569", + "total_cumulative_citations": 78, + "fetch_date": "2025-11-14T17:19:00.815047", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "International Journal of Imaging Systems and Technology", "year": 2023, "url": "https://onlinelibrary.wiley.com/doi/abs/10.1002/ima.22882", - "cited_by": 4, + "cited_by": 5, "abstract": "Chronic pain is a common problem among stroke patients, resulting from neurological damage to the central nervous system. This discomfort is primarily caused by the improper use of", "short_author": "J Sofia Bobby, B Suresh Chander Kapali", "publisher": "Wiley Online Library", @@ -38,7 +38,7 @@ "venue": "Scientific data", "year": 2020, "url": "https://www.nature.com/articles/s41597-020-0498-3", - "cited_by": 41, + "cited_by": 46, "abstract": "Combining EEG and fMRI allows for integration of fine spatial and accurate temporal resolution yet presents numerous challenges, noticeably if performed in real-time to implement a", "short_author": "G Lioi, C Cury, L Perronnet, et al.", "confidence_scoring": { @@ -56,7 +56,7 @@ "venue": "bioRxiv", "year": 2025, "url": "https://www.biorxiv.org/content/10.1101/2025.05.06.652346.abstract", - "cited_by": 0, + "cited_by": 1, "abstract": "Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are two widely used neuroimaging techniques, with complementary strengths and weaknesses.", "short_author": "M Donoso", "confidence_scoring": { @@ -86,6 +86,24 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, + { + "title": "SPATIALLY AND TEMPORALLY GUIDED BAYESIAN OPTIMIZATION FOR BRAIN EFFECTIVE CONNECTIV", + "author": "ITY LEARNING, EEG DATA", + "venue": "NA", + "year": 0, + "url": "https://openreview.net/forum?id=81iTOKJbzZ", + "cited_by": 0, + "abstract": "Brain effective connectivity (EC) characterizes the causal and directional interactions among brain regions and plays a central role in understanding cognition and neurological disorders", + "short_author": "ITY LEARNING, EEG DATA", + "confidence_scoring": { + "confidence_score": 0.5526592552661896, + "similarity_score": 0.5024175047874451, + "citation_text_length": 333, + "dataset_text_length": 2326, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition", "author": "D Mann‐Krzisnik, GD Mitsis", @@ -104,13 +122,34 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.32965152963995936, + "similarity_score": 0.28541257977485657, + "citation_text_length": 386, + "dataset_text_length": 2326, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "A multi-modal human neuroimaging dataset for data integration: simultaneous EEG and MRI acquisition during a motor imagery neurofeedback task: XP2", "author": "G Lioi, C Cury, L Perronnet, M Mano, E Bannier", "venue": "NA", "year": 0, "url": "n/a", - "cited_by": 2, + "cited_by": 4, "short_author": "G Lioi, C Cury, L Perronnet, et al.", "confidence_scoring": { "confidence_score": 0.912408173084259, @@ -124,18 +163,18 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:46:41.576624+00:00", + "scoring_date": "2025-11-15T01:46:51.414888+00:00", "dataset_text_length": 2326, - "num_citations_scored": 6, + "num_citations_scored": 8, "summary_stats": { - "mean_confidence": 0.7744927805662156, - "median_confidence": 0.8409592221677304, - "std_confidence": 0.1766064749930487, - "min_confidence": 0.44890018165111545, + "mean_confidence": 0.6911584335379303, + "median_confidence": 0.7131506869196893, + "std_confidence": 0.21756494041218197, + "min_confidence": 0.32965152963995936, "max_confidence": 0.9354734063148499, "high_confidence_count": 4, - "medium_confidence_count": 2, - "low_confidence_count": 0 + "medium_confidence_count": 3, + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds002338_citations.json b/citations/json/ds002338_citations.json index 3935496..95bf53d 100644 --- a/citations/json/ds002338_citations.json +++ b/citations/json/ds002338_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds002338", - "num_citations": 12, - "date_last_updated": "2025-09-17T19:30:14.813119+00:00", + "num_citations": 14, + "date_last_updated": "2025-11-14T17:18:51.844468", "metadata": { - "total_cumulative_citations": 113, - "fetch_date": "2025-09-17T19:30:14.813119+00:00", + "total_cumulative_citations": 143, + "fetch_date": "2025-11-14T17:18:51.844468", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "IEEE Transactions on Computers", "year": 2024, "url": "https://ieeexplore.ieee.org/abstract/document/10707317/", - "cited_by": 1, + "cited_by": 3, "abstract": "Ensuring the long-term reproducibility of data analyses requires results stability tests to verify that analysis results remain within acceptable variation bounds despite inevitable software", "short_author": "Y Chatelain, L Tetrel, CJ Markiewicz", "publisher": "IEEE", @@ -35,7 +35,7 @@ "author": "JS Sulzer", "venue": "fMRI neurofeedback", "year": 2021, - "url": "https://books.google.com/books?hl=en&lr=&id=HnINEAAAQBAJ&oi=fnd&pg=PA333&dq=ds002338&ots=NwiEglgLmz&sig=UYuL9bNJduBEpZFHbWXmdAm2Z2A", + "url": "https://books.google.com/books?hl=en&lr=&id=HnINEAAAQBAJ&oi=fnd&pg=PA333&dq=ds002338&ots=NwkGdmcKmB&sig=EF1_OAWc26YV14fd3XNifsT4WdM", "cited_by": 1, "abstract": "Neurofeedback is a relatively small field; as a result it relies on the resourcefulness and ingenuity of the researchers to create tools. Over recent years, a number of resources have", "short_author": "JS Sulzer", @@ -93,7 +93,7 @@ "venue": "BioRxiv", "year": 2018, "url": "https://www.biorxiv.org/content/10.1101/397729.abstract", - "cited_by": 21, + "cited_by": 22, "abstract": "Neurofeedback (NF) allows to exert self-regulation over specific aspects of one’s own brain function by returning information extracted in real-time from brain activity measures. These", "short_author": "L Perronnet, A Lécuyer, M Mano, et al.", "confidence_scoring": { @@ -110,8 +110,8 @@ "author": "C Cury, P Maurel, R Gribonval, C Barillot", "venue": "Frontiers in neuroscience", "year": 2020, - "url": "https://www.frontiersin.org/articles/10.3389/fnins.2019.01451/full", - "cited_by": 31, + "url": "https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.01451/full", + "cited_by": 41, "abstract": "Measures of brain activity through functional magnetic resonance imaging (fMRI) or electroencephalography (EEG), two complementary modalities, are ground solutions in the context", "short_author": "C Cury, P Maurel, R Gribonval, C Barillot", "confidence_scoring": { @@ -123,13 +123,31 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, + { + "title": "SPATIALLY AND TEMPORALLY GUIDED BAYESIAN OPTIMIZATION FOR BRAIN EFFECTIVE CONNECTIV", + "author": "ITY LEARNING, EEG DATA", + "venue": "NA", + "year": 0, + "url": "https://openreview.net/forum?id=81iTOKJbzZ", + "cited_by": 0, + "abstract": "Brain effective connectivity (EC) characterizes the causal and directional interactions among brain regions and plays a central role in understanding cognition and neurological disorders", + "short_author": "ITY LEARNING, EEG DATA", + "confidence_scoring": { + "confidence_score": 0.542778429389, + "similarity_score": 0.49343493580818176, + "citation_text_length": 333, + "dataset_text_length": 2326, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Simultaneous EEG-fMRI during a neurofeedback task, a brain imaging dataset for multimodal data integration", "author": "G Lioi, C Cury, L Perronnet, M Mano, E Bannier", "venue": "Scientific data", "year": 2020, "url": "https://www.nature.com/articles/s41597-020-0498-3", - "cited_by": 36, + "cited_by": 46, "abstract": "Combining EEG and fMRI allows for integration of fine spatial and accurate temporal resolution yet presents numerous challenges, noticeably if performed in real-time to implement a", "short_author": "G Lioi, C Cury, L Perronnet, et al.", "confidence_scoring": { @@ -147,7 +165,7 @@ "venue": "bioRxiv", "year": 2019, "url": "https://www.biorxiv.org/content/10.1101/862375.abstract", - "cited_by": 12, + "cited_by": 11, "abstract": "Combining EEG and fMRI allows for integration of fine spatial and accurate temporal resolution yet presents numerous challenges, noticeably if performed in real-time to implement a", "short_author": "G Lioi, C Cury, L Perronnet, et al.", "confidence_scoring": { @@ -159,31 +177,13 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, - { - "title": "Diverse task classification from activation patterns of functional neuro-images using feature fusion module", - "author": "OT Bişkin, C Candemir, AS Gonul, MA Selver", - "venue": "Sensors", - "year": 2023, - "url": "https://www.mdpi.com/1424-8220/23/7/3382", - "cited_by": 3, - "abstract": "One of the emerging fields in functional magnetic resonance imaging (fMRI) is the decoding of different stimulations. The underlying idea is to reveal the hidden representative signal", - "short_author": "OT Bişkin, C Candemir, AS Gonul, MA Selver", - "confidence_scoring": { - "confidence_score": 0.6046720629930498, - "similarity_score": 0.523525595664978, - "citation_text_length": 379, - "dataset_text_length": 2326, - "scoring_method": "sentence_transformers", - "model_used": "Qwen/Qwen3-Embedding-0.6B" - } - }, { "title": "Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition", "author": "D Mann‐Krzisnik, GD Mitsis", "venue": "Human Brain Mapping", "year": 2022, "url": "https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25902", - "cited_by": 4, + "cited_by": 6, "abstract": "The relation between electrophysiology and BOLD‐fMRI requires further elucidation. One approach for studying this relation is to find time‐frequency features from electrophysiology", "short_author": "D Mann‐Krzisnik, GD Mitsis", "confidence_scoring": { @@ -196,18 +196,56 @@ } }, { - "title": "Machine learning for bi-modal EEG-fMRI neurofeedback: EEG electrodes localization and fMRI NF scores prediction", - "author": "C Pinte", + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.32368542596697814, + "similarity_score": 0.28024712204933167, + "citation_text_length": 386, + "dataset_text_length": 2326, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "Resource reference for fMRI neurofeedback researchers", + "author": "JS Sulzer", "venue": "NA", - "year": 2024, - "url": "https://theses.hal.science/tel-04902082/", - "cited_by": 0, - "abstract": "This thesis explores the impact of machine learning methods in the context of bi- modal EEG-fMRI, with the goal of automatically and accurately localizing EEG electrodes in an MRI", - "short_author": "C Pinte", + "year": 0, + "url": "n/a", + "cited_by": 1, + "short_author": "JS Sulzer", + "confidence_scoring": { + "confidence_score": 0.5749650001525879, + "similarity_score": 0.5749650001525879, + "citation_text_length": 91, + "dataset_text_length": 2326, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "Diverse task classification from activation patterns of functional neuro-images using feature fusion module", + "author": "OT Bişkin, C Candemir, AS Gonul, MA Selver", + "venue": "Sensors", + "year": 2023, + "url": "https://www.mdpi.com/1424-8220/23/7/3382", + "cited_by": 3, + "abstract": "One of the emerging fields in functional magnetic resonance imaging (fMRI) is the decoding of different stimulations. The underlying idea is to reveal the hidden representative signal", + "short_author": "OT Bişkin, C Candemir, AS Gonul, MA Selver", "confidence_scoring": { - "confidence_score": 0.804717112183571, - "similarity_score": 0.6967247724533081, - "citation_text_length": 339, + "confidence_score": 0.6046720629930498, + "similarity_score": 0.523525595664978, + "citation_text_length": 379, "dataset_text_length": 2326, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -234,18 +272,18 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:46:46.540693+00:00", + "scoring_date": "2025-11-15T01:46:57.719708+00:00", "dataset_text_length": 2326, - "num_citations_scored": 12, + "num_citations_scored": 14, "summary_stats": { - "mean_confidence": 0.7630473521972698, - "median_confidence": 0.8027472707629204, - "std_confidence": 0.14488179062399834, - "min_confidence": 0.4564141939580441, + "mean_confidence": 0.6995199978351595, + "median_confidence": 0.6823174305260182, + "std_confidence": 0.18333898255704933, + "min_confidence": 0.32368542596697814, "max_confidence": 0.9428912526369096, - "high_confidence_count": 8, - "medium_confidence_count": 4, - "low_confidence_count": 0 + "high_confidence_count": 7, + "medium_confidence_count": 6, + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds002550_citations.json b/citations/json/ds002550_citations.json index 5bce659..ea43df3 100644 --- a/citations/json/ds002550_citations.json +++ b/citations/json/ds002550_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds002550", - "num_citations": 1, - "date_last_updated": "2025-09-17T19:30:14.861255+00:00", + "num_citations": 2, + "date_last_updated": "2025-11-14T17:17:17.260334", "metadata": { - "total_cumulative_citations": 0, - "fetch_date": "2025-09-17T19:30:14.861255+00:00", + "total_cumulative_citations": 5, + "fetch_date": "2025-11-14T17:17:17.260334", "processing_version": "1.0" }, "citation_details": [ @@ -15,12 +15,33 @@ "year": 2025, "url": "https://www.biorxiv.org/content/10.1101/2025.04.30.651376.abstract", "cited_by": 0, - "abstract": "Sensory neural coding, the brain's process of transforming inputs into informative patterns of neural activity, generates complex and multiplexed neural codes which are hard to interpret.", + "abstract": "Sensory neural coding, the brain’s process of transforming inputs into informative patterns of neural activity, generates complex and multiplexed neural codes which are hard to interpret", "short_author": "N Maleki, H Karimi-Rouzbahani", "confidence_scoring": { - "confidence_score": 0.5893608856201173, - "similarity_score": 0.5102691650390625, - "citation_text_length": 330, + "confidence_score": 0.5960176259279252, + "similarity_score": 0.5160325765609741, + "citation_text_length": 329, + "dataset_text_length": 2282, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.30967163622379307, + "similarity_score": 0.26811397075653076, + "citation_text_length": 386, "dataset_text_length": 2282, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -29,18 +50,18 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:47:19.601751+00:00", + "scoring_date": "2025-11-15T01:47:05.674227+00:00", "dataset_text_length": 2282, - "num_citations_scored": 1, + "num_citations_scored": 2, "summary_stats": { - "mean_confidence": 0.5893608856201173, - "median_confidence": 0.5893608856201173, - "std_confidence": 0.0, - "min_confidence": 0.5893608856201173, - "max_confidence": 0.5893608856201173, + "mean_confidence": 0.45284463107585915, + "median_confidence": 0.45284463107585915, + "std_confidence": 0.14317299485206605, + "min_confidence": 0.30967163622379307, + "max_confidence": 0.5960176259279252, "high_confidence_count": 0, "medium_confidence_count": 1, - "low_confidence_count": 0 + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds002680_citations.json b/citations/json/ds002680_citations.json index 64f8011..8f06b54 100644 --- a/citations/json/ds002680_citations.json +++ b/citations/json/ds002680_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds002680", - "num_citations": 7, - "date_last_updated": "2025-09-17T12:54:01.188666", + "num_citations": 8, + "date_last_updated": "2025-11-14T17:19:41.474330", "metadata": { - "total_cumulative_citations": 351, - "fetch_date": "2025-09-17T12:54:01.188666", + "total_cumulative_citations": 382, + "fetch_date": "2025-11-14T17:19:41.474330", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "Multivariate Behavioral Research", "year": 2023, "url": "https://www.tandfonline.com/doi/abs/10.1080/00273171.2021.1994848", - "cited_by": 18, + "cited_by": 19, "abstract": "Analytical methods derived from nonlinear dynamical systems, complexity, and chaos theories offer researchers a framework for in-depth analysis of time series data. However,", "short_author": "RG Moulder, E Martynova, SM Boker", "publisher": "Taylor \\& Francis", @@ -38,7 +38,7 @@ "venue": "Brain‐X", "year": 2023, "url": "https://onlinelibrary.wiley.com/doi/abs/10.1002/brx2.29", - "cited_by": 22, + "cited_by": 27, "abstract": "Owing to their superior capabilities and advanced achievements, Transformers have gradually attracted attention with regard to understanding complex brain processing mechanisms.", "short_author": "C Chen, H Wang, Y Chen, et al.", "confidence_scoring": { @@ -56,7 +56,7 @@ "venue": "arXiv preprint arXiv:2505.18185", "year": 2025, "url": "https://arxiv.org/abs/2505.18185", - "cited_by": 0, + "cited_by": 2, "abstract": "Electroencephalography (EEG) and magnetoencephalography (MEG) measure neural activity non-invasively by capturing electromagnetic fields generated by dendritic currents.", "short_author": "Q Xiao, Z Cui, C Zhang, et al.", "journal": "arXiv preprint arXiv:2505.18185", @@ -76,7 +76,7 @@ "author": "S Sudhakaran, SP John", "venue": "Data Science and Applications: Proceedings of ICDSA 2024, Volume 2", "year": 2025, - "url": "https://books.google.com/books?hl=en&lr=&id=iJlnEQAAQBAJ&oi=fnd&pg=PA275&dq=ds002680&ots=8i06CrjKoU&sig=EptcFTUQ720jpjPikr2Eu7yotAM", + "url": "https://books.google.com/books?hl=en&lr=&id=iJlnEQAAQBAJ&oi=fnd&pg=PA275&dq=ds002680&ots=8i11CujRr_&sig=pd5TKrO0wUrD4MTDPMwtai648SA", "cited_by": 0, "abstract": "Dyslexia is a learning disability, which is a neurological condition that causes hurdles and challenges in learning. Dyslexics typically struggle with poor reading, writing, spelling, and", "short_author": "S Sudhakaran, SP John", @@ -101,7 +101,7 @@ "venue": "Scientific reports", "year": 2023, "url": "https://www.nature.com/articles/s41598-023-27528-0", - "cited_by": 222, + "cited_by": 241, "abstract": "Automated preprocessing methods are critically needed to process the large publicly-available EEG databases, but the optimal approach remains unknown because we lack data", "short_author": "A Delorme", "confidence_scoring": { @@ -119,7 +119,7 @@ "venue": "IEEE Access", "year": 2021, "url": "https://ieeexplore.ieee.org/abstract/document/9364974/", - "cited_by": 87, + "cited_by": 91, "abstract": "Dyslexia is a neurological disorder that is characterized by imprecise comprehension of words and generally poor reading performance. It affects a significant population of school-age", "short_author": "OL Usman, RC Muniyandi, K Omar, M Mohamad", "confidence_scoring": { @@ -148,22 +148,43 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "REVE: A Foundation Model for EEG--Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects", + "author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "venue": "arXiv preprint arXiv:2510.21585", + "year": 2025, + "url": "https://arxiv.org/abs/2510.21585", + "cited_by": 0, + "abstract": "Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has", + "short_author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "journal": "arXiv preprint arXiv:2510.21585", + "pub_type": "article", + "bib_id": "ouahidi2025reve", + "confidence_scoring": { + "confidence_score": 0.33015625476837157, + "similarity_score": 0.28584957122802734, + "citation_text_length": 393, + "dataset_text_length": 2126, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:47:26.082298+00:00", + "scoring_date": "2025-11-15T01:47:09.343924+00:00", "dataset_text_length": 2126, - "num_citations_scored": 7, + "num_citations_scored": 8, "summary_stats": { - "mean_confidence": 0.36828049555420883, - "median_confidence": 0.3099706229567528, - "std_confidence": 0.12866568560857458, + "mean_confidence": 0.36351496545597917, + "median_confidence": 0.31518318437039855, + "std_confidence": 0.12101435146834409, "min_confidence": 0.29665576547384265, "max_confidence": 0.6766300392150879, "high_confidence_count": 0, "medium_confidence_count": 1, - "low_confidence_count": 6 + "low_confidence_count": 7 } } } \ No newline at end of file diff --git a/citations/json/ds002725_citations.json b/citations/json/ds002725_citations.json index 6619824..2964083 100644 --- a/citations/json/ds002725_citations.json +++ b/citations/json/ds002725_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds002725", - "num_citations": 3, - "date_last_updated": "2025-09-17T19:30:14.824940+00:00", + "num_citations": 4, + "date_last_updated": "2025-11-14T17:19:55.757091", "metadata": { - "total_cumulative_citations": 25, - "fetch_date": "2025-09-17T19:30:14.824940+00:00", + "total_cumulative_citations": 31, + "fetch_date": "2025-11-14T17:19:55.757091", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "Scientific data", "year": 2020, "url": "https://www.nature.com/articles/s41597-020-0507-6", - "cited_by": 25, + "cited_by": 26, "abstract": "Music provides a means of communicating affective meaning. However, the neurological mechanisms by which music induces affect are not fully understood. Our project sought to", "short_author": "I Daly, N Nicolaou, D Williams, et al.", "confidence_scoring": { @@ -61,22 +61,43 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.29050970524549485, + "similarity_score": 0.25152355432510376, + "citation_text_length": 386, + "dataset_text_length": 1058, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:48:03.378683+00:00", + "scoring_date": "2025-11-15T01:47:14.597830+00:00", "dataset_text_length": 1058, - "num_citations_scored": 3, + "num_citations_scored": 4, "summary_stats": { - "mean_confidence": 0.7329203540086747, - "median_confidence": 0.7640315786004068, - "std_confidence": 0.06565195825821468, - "min_confidence": 0.6416063216328621, + "mean_confidence": 0.6223176918178798, + "median_confidence": 0.7028189501166344, + "std_confidence": 0.1998286300018771, + "min_confidence": 0.29050970524549485, "max_confidence": 0.7931231617927552, "high_confidence_count": 2, "medium_confidence_count": 1, - "low_confidence_count": 0 + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds002799_citations.json b/citations/json/ds002799_citations.json index 3aaae1a..70a34b7 100644 --- a/citations/json/ds002799_citations.json +++ b/citations/json/ds002799_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds002799", - "num_citations": 11, - "date_last_updated": "2025-09-17T19:30:14.753954+00:00", + "num_citations": 12, + "date_last_updated": "2025-11-14T17:24:33.928277", "metadata": { - "total_cumulative_citations": 86, - "fetch_date": "2025-09-17T19:30:14.753954+00:00", + "total_cumulative_citations": 106, + "fetch_date": "2025-11-14T17:24:33.928277", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "Physical and Engineering Sciences in Medicine", "year": 2025, "url": "https://link.springer.com/article/10.1007/s13246-025-01543-z", - "cited_by": 0, + "cited_by": 1, "abstract": "Effective Connectivity (EC) reflects the causal influence between brain regions. Identifying Effective Connectivity Networks (ECN) in the brain can enhance our understanding of brain", "short_author": "P Dai, Z He, Y Ou, et al.", "publisher": "Springer", @@ -36,8 +36,8 @@ "author": "Y Sun, Q Shi, M Ye, A Miao", "venue": "Frontiers in neuroscience", "year": 2023, - "url": "https://www.frontiersin.org/articles/10.3389/fnins.2023.1282232/full", - "cited_by": 3, + "url": "https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1282232/full", + "cited_by": 8, "abstract": "This study used the [Dataset] ds002799, available on the OpenNeuro data sharing platform. This dataset comprised 26 RE patients who underwent fMRI before and after electrode", "short_author": "Y Sun, Q Shi, M Ye, A Miao", "confidence_scoring": { @@ -54,8 +54,8 @@ "author": "M Lu, Z Guo, Z Gao", "venue": "Frontiers in Human Neuroscience", "year": 2023, - "url": "https://www.frontiersin.org/articles/10.3389/fnhum.2023.1295326/full", - "cited_by": 3, + "url": "https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2023.1295326/full", + "cited_by": 4, "abstract": "Objective The objective of this study was to explore the distributed network effects of intracranial electrical stimulation in patients with medically refractory epilepsy using dynamic", "short_author": "M Lu, Z Guo, Z Gao", "confidence_scoring": { @@ -91,7 +91,7 @@ "venue": "Nature Methods", "year": 2024, "url": "https://www.nature.com/articles/s41592-024-02346-y", - "cited_by": 4, + "cited_by": 8, "abstract": "Neuroimaging data analysis relies on normalization to standard anatomical templates to resolve macroanatomical differences across brains. Existing human cortical surface templates", "short_author": "M Feilong, G Jiahui, MI Gobbini, JV Haxby", "confidence_scoring": { @@ -109,7 +109,7 @@ "venue": "Scientific data", "year": 2020, "url": "https://www.nature.com/articles/s41597-020-00595-y", - "cited_by": 28, + "cited_by": 29, "abstract": "Mapping the causal effects of one brain region on another is a challenging problem in neuroscience that we approached through invasive direct manipulation of brain function together", "short_author": "WH Thompson, R Nair, H Oya, et al.", "confidence_scoring": { @@ -127,7 +127,7 @@ "venue": "Nature communications", "year": 2022, "url": "https://www.nature.com/articles/s41467-022-32644-y", - "cited_by": 33, + "cited_by": 35, "abstract": "The primate amygdala is a complex consisting of over a dozen nuclei that have been implicated in a host of cognitive functions, individual differences, and psychiatric illnesses. These", "short_author": "M Sawada, R Adolphs, BJ Dlouhy, RL Jenison", "publisher": "Nature Publishing Group UK London", @@ -169,7 +169,7 @@ "venue": "Neurobiology of Disease", "year": 2021, "url": "https://www.sciencedirect.com/science/article/pii/S0969996121001509", - "cited_by": 5, + "cited_by": 6, "abstract": "The extent to which functional MRI (fMRI) reflects direct neuronal changes remains unknown. Using 160 simultaneous electrical stimulation (es-fMRI) and intracranial brain stimulation", "short_author": "M Pedersen, A Zalesky", "confidence_scoring": { @@ -199,6 +199,27 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.3086032216250897, + "similarity_score": 0.2671889364719391, + "citation_text_length": 386, + "dataset_text_length": 1690, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Human es-fMRI Resource: Concurrent deep-brain stimulation and whole-brain functional MRI", "author": "WH Thompson, R Nair, H Oya, O Esteban, JM Shine", @@ -220,18 +241,18 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:48:47.157482+00:00", + "scoring_date": "2025-11-15T01:47:18.881394+00:00", "dataset_text_length": 1690, - "num_citations_scored": 11, + "num_citations_scored": 12, "summary_stats": { - "mean_confidence": 0.6402810055017473, - "median_confidence": 0.5533416241407395, - "std_confidence": 0.15590338000352996, - "min_confidence": 0.42831374377012255, + "mean_confidence": 0.6126411901786925, + "median_confidence": 0.5518520774692297, + "std_confidence": 0.1751682863434464, + "min_confidence": 0.3086032216250897, "max_confidence": 0.853807456791401, "high_confidence_count": 5, "medium_confidence_count": 6, - "low_confidence_count": 0 + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/json/ds002893_citations.json b/citations/json/ds002893_citations.json index 264fabe..17decef 100644 --- a/citations/json/ds002893_citations.json +++ b/citations/json/ds002893_citations.json @@ -1,20 +1,44 @@ { "dataset_id": "ds002893", - "num_citations": 1, - "date_last_updated": "2025-09-17T19:30:14.800660+00:00", + "num_citations": 2, + "date_last_updated": "2025-11-14T17:20:44.596938", "metadata": { - "total_cumulative_citations": 49, - "fetch_date": "2025-09-17T19:30:14.800660+00:00", + "total_cumulative_citations": 91, + "fetch_date": "2025-11-14T17:20:44.596938", "processing_version": "1.0" }, "citation_details": [ + { + "title": "An In-Depth Study on the Machine Learning Approaches for Dyslexia", + "author": "S Sudhakaran, SP John", + "venue": "Data Science and Applications: Proceedings of ICDSA 2024, Volume 2", + "year": 2025, + "url": "https://books.google.com/books?hl=en&lr=&id=iJlnEQAAQBAJ&oi=fnd&pg=PA275&dq=ds002893&ots=8i11CukIqY&sig=3ux5YdxnmLgNeS-eu1cabFzejZg", + "cited_by": 0, + "abstract": "Dyslexia is a learning disability, which is a neurological condition that causes hurdles and challenges in learning. Dyslexics typically struggle with poor reading, writing, spelling, and", + "short_author": "S Sudhakaran, SP John", + "publisher": "Springer Nature", + "pages": "275", + "volume": "1264", + "journal": "Data Science and Applications: Proceedings of ICDSA 2024, Volume 2", + "pub_type": "article", + "bib_id": "sudhakaran2025depth", + "confidence_scoring": { + "confidence_score": 0.2875325739383698, + "similarity_score": 0.248945951461792, + "citation_text_length": 379, + "dataset_text_length": 2237, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Advance machine learning methods for dyslexia biomarker detection: A review of implementation details and challenges", "author": "OL Usman, RC Muniyandi, K Omar, M Mohamad", "venue": "IEEE Access", "year": 2021, "url": "https://ieeexplore.ieee.org/abstract/document/9364974/", - "cited_by": 49, + "cited_by": 91, "abstract": "Dyslexia is a neurological disorder that is characterized by imprecise comprehension of words and generally poor reading performance. It affects a significant population of school-age", "short_author": "OL Usman, RC Muniyandi, K Omar, M Mohamad", "confidence_scoring": { @@ -29,18 +53,18 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:48:58.231637+00:00", + "scoring_date": "2025-11-15T01:47:24.627252+00:00", "dataset_text_length": 2237, - "num_citations_scored": 1, + "num_citations_scored": 2, "summary_stats": { - "mean_confidence": 0.33685801863670356, - "median_confidence": 0.33685801863670356, - "std_confidence": 0.0, - "min_confidence": 0.33685801863670356, + "mean_confidence": 0.31219529628753667, + "median_confidence": 0.31219529628753667, + "std_confidence": 0.024662722349166888, + "min_confidence": 0.2875325739383698, "max_confidence": 0.33685801863670356, "high_confidence_count": 0, "medium_confidence_count": 0, - "low_confidence_count": 1 + "low_confidence_count": 2 } } } \ No newline at end of file diff --git a/citations/json/ds003195_citations.json b/citations/json/ds003195_citations.json index 2a4da94..beccfd9 100644 --- a/citations/json/ds003195_citations.json +++ b/citations/json/ds003195_citations.json @@ -1,29 +1,29 @@ { "dataset_id": "ds003195", - "num_citations": 3, - "date_last_updated": "2025-09-17T19:30:14.787599+00:00", + "num_citations": 4, + "date_last_updated": "2025-11-14T17:31:52.827599", "metadata": { - "total_cumulative_citations": 27, - "fetch_date": "2025-09-17T19:30:14.787599+00:00", + "total_cumulative_citations": 34, + "fetch_date": "2025-11-14T17:31:52.827599", "processing_version": "1.0" }, "citation_details": [ { "title": "Tools for importing and evaluating BIDS-EEG formatted data", - "author": "A Delorme, D Truong", + "author": "A Delorme, D Truong, R Martinez-Cancino", "venue": "2021 10th International IEEE/EMBS Conference on Neural Engineering (NER)", "year": 2021, - "url": "https://ieeexplore.ieee.org/abstract/document/9441399/", - "cited_by": 13, - "abstract": "This article outlines a set of plug-in tools running on MATLAB to automatically import, preprocess, and evaluate the quality of electro-encephalography (EEG) data stored using the Brain", - "short_author": "A Delorme, D Truong", + "url": "https://drive.google.com/file/d/1-f7rhJeyTUKX2FIG0FNM0RvG3iNqYFV8/view", + "cited_by": 15, + "abstract": "MATLAB to automatically import, preprocess, and evaluate the quality of EEG data stored using the Brain Imaging Data Structure BIDS-EEG standard. As a proof of concept, we apply", + "short_author": "A Delorme, D Truong, R Martinez-Cancino", "pages": "210--213", "pub_type": "inproceedings", "bib_id": "delorme2021tools", "confidence_scoring": { - "confidence_score": 0.6900239288806915, - "similarity_score": 0.5974233150482178, - "citation_text_length": 374, + "confidence_score": 0.6993385049700738, + "similarity_score": 0.6054878830909729, + "citation_text_length": 386, "dataset_text_length": 2011, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -48,12 +48,12 @@ } }, { - "title": "The Effect of Neuroepo on Cognition in Parkinson’s Disease Patients Is Mediated by Electroencephalogram Source Activity", + "title": "The effect of neuroepo on cognition in Parkinson’s disease patients is mediated by electroencephalogram source activity", "author": "ML Bringas Vega, I Pedroso Ibáñez", "venue": "Frontiers in Neuroscience", "year": 2022, - "url": "https://www.frontiersin.org/articles/10.3389/fnins.2022.841428/full", - "cited_by": 14, + "url": "https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.841428/full", + "cited_by": 19, "abstract": "We report on the quantitative electroencephalogram (qEEG) and cognitive effects of Neuroepo in Parkinson’s disease (PD) from a double-blind safety trial ( https://clinicaltrials.gov/ ,", "short_author": "ML Bringas Vega, I Pedroso Ibáñez", "publisher": "Frontiers Media SA", @@ -63,27 +63,45 @@ "pub_type": "article", "bib_id": "bringas2022effect", "confidence_scoring": { - "confidence_score": 0.9798536682128907, - "similarity_score": 0.848358154296875, + "confidence_score": 0.9786102193593981, + "similarity_score": 0.8472815752029419, "citation_text_length": 401, "dataset_text_length": 2011, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "A meta-analysis of periodic and aperiodic M/EEG components in Parkinson's disease", + "author": "H Norouzi, M Ietswaart, J Adair, G Learmonth", + "venue": "bioRxiv", + "year": 2025, + "url": "https://www.biorxiv.org/content/10.1101/2025.07.07.663454.abstract", + "cited_by": 0, + "abstract": "Parkinson’s disease is characterised by a range of motor and non-motor changes that can negatively impact quality of life. Many studies have identified potential clinical", + "short_author": "H Norouzi, M Ietswaart, J Adair, G Learmonth", + "confidence_scoring": { + "confidence_score": 0.7333582109212876, + "similarity_score": 0.6349421739578247, + "citation_text_length": 342, + "dataset_text_length": 2011, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:49:40.243998+00:00", + "scoring_date": "2025-11-15T01:47:28.726524+00:00", "dataset_text_length": 2011, - "num_citations_scored": 3, + "num_citations_scored": 4, "summary_stats": { - "mean_confidence": 0.8160670467217764, - "median_confidence": 0.7783235430717469, - "std_confidence": 0.12129509058813955, - "min_confidence": 0.6900239288806915, - "max_confidence": 0.9798536682128907, - "high_confidence_count": 2, + "mean_confidence": 0.7974076195806266, + "median_confidence": 0.7558408769965173, + "std_confidence": 0.10830334959373504, + "min_confidence": 0.6993385049700738, + "max_confidence": 0.9786102193593981, + "high_confidence_count": 3, "medium_confidence_count": 1, "low_confidence_count": 0 } diff --git a/citations/json/ds003688_citations.json b/citations/json/ds003688_citations.json index 898d380..768bb94 100644 --- a/citations/json/ds003688_citations.json +++ b/citations/json/ds003688_citations.json @@ -1,20 +1,38 @@ { "dataset_id": "ds003688", - "num_citations": 11, - "date_last_updated": "2025-09-17T19:30:14.878490+00:00", + "num_citations": 13, + "date_last_updated": "2025-11-14T17:26:26.156535", "metadata": { - "total_cumulative_citations": 37, - "fetch_date": "2025-09-17T19:30:14.878490+00:00", + "total_cumulative_citations": 47, + "fetch_date": "2025-11-14T17:26:26.156535", "processing_version": "1.0" }, "citation_details": [ + { + "title": "Cardiovascular Artifact Removal for Unbiased Analysis of Intracortical EEG Signals", + "author": "D Milea, V Catrambone, G Valenza", + "venue": "NA", + "year": 0, + "url": "https://eusipco2025.org/wp-content/uploads/pdfs/0001492.pdf", + "cited_by": 0, + "abstract": "The analysis of cortical brain recordings is significantly hindered by the presence of artifactual components, which can severely confound the interpretation of neural signals. Current", + "short_author": "D Milea, V Catrambone, G Valenza", + "confidence_scoring": { + "confidence_score": 0.5865461230278015, + "similarity_score": 0.5332237482070923, + "citation_text_length": 340, + "dataset_text_length": 607, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Unraveling gender-specific structural brain differences in drug-resistant epilepsy using advanced deep learning techniques", "author": "S Athamnah, E Abdulhay, F Fohely, AA Oglat", "venue": "Informatics in Medicine Unlocked", "year": 2024, "url": "https://www.sciencedirect.com/science/article/pii/S2352914824001497", - "cited_by": 0, + "cited_by": 2, "abstract": "Factors of age, gender, and psychiatric comorbidities in epileptic patients, particularly those with drug-resistant epilepsy (DRE), have not received sufficient attention in clinical practice", "short_author": "S Athamnah, E Abdulhay, F Fohely, AA Oglat", "publisher": "Elsevier", @@ -32,13 +50,31 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, + { + "title": "RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier", + "author": "MO Memar, N Ziaei, B Nazari, A Yousefi", + "venue": "arXiv preprint arXiv:2408.14477", + "year": 2024, + "url": "https://arxiv.org/abs/2408.14477", + "cited_by": 1, + "abstract": "Intracranial electroencephalography (iEEG) is increasingly used for clinical and brain-computer interface applications due to its high spatial and temporal resolution. However, inter-", + "short_author": "MO Memar, N Ziaei, B Nazari, A Yousefi", + "confidence_scoring": { + "confidence_score": 0.6420201390981675, + "similarity_score": 0.5558615922927856, + "citation_text_length": 378, + "dataset_text_length": 607, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Open multimodal iEEG-fMRI dataset from naturalistic stimulation with a short audiovisual film", "author": "J Berezutskaya, MJ Vansteensel, EJ Aarnoutse", "venue": "Scientific Data", "year": 2022, "url": "https://www.nature.com/articles/s41597-022-01173-0", - "cited_by": 34, + "cited_by": 37, "abstract": "Intracranial human recordings are a valuable and rare resource of information about the brain. Making such data publicly available not only helps tackle reproducibility issues in science", "short_author": "J Berezutskaya, MJ Vansteensel, EJ Aarnoutse", "confidence_scoring": { @@ -50,24 +86,6 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, - { - "title": "RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier", - "author": "MO Memar, N Ziaei, B Nazari, A Yousefi", - "venue": "arXiv preprint arXiv:2408.14477", - "year": 2024, - "url": "https://arxiv.org/abs/2408.14477", - "cited_by": 1, - "abstract": "Utilization of intracranial electroencephalography (iEEG) is rapidly increasing for clinical and brain-computer interface applications. iEEG facilitates the recording of neural activity with", - "short_author": "MO Memar, N Ziaei, B Nazari, A Yousefi", - "confidence_scoring": { - "confidence_score": 0.6691642516851426, - "similarity_score": 0.5793629884719849, - "citation_text_length": 385, - "dataset_text_length": 607, - "scoring_method": "sentence_transformers", - "model_used": "Qwen/Qwen3-Embedding-0.6B" - } - }, { "title": "Anatomically distinct cortical tracking of music and speech by slow (1–8Hz) and fast (70–120Hz) oscillatory activity", "author": "S Osorio, MF Assaneo", @@ -159,18 +177,24 @@ } }, { - "title": "Temporal Propagation of Neural State Boundaries in Naturalistic Context", - "author": "D Oetringer, S Henderson, D Gözükara, L Geerligs", - "venue": "bioRxiv", + "title": "Temporal propagation of neural state boundaries in naturalistic context", + "author": "D Oetringer, S Henderson, D Gözükara", + "venue": "Cerebral Cortex", "year": 2025, - "url": "https://www.biorxiv.org/content/10.1101/2025.02.28.640737.abstract", + "url": "https://academic.oup.com/cercor/article-abstract/35/10/bhaf284/8292830", "cited_by": 0, "abstract": "Our senses receive a continuous stream of complex information, which we segment into discrete events. Previous research has related such events to neural states: temporally and", - "short_author": "D Oetringer, S Henderson, D Gözükara, L Geerligs", + "short_author": "D Oetringer, S Henderson, D Gözükara", + "publisher": "Oxford University Press", + "pages": "bhaf284", + "volume": "35", + "journal": "Cerebral Cortex", + "pub_type": "article", + "bib_id": "oetringer2025temporal", "confidence_scoring": { - "confidence_score": 0.4626660320162774, - "similarity_score": 0.400576651096344, - "citation_text_length": 342, + "confidence_score": 0.49025363355875023, + "similarity_score": 0.4244620203971863, + "citation_text_length": 338, "dataset_text_length": 607, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -223,22 +247,43 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "An OpenMind for 3D medical vision self-supervised learning", + "author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision", + "year": 2025, + "url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html", + "cited_by": 5, + "abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the", + "short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler", + "pages": "23839--23879", + "pub_type": "inproceedings", + "bib_id": "wald2025openmind", + "confidence_scoring": { + "confidence_score": 0.397760301232338, + "similarity_score": 0.3443812131881714, + "citation_text_length": 386, + "dataset_text_length": 607, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T22:52:38.498715+00:00", + "scoring_date": "2025-11-15T01:47:32.801085+00:00", "dataset_text_length": 607, - "num_citations_scored": 11, + "num_citations_scored": 13, "summary_stats": { - "mean_confidence": 0.5665250101685525, + "mean_confidence": 0.5551173096207473, "median_confidence": 0.5020264685153962, - "std_confidence": 0.14590545456718043, - "min_confidence": 0.3985699057579041, + "std_confidence": 0.13910658980860346, + "min_confidence": 0.397760301232338, "max_confidence": 0.9542759487032891, "high_confidence_count": 1, - "medium_confidence_count": 9, - "low_confidence_count": 1 + "medium_confidence_count": 10, + "low_confidence_count": 2 } } } \ No newline at end of file diff --git a/citations/json/ds004706_citations.json b/citations/json/ds004706_citations.json index 0ec5c77..70bb281 100644 --- a/citations/json/ds004706_citations.json +++ b/citations/json/ds004706_citations.json @@ -1,26 +1,32 @@ { "dataset_id": "ds004706", "num_citations": 3, - "date_last_updated": "2025-09-17T19:30:14.761887+00:00", + "date_last_updated": "2025-11-14T17:24:41.942374", "metadata": { - "total_cumulative_citations": 4, - "fetch_date": "2025-09-17T19:30:14.761887+00:00", + "total_cumulative_citations": 7, + "fetch_date": "2025-11-14T17:24:41.942374", "processing_version": "1.0" }, "citation_details": [ { "title": "Decoding EEG for optimizing naturalistic memory", - "author": "JH Rudoler, JP Bruska, W Chang, MR Dougherty", - "venue": "bioRxiv", - "year": 2023, - "url": "https://www.biorxiv.org/content/10.1101/2023.08.25.553563.abstract", - "cited_by": 0, - "abstract": "Background Spectral features of human electroencephalographic (EEG) recordings during learning predict subsequent recall variability. New method Capitalizing on these fluctuating", - "short_author": "JH Rudoler, JP Bruska, W Chang, MR Dougherty", + "author": "JH Rudoler, JP Bruska, W Chang", + "venue": "Journal of Neuroscience Methods", + "year": 2024, + "url": "https://www.sciencedirect.com/science/article/pii/S0165027024001651", + "cited_by": 4, + "abstract": "Background: Spectral features of human electroencephalographic (EEG) recordings during learning predict subsequent recall variability. New method: Capitalizing on these fluctuating", + "short_author": "JH Rudoler, JP Bruska, W Chang", + "publisher": "Elsevier", + "pages": "110220", + "volume": "410", + "journal": "Journal of Neuroscience Methods", + "pub_type": "article", + "bib_id": "rudoler2024decoding", "confidence_scoring": { - "confidence_score": 0.695109457075596, - "similarity_score": 0.6018263697624207, - "citation_text_length": 316, + "confidence_score": 0.7005280494689942, + "similarity_score": 0.6065177917480469, + "citation_text_length": 328, "dataset_text_length": 2404, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -31,7 +37,7 @@ "author": "MR Dougherty, W Chang, JH Rudoler", "venue": "Journal of Experimental Psychology: Learning, Memory, and Cognition", "year": 2024, - "url": "https://psycnet.apa.org/record/2025-34345-003", + "url": "https://psycnet.apa.org/fulltext/2025-34345-003.html", "cited_by": 3, "abstract": "We investigated memory encoding and retrieval during a quasinaturalistic spatial-episodic memory task in which subjects delivered items to landmarks in a desktop virtual environment", "short_author": "MR Dougherty, W Chang, JH Rudoler", @@ -51,24 +57,21 @@ } }, { - "title": "Decoding EEG for optimizing naturalistic memory", - "author": "JH Rudoler, JP Bruska, W Chang", - "venue": "Journal of Neuroscience Methods", - "year": 2024, - "url": "https://www.sciencedirect.com/science/article/pii/S0165027024001651", - "cited_by": 1, - "abstract": "Background: Spectral features of human electroencephalographic (EEG) recordings during learning predict subsequent recall variability. New method: Capitalizing on these fluctuating", - "short_author": "JH Rudoler, JP Bruska, W Chang", - "publisher": "Elsevier", - "pages": "110220", - "volume": "410", - "journal": "Journal of Neuroscience Methods", + "title": "REVE: A Foundation Model for EEG--Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects", + "author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "venue": "arXiv preprint arXiv:2510.21585", + "year": 2025, + "url": "https://arxiv.org/abs/2510.21585", + "cited_by": 0, + "abstract": "Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has", + "short_author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "journal": "arXiv preprint arXiv:2510.21585", "pub_type": "article", - "bib_id": "rudoler2024decoding", + "bib_id": "ouahidi2025reve", "confidence_scoring": { - "confidence_score": 0.7005280494689942, - "similarity_score": 0.6065177917480469, - "citation_text_length": 328, + "confidence_score": 0.4792111578583718, + "similarity_score": 0.4149014353752136, + "citation_text_length": 393, "dataset_text_length": 2404, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -77,14 +80,14 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T23:05:09.388910+00:00", + "scoring_date": "2025-11-15T01:47:37.196470+00:00", "dataset_text_length": 2404, "num_citations_scored": 3, "summary_stats": { - "mean_confidence": 0.7336203435063363, + "mean_confidence": 0.6616542437672616, "median_confidence": 0.7005280494689942, - "std_confidence": 0.050679396706091104, - "min_confidence": 0.695109457075596, + "std_confidence": 0.13590289497149033, + "min_confidence": 0.4792111578583718, "max_confidence": 0.8052235239744188, "high_confidence_count": 2, "medium_confidence_count": 1, diff --git a/citations/json/ds004816_citations.json b/citations/json/ds004816_citations.json new file mode 100644 index 0000000..b76016e --- /dev/null +++ b/citations/json/ds004816_citations.json @@ -0,0 +1,67 @@ +{ + "dataset_id": "ds004816", + "num_citations": 2, + "date_last_updated": "2025-11-14T17:25:03.053896", + "metadata": { + "total_cumulative_citations": 0, + "fetch_date": "2025-11-14T17:25:03.053896", + "processing_version": "1.0" + }, + "citation_details": [ + { + "title": "figure_attention_effect. png", + "author": "T Grootswagers, A Robinson, S Shatek, T Carlson", + "venue": "NA", + "year": 2020, + "url": "https://osf.io/7zhwp/files/github/figures/figure_attention_effect.png/", + "cited_by": 0, + "abstract": "The human brain prioritises relevant sensory information to perform different tasks. Enhancement of task-relevant information requires flexible allocation of attentional resources, but it is", + "short_author": "T Grootswagers, A Robinson, S Shatek, T Carlson", + "confidence_scoring": { + "confidence_score": 0.6716376560926438, + "similarity_score": 0.5815044641494751, + "citation_text_length": 307, + "dataset_text_length": 636, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "REVE: A Foundation Model for EEG--Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects", + "author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "venue": "arXiv preprint arXiv:2510.21585", + "year": 2025, + "url": "https://arxiv.org/abs/2510.21585", + "cited_by": 0, + "abstract": "Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has", + "short_author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "journal": "arXiv preprint arXiv:2510.21585", + "pub_type": "article", + "bib_id": "ouahidi2025reve", + "confidence_scoring": { + "confidence_score": 0.6205848625302316, + "similarity_score": 0.5373029112815857, + "citation_text_length": 393, + "dataset_text_length": 636, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + } + ], + "confidence_scoring": { + "model_used": "Qwen/Qwen3-Embedding-0.6B", + "scoring_date": "2025-11-15T01:47:41.004120+00:00", + "dataset_text_length": 636, + "num_citations_scored": 2, + "summary_stats": { + "mean_confidence": 0.6461112593114378, + "median_confidence": 0.6461112593114378, + "std_confidence": 0.025526396781206107, + "min_confidence": 0.6205848625302316, + "max_confidence": 0.6716376560926438, + "high_confidence_count": 0, + "medium_confidence_count": 2, + "low_confidence_count": 0 + } + } +} \ No newline at end of file diff --git a/citations/json/ds004842_citations.json b/citations/json/ds004842_citations.json new file mode 100644 index 0000000..8237878 --- /dev/null +++ b/citations/json/ds004842_citations.json @@ -0,0 +1,46 @@ +{ + "dataset_id": "ds004842", + "num_citations": 1, + "date_last_updated": "2025-11-14T17:24:54.003568", + "metadata": { + "total_cumulative_citations": 0, + "fetch_date": "2025-11-14T17:24:54.003568", + "processing_version": "1.0" + }, + "citation_details": [ + { + "title": "Human Performance Modeling Using Generative Ai Principles", + "author": "SM Gordon, VJ Lawhern, J Touryan", + "venue": "NA", + "year": 2025, + "url": "https://www.sae.org/gsdownload/?prodCd=2025-01-0486", + "cited_by": 0, + "abstract": "Evaluation of integrated human-machine systems depends on having accurate human performance models. However, such models often provide only instantaneous", + "short_author": "SM Gordon, VJ Lawhern, J Touryan", + "confidence_scoring": { + "confidence_score": 0.2541312707215548, + "similarity_score": 0.22002707421779633, + "citation_text_length": 284, + "dataset_text_length": 283, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + } + ], + "confidence_scoring": { + "model_used": "Qwen/Qwen3-Embedding-0.6B", + "scoring_date": "2025-11-15T01:47:44.148342+00:00", + "dataset_text_length": 283, + "num_citations_scored": 1, + "summary_stats": { + "mean_confidence": 0.2541312707215548, + "median_confidence": 0.2541312707215548, + "std_confidence": 0.0, + "min_confidence": 0.2541312707215548, + "max_confidence": 0.2541312707215548, + "high_confidence_count": 0, + "medium_confidence_count": 0, + "low_confidence_count": 1 + } + } +} \ No newline at end of file diff --git a/citations/json/ds004902_citations.json b/citations/json/ds004902_citations.json index 53b70a6..7b58e78 100644 --- a/citations/json/ds004902_citations.json +++ b/citations/json/ds004902_citations.json @@ -1,25 +1,25 @@ { "dataset_id": "ds004902", - "num_citations": 9, - "date_last_updated": "2025-09-17T19:30:14.864290+00:00", + "num_citations": 12, + "date_last_updated": "2025-11-14T17:27:19.940473", "metadata": { - "total_cumulative_citations": 25, - "fetch_date": "2025-09-17T19:30:14.864290+00:00", + "total_cumulative_citations": 64, + "fetch_date": "2025-11-14T17:27:19.940473", "processing_version": "1.0" }, "citation_details": [ { "title": "Impact of sleep deprivation on aperiodic activity: a resting-state EEG study", "author": "D Bai, J Hu, S Jülich, X Lei", - "venue": "Journal of neurophysiology", + "venue": "Journal of Neurophysiology", "year": 2024, "url": "https://journals.physiology.org/doi/abs/10.1152/jn.00304.2024", - "cited_by": 3, + "cited_by": 7, "abstract": "Sleep deprivation (SD) has been shown to have a negative impact on alertness, as evidenced by behavioral and electroencephalographic studies. Nevertheless, in prior studies", "short_author": "D Bai, J Hu, S Jülich, X Lei", "confidence_scoring": { - "confidence_score": 0.7665143457055092, - "similarity_score": 0.663648784160614, + "confidence_score": 0.7656383138895035, + "similarity_score": 0.6628903150558472, "citation_text_length": 342, "dataset_text_length": 2281, "scoring_method": "sentence_transformers", @@ -50,7 +50,7 @@ "venue": "IEEE Transactions on Neural Systems and Rehabilitation Engineering", "year": 2025, "url": "https://ieeexplore.ieee.org/abstract/document/10909332/", - "cited_by": 1, + "cited_by": 7, "abstract": "The last decade has witnessed a notable surge in deep learning applications for electroencephalography (EEG) data analysis, showing promising improvements over conventional", "short_author": "F Del Pup, A Zanola, LF Tshimanga", "publisher": "IEEE", @@ -66,13 +66,34 @@ "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, + { + "title": "Highly Accurate EEG-based Sleep Deprivation Detection Using Deep Learning", + "author": "A Ishihara, Y Yamashita, M Sugata", + "venue": "人工知能学会全国大会論文集 第 39 回 (2025)", + "year": 2025, + "url": "https://www.jstage.jst.go.jp/article/pjsai/JSAI2025/0/JSAI2025_4K1IS2d03/_article/-char/ja/", + "cited_by": 0, + "abstract": "Objective sleep deprivation detection can enhance workplace safety and productivity in professions that require long working hours. To address this, we proposed deep learning models", + "short_author": "A Ishihara, Y Yamashita, M Sugata", + "pages": "4K1IS2d03--4K1IS2d03", + "pub_type": "inproceedings", + "bib_id": "ishihara2025highly", + "confidence_scoring": { + "confidence_score": 0.710123231112957, + "similarity_score": 0.6148253083229065, + "citation_text_length": 354, + "dataset_text_length": 2281, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "A resting-state EEG dataset for sleep deprivation", "author": "C Xiang, X Fan, D Bai, K Lv, X Lei", "venue": "Scientific Data", "year": 2024, "url": "https://www.nature.com/articles/s41597-024-03268-2", - "cited_by": 17, + "cited_by": 28, "abstract": "To investigate the impact of sleep deprivation (SD) on mood, alertness, and resting-state electroencephalogram (EEG), we present an eyes-open resting-state EEG dataset. The dataset", "short_author": "C Xiang, X Fan, D Bai, et al.", "confidence_scoring": { @@ -90,7 +111,7 @@ "venue": "Big Data and Cognitive Computing", "year": 2025, "url": "https://www.mdpi.com/2504-2289/9/5/126", - "cited_by": 0, + "cited_by": 1, "abstract": "Driver fatigue is a key factor in road accidents worldwide, requiring effective real-time detection mechanisms. Traditional deep neural network (DNN)-based solutions have shown", "short_author": "SH Al-Gburi, KA Al-Sammak, I Marghescu", "publisher": "MDPI", @@ -148,26 +169,44 @@ } }, { - "title": "BrainWave: A Brain Signal Foundation Model for Clinical Applications", + "title": "Brainwave: A brain signal foundation model for clinical applications", "author": "Z Yuan, F Shen, M Li, Y Yu, C Tan, Y Yang", "venue": "arXiv preprint arXiv:2402.10251", "year": 2024, "url": "https://arxiv.org/abs/2402.10251", - "cited_by": 4, + "cited_by": 21, "abstract": "Neural electrical activity is fundamental to brain function, underlying a range of cognitive and behavioral processes, including movement, perception, decision-making, and", "short_author": "Z Yuan, F Shen, M Li, et al.", "journal": "arXiv preprint arXiv:2402.10251", "pub_type": "article", "bib_id": "yuan2024brainwave", "confidence_scoring": { - "confidence_score": 0.5006213065981865, - "similarity_score": 0.43343836069107056, + "confidence_score": 0.5249190558493138, + "similarity_score": 0.45447537302970886, "citation_text_length": 351, "dataset_text_length": 2281, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } }, + { + "title": "EEG-MedRAG: Enhancing EEG-based Clinical Decision-Making via Hierarchical Hypergraph Retrieval-Augmented Generation", + "author": "Y Wang, H Luo, L Meng", + "venue": "arXiv preprint arXiv:2508.13735", + "year": 2025, + "url": "https://arxiv.org/abs/2508.13735", + "cited_by": 0, + "abstract": "With the widespread application of electroencephalography (EEG) in neuroscience and clinical practice, efficiently retrieving and semantically interpreting large-scale, multi-source,", + "short_author": "Y Wang, H Luo, L Meng", + "confidence_scoring": { + "confidence_score": 0.5425989957153798, + "similarity_score": 0.46978268027305603, + "citation_text_length": 389, + "dataset_text_length": 2281, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "Improving Sleep Health Through Data-Driven Machine Learning Insights", "author": "A Kapoor, P Suyal, R Bhardwaj, KK Gola", @@ -188,21 +227,42 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "REVE: A Foundation Model for EEG--Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects", + "author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "venue": "arXiv preprint arXiv:2510.21585", + "year": 2025, + "url": "https://arxiv.org/abs/2510.21585", + "cited_by": 0, + "abstract": "Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has", + "short_author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "journal": "arXiv preprint arXiv:2510.21585", + "pub_type": "article", + "bib_id": "ouahidi2025reve", + "confidence_scoring": { + "confidence_score": 0.5979956334829332, + "similarity_score": 0.5177451372146606, + "citation_text_length": 393, + "dataset_text_length": 2281, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T23:06:52.686172+00:00", + "scoring_date": "2025-11-15T01:47:47.299964+00:00", "dataset_text_length": 2281, - "num_citations_scored": 9, + "num_citations_scored": 12, "summary_stats": { - "mean_confidence": 0.6421019328468377, - "median_confidence": 0.5412318353354931, - "std_confidence": 0.1748982957014376, + "mean_confidence": 0.637754747780661, + "median_confidence": 0.5702973145991566, + "std_confidence": 0.1541235688017071, "min_confidence": 0.46800442188978203, "max_confidence": 0.9951214742660524, - "high_confidence_count": 3, - "medium_confidence_count": 6, + "high_confidence_count": 4, + "medium_confidence_count": 8, "low_confidence_count": 0 } } diff --git a/citations/json/ds005286_citations.json b/citations/json/ds005286_citations.json new file mode 100644 index 0000000..87daffd --- /dev/null +++ b/citations/json/ds005286_citations.json @@ -0,0 +1,63 @@ +{ + "dataset_id": "ds005286", + "num_citations": 2, + "date_last_updated": "2025-11-14T17:25:18.490695", + "metadata": { + "total_cumulative_citations": 0, + "fetch_date": "2025-11-14T17:25:18.490695", + "processing_version": "1.0" + }, + "citation_details": [ + { + "title": "A comprehensive EEG dataset of laser-evoked potentials for pain research", + "author": "X Zhao, J Zhou, L Zhang, Y Zhuang, H Duan, S Wei", + "venue": "Scientific Data", + "year": 2025, + "url": "https://www.nature.com/articles/s41597-025-05900-1", + "cited_by": 0, + "abstract": "Understanding the neural mechanisms of pain is key to the development of novel pain diagnostic and treatment strategies. Here, we present a large-scale, comprehensive", + "short_author": "X Zhao, J Zhou, L Zhang, et al.", + "confidence_scoring": { + "confidence_score": 0.7018100506067277, + "similarity_score": 0.6076277494430542, + "citation_text_length": 341, + "dataset_text_length": 1373, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "VOYAGER 2 SATURN, TITAN, DELTA SCORPII ENCOUNTER I '77—O76A-11B", + "author": "T RESTORED, TSISA FOLLOWS", + "venue": "NA", + "year": 0, + "url": "n/a", + "cited_by": 0, + "short_author": "T RESTORED, TSISA FOLLOWS", + "confidence_scoring": { + "confidence_score": 0.1705174595117569, + "similarity_score": 0.1705174595117569, + "citation_text_length": 117, + "dataset_text_length": 1373, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + } + ], + "confidence_scoring": { + "model_used": "Qwen/Qwen3-Embedding-0.6B", + "scoring_date": "2025-11-15T01:47:52.224705+00:00", + "dataset_text_length": 1373, + "num_citations_scored": 2, + "summary_stats": { + "mean_confidence": 0.4361637550592423, + "median_confidence": 0.4361637550592423, + "std_confidence": 0.2656462955474854, + "min_confidence": 0.1705174595117569, + "max_confidence": 0.7018100506067277, + "high_confidence_count": 1, + "medium_confidence_count": 0, + "low_confidence_count": 1 + } + } +} \ No newline at end of file diff --git a/citations/json/ds005345_citations.json b/citations/json/ds005345_citations.json index 45c1d93..30682f4 100644 --- a/citations/json/ds005345_citations.json +++ b/citations/json/ds005345_citations.json @@ -1,26 +1,67 @@ { "dataset_id": "ds005345", - "num_citations": 1, - "date_last_updated": "2025-09-17T19:30:14.774245+00:00", + "num_citations": 3, + "date_last_updated": "2025-11-14T17:25:42.087627", "metadata": { - "total_cumulative_citations": 0, - "fetch_date": "2025-09-17T19:30:14.774245+00:00", + "total_cumulative_citations": 2, + "fetch_date": "2025-11-14T17:25:42.087627", "processing_version": "1.0" }, "citation_details": [ { - "title": "Le Petit Prince (LPP) Multi-talker: Naturalistic 7T fMRI and EEG Dataset", + "title": "Le Petit Prince (LPP) multi-talker: Naturalistic 7 T fMRI and EEG dataset", "author": "Q Wang, Q Zhou, Z Ma, N Wang, T Zhang, Y Fu, J Li", - "venue": "bioRxiv", + "venue": "Scientific data", "year": 2025, - "url": "https://www.biorxiv.org/content/10.1101/2025.02.26.640265.abstract", - "cited_by": 0, + "url": "https://www.nature.com/articles/s41597-025-05158-7", + "cited_by": 2, "abstract": "Prior neuroimaging datasets using naturalistic listening paradigms have predominantly focused on single-talker scenarios. While these studies have been invaluable for advancing our", "short_author": "Q Wang, Q Zhou, Z Ma, et al.", "confidence_scoring": { - "confidence_score": 0.9389538252353669, - "similarity_score": 0.8129470348358154, - "citation_text_length": 348, + "confidence_score": 0.9410243582725526, + "similarity_score": 0.8147397041320801, + "citation_text_length": 357, + "dataset_text_length": 2291, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "Increasing alignment of large language models with language processing in the human brain", + "author": "C Gao, Z Ma, J Chen, P Li, S Huang, J Li", + "venue": "Nature computational science", + "year": 2025, + "url": "https://www.nature.com/articles/s43588-025-00863-0", + "cited_by": 0, + "abstract": "Transformer-based large language models (LLMs) have considerably advanced our understanding of how meaning is represented in the human brain; however, the validity of", + "short_author": "C Gao, Z Ma, J Chen, et al.", + "publisher": "Nature Publishing Group US New York", + "pages": "1--11", + "journal": "Nature computational science", + "pub_type": "article", + "bib_id": "gao2025increasing", + "confidence_scoring": { + "confidence_score": 0.4612528842687607, + "similarity_score": 0.39935314655303955, + "citation_text_length": 363, + "dataset_text_length": 2291, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, + { + "title": "Scaling, but not instruction tuning, increases large language models' alignment with language processing in the human brain", + "author": "C Gao, Z Ma, J Chen, P Li, S Huang, J Li", + "venue": "NA", + "year": 2025, + "url": "https://ira.lib.polyu.edu.hk/bitstream/10397/113634/1/2024.08.15.608196v2.full.pdf", + "cited_by": 0, + "abstract": "Transformer-based large language models (LLMs) have significantly advanced our understanding of meaning representation in the human brain. However, increasingly large LLMs", + "short_author": "C Gao, Z Ma, J Chen, et al.", + "confidence_scoring": { + "confidence_score": 0.43351575493812566, + "similarity_score": 0.3753383159637451, + "citation_text_length": 376, "dataset_text_length": 2291, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -29,17 +70,17 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T23:10:19.310761+00:00", + "scoring_date": "2025-11-15T01:47:55.374848+00:00", "dataset_text_length": 2291, - "num_citations_scored": 1, + "num_citations_scored": 3, "summary_stats": { - "mean_confidence": 0.9389538252353669, - "median_confidence": 0.9389538252353669, - "std_confidence": 0.0, - "min_confidence": 0.9389538252353669, - "max_confidence": 0.9389538252353669, + "mean_confidence": 0.611930999159813, + "median_confidence": 0.4612528842687607, + "std_confidence": 0.23297949315330457, + "min_confidence": 0.43351575493812566, + "max_confidence": 0.9410243582725526, "high_confidence_count": 1, - "medium_confidence_count": 0, + "medium_confidence_count": 2, "low_confidence_count": 0 } } diff --git a/citations/json/ds005508_citations.json b/citations/json/ds005508_citations.json index 876e39a..d7d2106 100644 --- a/citations/json/ds005508_citations.json +++ b/citations/json/ds005508_citations.json @@ -1,20 +1,41 @@ { "dataset_id": "ds005508", - "num_citations": 1, - "date_last_updated": "2025-09-17T19:30:14.804474+00:00", + "num_citations": 3, + "date_last_updated": "2025-11-14T17:26:34.511923", "metadata": { - "total_cumulative_citations": 0, - "fetch_date": "2025-09-17T19:30:14.804474+00:00", + "total_cumulative_citations": 5, + "fetch_date": "2025-11-14T17:26:34.511923", "processing_version": "1.0" }, "citation_details": [ + { + "title": "BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals", + "author": "Q Xiao, Z Cui, C Zhang, S Chen, W Wu", + "venue": "arXiv preprint arXiv:2505.18185", + "year": 2025, + "url": "https://arxiv.org/abs/2505.18185", + "cited_by": 2, + "abstract": "Electroencephalography (EEG) and magnetoencephalography (MEG) measure neural activity non-invasively by capturing electromagnetic fields generated by dendritic currents.", + "short_author": "Q Xiao, Z Cui, C Zhang, et al.", + "journal": "arXiv preprint arXiv:2505.18185", + "pub_type": "article", + "bib_id": "xiao2025brainomni", + "confidence_scoring": { + "confidence_score": 0.5757250115275383, + "similarity_score": 0.4984632134437561, + "citation_text_length": 343, + "dataset_text_length": 2371, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } + }, { "title": "HBN-EEG: The FAIR implementation of the Healthy Brain Network (HBN) electroencephalography dataset", "author": "SY Shirazi, A Franco, M Scopel Hoffmann, NB Esper", "venue": "bioRxiv", "year": 2024, "url": "https://www.biorxiv.org/content/10.1101/2024.10.03.615261.abstract", - "cited_by": 0, + "cited_by": 3, "abstract": "The Child Mind Institute (CMI) Healthy Brain Network (HBN) project has recorded phenotypic, behavioral, and neuroimaging data from ∼5,000 children and young adults between the", "short_author": "SY Shirazi, A Franco, M Scopel Hoffmann, NB Esper", "confidence_scoring": { @@ -25,21 +46,42 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "REVE: A Foundation Model for EEG--Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects", + "author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "venue": "arXiv preprint arXiv:2510.21585", + "year": 2025, + "url": "https://arxiv.org/abs/2510.21585", + "cited_by": 0, + "abstract": "Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has", + "short_author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "journal": "arXiv preprint arXiv:2510.21585", + "pub_type": "article", + "bib_id": "ouahidi2025reve", + "confidence_scoring": { + "confidence_score": 0.5687281161546708, + "similarity_score": 0.4924052953720093, + "citation_text_length": 393, + "dataset_text_length": 2371, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T23:11:42.554004+00:00", + "scoring_date": "2025-11-15T01:47:59.050056+00:00", "dataset_text_length": 2371, - "num_citations_scored": 1, + "num_citations_scored": 3, "summary_stats": { - "mean_confidence": 0.902188370525837, - "median_confidence": 0.902188370525837, - "std_confidence": 0.0, - "min_confidence": 0.902188370525837, + "mean_confidence": 0.6822138327360153, + "median_confidence": 0.5757250115275383, + "std_confidence": 0.15557171356665703, + "min_confidence": 0.5687281161546708, "max_confidence": 0.902188370525837, "high_confidence_count": 1, - "medium_confidence_count": 0, + "medium_confidence_count": 2, "low_confidence_count": 0 } } diff --git a/citations/json/ds005586_citations.json b/citations/json/ds005586_citations.json index 4892590..177f87e 100644 --- a/citations/json/ds005586_citations.json +++ b/citations/json/ds005586_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds005586", "num_citations": 2, - "date_last_updated": "2025-09-17T19:30:14.752213+00:00", + "date_last_updated": "2025-11-14T17:26:47.093746", "metadata": { - "total_cumulative_citations": 0, - "fetch_date": "2025-09-17T19:30:14.752213+00:00", + "total_cumulative_citations": 1, + "fetch_date": "2025-11-14T17:26:47.093746", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "Journal of cognitive neuroscience", "year": 2025, "url": "https://direct.mit.edu/jocn/article/37/1/227/124932", - "cited_by": 0, + "cited_by": 1, "abstract": "Perceptual completion is ubiquitous when estimating properties such as the shape, size, or number of objects in partially occluded scenes. Behavioral experiments showed that the", "short_author": "C Baykan, AC Schütz", "confidence_scoring": { @@ -27,18 +27,21 @@ } }, { - "title": "kk Guide)(Head of the Department)", - "author": "DI GGGGGLGL", - "venue": "NA", - "year": 2004, - "url": "http://library.kct.ac.in/opac-tmpl/bootstrap/THESIS/0304SUSHANTKUMARASWAMY.pdf", + "title": "REVE: A Foundation Model for EEG--Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects", + "author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "venue": "arXiv preprint arXiv:2510.21585", + "year": 2025, + "url": "https://arxiv.org/abs/2510.21585", "cited_by": 0, - "abstract": "Power Line Communications refers to the use of existing electricity cable infrastructure to carry voice and data signals eg lnternet, telephony, video etc. Power Line Communications", - "short_author": "DI GGGGGLGL", + "abstract": "Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has", + "short_author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "journal": "arXiv preprint arXiv:2510.21585", + "pub_type": "article", + "bib_id": "ouahidi2025reve", "confidence_scoring": { - "confidence_score": 0.1534534990787506, - "similarity_score": 0.13950318098068237, - "citation_text_length": 267, + "confidence_score": 0.512108923494816, + "similarity_score": 0.4433843493461609, + "citation_text_length": 393, "dataset_text_length": 1579, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -47,18 +50,18 @@ ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T23:12:52.763653+00:00", + "scoring_date": "2025-11-15T01:48:03.116083+00:00", "dataset_text_length": 1579, "num_citations_scored": 2, "summary_stats": { - "mean_confidence": 0.5145192608237268, - "median_confidence": 0.5145192608237268, - "std_confidence": 0.36106576174497607, - "min_confidence": 0.1534534990787506, + "mean_confidence": 0.6938469730317594, + "median_confidence": 0.6938469730317594, + "std_confidence": 0.18173804953694345, + "min_confidence": 0.512108923494816, "max_confidence": 0.8755850225687029, "high_confidence_count": 1, - "medium_confidence_count": 0, - "low_confidence_count": 1 + "medium_confidence_count": 1, + "low_confidence_count": 0 } } } \ No newline at end of file diff --git a/citations/json/ds005697_citations.json b/citations/json/ds005697_citations.json index a0c8ed8..29dcd7a 100644 --- a/citations/json/ds005697_citations.json +++ b/citations/json/ds005697_citations.json @@ -1,26 +1,26 @@ { "dataset_id": "ds005697", - "num_citations": 3, - "date_last_updated": "2025-09-17T19:30:14.819493+00:00", + "num_citations": 4, + "date_last_updated": "2025-11-14T17:27:43.911848", "metadata": { "total_cumulative_citations": 13, - "fetch_date": "2025-09-17T19:30:14.819493+00:00", + "fetch_date": "2025-11-14T17:27:43.911848", "processing_version": "1.0" }, "citation_details": [ { - "title": "Design, Development, and Demonstration of a Prognostics and Diagnostics Health Monitoring System for the CROWS Platform", + "title": "Design, Development, and Demonstration of a Prognostic and Diagnostics Health Monitoring System for the CROWS Platform", "author": "MA Conn, G Mitchell, D Washington, A Bayba, KF Tom", "venue": "NA", - "year": 0, - "url": "https://www.academia.edu/download/46594408/Design_Development_and_Demonstration_of_20160618-25884-1jlbdm9.pdf", + "year": 2010, + "url": "https://apps.dtic.mil/sti/html/tr/ADA523873/", "cited_by": 0, - "abstract": "14. ABSTRACT Automated data acquisition has become a major part of the military’s prognostics and diagnostics program as it moves towards a condition-based maintenance", + "abstract": "Automated data acquisition has become a major part of the militarys prognostics and diagnostics program as it moves towards a condition-based maintenance approach. The desire to", "short_author": "MA Conn, G Mitchell, D Washington, et al.", "confidence_scoring": { - "confidence_score": 0.32004237771034244, - "similarity_score": 0.2909476161003113, - "citation_text_length": 378, + "confidence_score": 0.34174128174781804, + "similarity_score": 0.31067389249801636, + "citation_text_length": 387, "dataset_text_length": 958, "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" @@ -30,14 +30,15 @@ "title": "A head mountable deep brain stimulation device for laboratory animals", "author": "AZ Kouzani, S Tye, K Walder, L Kong", "venue": "Advances in computer, communication, control and automation", - "year": 2012, + "year": 2011, "url": "https://link.springer.com/chapter/10.1007/978-3-642-25541-0_36", "cited_by": 10, "abstract": "Deep brain stimulation has emerged as an effective method to treat certain medical conditions. Electrical charges are injected into the target tissue through a conducting electrode", "short_author": "AZ Kouzani, S Tye, K Walder, L Kong", + "publisher": "Springer", "pages": "275--280", - "pub_type": "inproceedings", - "bib_id": "kouzani2012head", + "pub_type": "incollection", + "bib_id": "kouzani2011head", "confidence_scoring": { "confidence_score": 0.43412078320980074, "similarity_score": 0.3946552574634552, @@ -70,21 +71,42 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "REVE: A Foundation Model for EEG--Adapting to Any Setup with Large-Scale Pretraining on 25,000 Subjects", + "author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "venue": "arXiv preprint arXiv:2510.21585", + "year": 2025, + "url": "https://arxiv.org/abs/2510.21585", + "cited_by": 0, + "abstract": "Foundation models have transformed AI by reducing reliance on task-specific data through large-scale pretraining. While successful in language and vision, their adoption in EEG has", + "short_author": "YE Ouahidi, J Lys, P Thölke, N Farrugia", + "journal": "arXiv preprint arXiv:2510.21585", + "pub_type": "article", + "bib_id": "ouahidi2025reve", + "confidence_scoring": { + "confidence_score": 0.5602628606557847, + "similarity_score": 0.48507606983184814, + "citation_text_length": 393, + "dataset_text_length": 958, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T23:13:18.850240+00:00", + "scoring_date": "2025-11-15T01:48:06.405753+00:00", "dataset_text_length": 958, - "num_citations_scored": 3, + "num_citations_scored": 4, "summary_stats": { - "mean_confidence": 0.3563507070144018, - "median_confidence": 0.32004237771034244, - "std_confidence": 0.055031978532400244, + "mean_confidence": 0.4127534714341164, + "median_confidence": 0.3879310324788094, + "std_confidence": 0.09596324241508204, "min_confidence": 0.31488896012306217, - "max_confidence": 0.43412078320980074, + "max_confidence": 0.5602628606557847, "high_confidence_count": 0, - "medium_confidence_count": 1, + "medium_confidence_count": 2, "low_confidence_count": 2 } } diff --git a/citations/json/ds006036_citations.json b/citations/json/ds006036_citations.json index 204781b..44e0115 100644 --- a/citations/json/ds006036_citations.json +++ b/citations/json/ds006036_citations.json @@ -1,10 +1,10 @@ { "dataset_id": "ds006036", - "num_citations": 1, - "date_last_updated": "2025-09-17T19:30:14.853363+00:00", + "num_citations": 2, + "date_last_updated": "2025-11-14T17:26:52.239493", "metadata": { - "total_cumulative_citations": 0, - "fetch_date": "2025-09-17T19:30:14.853363+00:00", + "total_cumulative_citations": 3, + "fetch_date": "2025-11-14T17:26:52.239493", "processing_version": "1.0" }, "citation_details": [ @@ -14,7 +14,7 @@ "venue": "Data", "year": 2025, "url": "https://www.mdpi.com/2306-5729/10/5/64", - "cited_by": 0, + "cited_by": 3, "abstract": "Research interest in the application of electroencephalogram (EEG) as a non-invasive diagnostic tool for the automated detection of neurodegenerative diseases is growing. Open-", "short_author": "A Ntetska, A Miltiadous, MG Tsipouras, KD Tzimourta", "confidence_scoring": { @@ -25,22 +25,40 @@ "scoring_method": "sentence_transformers", "model_used": "Qwen/Qwen3-Embedding-0.6B" } + }, + { + "title": "Nonparametric Vector Quantile Autoregression", + "author": "A González-Sanz, M Hallin, Y Yao", + "venue": "arXiv preprint arXiv:2510.03166", + "year": 2025, + "url": "https://arxiv.org/abs/2510.03166", + "cited_by": 0, + "abstract": "Prediction is a key issue in time series analysis. Just as classical mean regression models, classical autoregressive methods, yielding L$^2$ point-predictions, provide rather poor", + "short_author": "A González-Sanz, M Hallin, Y Yao", + "confidence_scoring": { + "confidence_score": 0.21554919451475146, + "similarity_score": 0.18662267923355103, + "citation_text_length": 327, + "dataset_text_length": 2700, + "scoring_method": "sentence_transformers", + "model_used": "Qwen/Qwen3-Embedding-0.6B" + } } ], "confidence_scoring": { "model_used": "Qwen/Qwen3-Embedding-0.6B", - "scoring_date": "2025-09-17T23:14:31.364272+00:00", + "scoring_date": "2025-11-15T01:48:10.040187+00:00", "dataset_text_length": 2700, - "num_citations_scored": 1, + "num_citations_scored": 2, "summary_stats": { - "mean_confidence": 0.8403160160779954, - "median_confidence": 0.8403160160779954, - "std_confidence": 0.0, - "min_confidence": 0.8403160160779954, + "mean_confidence": 0.5279326052963734, + "median_confidence": 0.5279326052963734, + "std_confidence": 0.312383410781622, + "min_confidence": 0.21554919451475146, "max_confidence": 0.8403160160779954, "high_confidence_count": 1, "medium_confidence_count": 0, - "low_confidence_count": 0 + "low_confidence_count": 1 } } } \ No newline at end of file diff --git a/citations/previous_citations.csv b/citations/previous_citations.csv index 4f22f79..a55219d 100644 --- a/citations/previous_citations.csv +++ b/citations/previous_citations.csv @@ -1,443 +1,470 @@ dataset_id,number_of_citations -ds000246,1.0 -ds000247,3.0 -ds001784,1.0 -ds001787,10.0 +ds000247,5.0 +ds000117,81.0 +ds001784,3.0 +ds000248,5.0 +ds001787,12.0 +ds000246,2.0 ds001810,6.0 ds001785,2.0 -ds000117,79.0 -ds000248,3.0 -ds002034,6.0 -ds001971,1.0 +ds001849,2.0 ds001868,0.0 -ds002001,4.0 ds002094,31.0 -ds002158,2.0 +ds001971,1.0 +ds002158,3.0 +ds002034,6.0 ds002218,1.0 -ds002336,6.0 -ds002312,0.0 -ds001849,1.0 -ds002338,12.0 ds002181,1.0 -ds002680,7.0 -ds002550,1.0 -ds002691,2.0 -ds002578,1.0 +ds002001,5.0 +ds002338,14.0 +ds002550,2.0 +ds002578,3.0 +ds002336,8.0 +ds002312,0.0 ds002718,12.0 -ds002720,2.0 +ds002680,8.0 +ds002691,2.0 +ds002712,2.0 +ds002721,14.0 +ds002723,2.0 ds002722,3.0 -ds002724,2.0 +ds002720,2.0 +ds002725,4.0 +ds002778,71.0 ds002761,1.0 -ds002778,66.0 -ds002791,0.0 -ds002799,11.0 -ds002814,5.0 ds002833,0.0 -ds002721,13.0 -ds002885,1.0 -ds002723,2.0 -ds002725,3.0 +ds002791,0.0 +ds002814,6.0 +ds002799,12.0 +ds002724,2.0 +ds002893,2.0 +ds002844,0.0 ds003004,9.0 +ds002908,1.0 ds003029,26.0 ds003039,2.0 ds003061,8.0 -ds002844,0.0 +ds003078,1.0 ds003082,6.0 ds003104,0.0 -ds002893,1.0 -ds003190,4.0 -ds002908,1.0 ds003194,3.0 -ds003195,3.0 +ds003195,4.0 ds003343,1.0 +ds003352,4.0 ds003374,4.0 +ds003190,3.0 ds003380,2.0 -ds003078,1.0 -ds002712,1.0 -ds003421,3.0 +ds003392,0.0 +ds003420,2.0 ds003458,0.0 ds003474,9.0 +ds003478,41.0 +ds003421,3.0 ds003483,2.0 ds003490,16.0 ds003498,7.0 -ds003352,4.0 -ds003506,4.0 ds003505,6.0 -ds003392,0.0 -ds003509,7.0 +ds003506,4.0 ds003516,3.0 +ds003509,7.0 ds003517,5.0 -ds003518,0.0 -ds003420,2.0 +ds002885,1.0 ds003519,3.0 ds003522,5.0 -ds003552,0.0 -ds003555,10.0 ds003523,3.0 +ds003552,0.0 ds003565,3.0 +ds003555,10.0 +ds003518,0.0 +ds003568,7.0 ds003570,1.0 ds003574,2.0 -ds003568,7.0 -ds003478,41.0 -ds003633,2.0 ds003602,0.0 -ds003626,7.0 ds003620,4.0 -ds003645,3.0 +ds003626,7.0 +ds003633,2.0 ds003638,1.0 ds003655,5.0 ds003670,7.0 -ds003688,11.0 -ds003694,1.0 -ds003690,6.0 +ds003688,13.0 ds003682,2.0 +ds003690,6.0 +ds003694,1.0 ds003702,4.0 ds003703,1.0 -ds003710,1.0 ds003708,1.0 +ds003710,1.0 ds003722,0.0 -ds003751,7.0 ds003739,5.0 +ds003751,7.0 ds003753,0.0 -ds003774,8.0 +ds003766,1.0 ds003768,21.0 +ds003774,8.0 ds003775,12.0 ds003800,4.0 ds003801,2.0 +ds003805,3.0 ds003810,2.0 -ds003816,2.0 ds003822,0.0 -ds003766,1.0 +ds003816,2.0 ds003825,3.0 -ds003805,3.0 ds003844,0.0 -ds003848,2.0 ds003846,5.0 +ds003848,2.0 +ds003876,3.0 ds003885,3.0 +ds003922,1.0 ds003887,3.0 +ds003645,3.0 ds003944,7.0 ds003947,8.0 -ds003969,3.0 -ds003922,1.0 ds003987,1.0 +ds003969,3.0 ds004000,9.0 ds004010,0.0 -ds004011,1.0 -ds004012,1.0 ds004015,3.0 +ds004012,1.0 +ds004011,1.0 ds004018,0.0 ds004017,1.0 ds004019,1.0 -ds004033,1.0 +ds004024,1.0 ds004022,2.0 +ds004033,1.0 +ds004040,2.0 ds004043,1.0 ds004075,1.0 +ds004067,1.0 ds004078,7.0 -ds003876,3.0 ds004080,3.0 -ds004100,24.0 ds004105,0.0 +ds004100,24.0 ds004107,2.0 -ds004024,1.0 ds004117,2.0 -ds004040,2.0 +ds004106,0.0 ds004118,0.0 -ds004067,1.0 -ds004120,0.0 ds004119,0.0 +ds004120,0.0 +ds004121,1.0 +ds004122,1.0 +ds004123,1.0 ds004127,1.0 +ds004152,2.0 ds004147,2.0 -ds004148,19.0 -ds004121,1.0 ds004151,2.0 -ds004152,2.0 -ds004106,0.0 +ds004148,19.0 ds004166,1.0 ds004212,4.0 +ds004186,11.0 ds004229,0.0 +ds004200,1.0 ds004252,1.0 -ds004256,1.0 ds004262,2.0 -ds004123,1.0 +ds004256,1.0 +ds004276,2.0 ds004264,0.0 ds004278,0.0 -ds004200,1.0 +ds004279,3.0 ds004284,2.0 ds004295,2.0 ds004306,2.0 ds004315,1.0 ds004317,1.0 +ds004330,2.0 ds004324,0.0 -ds004276,2.0 -ds004279,3.0 -ds004122,1.0 +ds004346,0.0 +ds004347,0.0 ds004348,3.0 ds004350,2.0 ds004356,2.0 -ds004186,11.0 ds004362,4.0 +ds004357,3.0 ds004367,1.0 ds004368,0.0 -ds004347,0.0 -ds004370,1.0 +ds004369,1.0 ds004381,2.0 -ds004388,4.0 +ds004370,1.0 ds004389,3.0 -ds004357,3.0 +ds004388,4.0 ds004395,8.0 +ds004408,2.0 ds004398,1.0 -ds004444,1.0 ds004446,1.0 ds004447,1.0 +ds004457,2.0 ds004448,1.0 -ds004369,1.0 ds004460,1.0 -ds004457,2.0 +ds004473,1.0 ds004475,2.0 ds004477,0.0 -ds004330,2.0 -ds004346,0.0 -ds004483,2.0 +ds004444,1.0 ds004502,3.0 +ds004483,2.0 ds004504,78.0 -ds004511,3.0 -ds004514,3.0 -ds004408,2.0 ds004505,5.0 +ds004514,3.0 +ds004511,3.0 ds004515,4.0 ds004519,3.0 +ds004521,3.0 ds004517,3.0 ds004520,3.0 -ds004521,3.0 ds004532,0.0 +ds004563,2.0 +ds004561,3.0 ds004551,3.0 ds004554,0.0 -ds004561,3.0 ds004572,2.0 -ds004574,1.0 -ds004473,1.0 ds004577,4.0 +ds004574,1.0 ds004579,1.0 ds004580,1.0 +ds004582,0.0 ds004584,5.0 ds004587,1.0 -ds004563,2.0 -ds004582,0.0 ds004588,2.0 -ds004602,6.0 -ds004598,1.0 ds004595,1.0 +ds004598,1.0 ds004603,1.0 -ds004621,2.0 ds004624,0.0 +ds004621,2.0 ds004625,2.0 +ds004626,1.0 ds004635,3.0 +ds004602,6.0 ds004642,2.0 -ds004626,1.0 ds004657,1.0 ds004660,2.0 ds004661,0.0 ds004696,1.0 ds004703,2.0 -ds004718,1.0 -ds004706,2.0 -ds004738,1.0 +ds004706,3.0 ds004745,0.0 +ds004738,1.0 ds004752,4.0 -ds004771,4.0 -ds004774,0.0 +ds004718,1.0 ds004770,1.0 ds004784,1.0 +ds004774,0.0 +ds004771,4.0 ds004785,1.0 ds004789,5.0 ds004796,4.0 ds004802,2.0 ds004809,4.0 -ds004816,0.0 +ds004816,2.0 +ds004817,0.0 ds004819,1.0 ds004837,0.0 ds004840,2.0 -ds004817,0.0 ds004841,0.0 -ds004842,0.0 +ds004843,1.0 ds004844,0.0 ds004850,0.0 -ds004851,0.0 ds004849,0.0 -ds004853,0.0 +ds004842,1.0 +ds004851,0.0 ds004852,0.0 -ds004843,1.0 +ds004855,1.0 +ds004853,0.0 ds004854,0.0 ds004859,1.0 ds004860,1.0 +ds004865,0.0 ds004883,4.0 -ds004855,1.0 -ds004902,9.0 +ds004940,0.0 ds004942,1.0 -ds004865,0.0 -ds004944,1.0 +ds004902,12.0 ds004951,1.0 -ds004980,1.0 +ds004944,1.0 ds004977,1.0 -ds004952,2.0 ds004993,0.0 +ds004980,1.0 ds004995,1.0 +ds004952,2.0 ds004998,1.0 ds005021,0.0 ds005007,0.0 ds005028,1.0 ds005034,1.0 ds005048,3.0 -ds005059,0.0 ds005065,2.0 +ds005059,0.0 ds005079,1.0 ds005083,1.0 +ds005087,1.0 ds005089,1.0 ds005095,7.0 -ds005087,1.0 -ds005107,1.0 ds005106,1.0 +ds005107,1.0 ds005114,0.0 -ds005169,1.0 ds005121,1.0 -ds005178,2.0 +ds005131,0.0 +ds005169,1.0 ds005170,1.0 -ds005185,2.0 ds005189,0.0 -ds005131,0.0 ds005207,1.0 ds005234,4.0 +ds005241,1.0 +ds005185,2.0 ds005261,3.0 -ds005273,1.0 ds005262,0.0 -ds005241,1.0 +ds005273,1.0 ds005274,0.0 ds005279,0.0 ds005280,0.0 -ds005284,0.0 ds005285,1.0 -ds005286,0.0 +ds005284,0.0 ds005289,0.0 ds005291,0.0 +ds005293,0.0 ds005292,0.0 +ds005286,2.0 +ds005296,1.0 ds005305,3.0 ds005307,2.0 ds005340,1.0 -ds005296,1.0 ds005342,1.0 -ds005345,1.0 +ds005345,3.0 ds005343,1.0 ds005363,1.0 ds005356,1.0 ds005383,1.0 ds005397,1.0 ds005385,4.0 -ds005406,0.0 ds005403,2.0 +ds005406,0.0 ds005407,0.0 +ds005408,0.0 +ds005398,5.0 ds005410,1.0 -ds005415,1.0 ds005411,1.0 -ds005420,0.0 ds005416,0.0 +ds005420,0.0 +ds005415,1.0 ds005429,0.0 +ds005486,1.0 +ds005489,0.0 ds005473,0.0 ds005448,0.0 -ds005489,0.0 -ds005486,1.0 ds005491,0.0 -ds005494,0.0 ds005505,1.0 +ds005494,0.0 ds005506,2.0 ds005507,1.0 -ds005508,1.0 ds005509,2.0 -ds005510,1.0 ds005511,2.0 -ds005514,1.0 +ds005508,3.0 +ds005510,1.0 ds005512,3.0 +ds005514,1.0 ds005515,0.0 -ds005516,70.0 ds005520,0.0 +ds005516,70.0 ds005522,0.0 -ds005398,5.0 -ds005530,0.0 -ds005540,0.0 ds005523,0.0 +ds005530,0.0 ds005555,0.0 +ds005540,0.0 +ds005545,1.0 ds005557,0.0 ds005558,0.0 -ds005565,1.0 ds005574,1.0 +ds005586,2.0 ds005592,0.0 -ds005586,1.0 ds005594,1.0 ds005620,0.0 ds005624,1.0 ds005628,0.0 ds005642,0.0 +ds005648,0.0 +ds005662,0.0 ds005670,0.0 ds005672,3.0 ds005688,1.0 -ds005648,0.0 ds005691,2.0 -ds005697,3.0 -ds005779,0.0 -ds005787,0.0 ds005692,3.0 +ds005697,4.0 +ds005787,0.0 +ds005795,0.0 ds005810,0.0 ds005811,4.0 ds005815,1.0 -ds005545,1.0 -ds005857,0.0 ds005841,1.0 -ds005795,0.0 +ds005857,0.0 ds005863,0.0 -ds005868,1.0 ds005866,1.0 -ds005907,0.0 +ds005868,1.0 +ds005872,0.0 ds005873,2.0 +ds005565,1.0 ds005876,1.0 +ds005907,0.0 ds005931,1.0 +ds005932,0.0 ds005946,0.0 ds005953,0.0 +ds005960,2.0 ds006012,0.0 -ds006040,0.0 +ds006018,2.0 ds006035,1.0 -ds005960,2.0 -ds006095,0.0 -ds006104,0.0 +ds006040,0.0 +ds006036,2.0 ds006065,1.0 -ds006018,2.0 +ds006104,0.0 ds006107,1.0 ds006126,0.0 -ds006159,0.0 ds006142,0.0 +ds005779,0.0 +ds006159,0.0 ds006171,0.0 -ds006234,1.0 ds006233,0.0 -ds006269,0.0 -ds006253,1.0 +ds006234,1.0 ds006260,1.0 -ds006317,0.0 +ds006253,1.0 +ds006269,0.0 ds006334,0.0 -ds006370,0.0 -ds006367,0.0 +ds006317,0.0 ds006366,0.0 +ds006367,0.0 +ds006392,1.0 ds006374,0.0 +ds006370,0.0 +ds006394,1.0 ds006434,0.0 -ds006392,1.0 ds006437,0.0 -ds006394,1.0 ds006446,0.0 +ds006468,0.0 ds006466,0.0 -ds006036,1.0 ds006480,0.0 -ds006468,0.0 -ds006519,0.0 ds006502,0.0 -ds006547,0.0 ds006525,0.0 +ds006547,0.0 +ds006519,0.0 +ds006095,0.0 +ds006554,0.0 ds006563,0.0 ds006593,0.0 -ds006554,0.0 +ds006647,0.0 +ds006629,0.0 +ds006648,0.0 +ds006720,0.0 +ds006695,0.0 +ds006735,0.0 +ds006761,0.0 +ds006768,0.0 +ds006777,0.0 +ds006780,0.0 +ds006801,0.0 +ds006802,0.0 +ds006803,0.0 +ds006817,0.0 +ds006839,0.0 +ds006850,0.0 +ds006861,0.0 +ds006848,0.0 +ds006866,0.0 +ds006890,0.0 +ds006910,0.0 +ds006923,0.0 diff --git a/citations/updated_datasets_14112025.csv b/citations/updated_datasets_14112025.csv new file mode 100644 index 0000000..e2bf918 --- /dev/null +++ b/citations/updated_datasets_14112025.csv @@ -0,0 +1,56 @@ +dataset_id,retrieved_citations_count +ds004940,0 +ds005293,0 +ds005408,0 +ds005662,0 +ds005872,0 +ds005932,0 +ds006629,0 +ds006647,0 +ds006648,0 +ds006695,0 +ds006720,0 +ds006735,0 +ds006761,0 +ds006768,0 +ds006777,0 +ds006780,0 +ds006801,0 +ds006802,0 +ds006803,0 +ds006817,0 +ds006839,0 +ds006848,0 +ds006850,0 +ds006861,0 +ds006866,0 +ds006890,0 +ds006910,0 +ds006923,0 +ds000246,2 +ds000248,5 +ds000247,5 +ds001849,2 +ds001784,3 +ds002158,3 +ds002001,5 +ds002550,2 +ds002338,14 +ds002336,8 +ds001787,12 +ds002680,8 +ds002725,4 +ds002893,2 +ds002799,12 +ds004706,3 +ds004842,1 +ds004816,2 +ds005286,2 +ds005345,3 +ds003688,13 +ds005508,3 +ds005586,2 +ds006036,2 +ds004902,12 +ds005697,4 +ds003195,4 diff --git a/datasets/ds004816_datasets.json b/datasets/ds004816_datasets.json new file mode 100644 index 0000000..0669a5b --- /dev/null +++ b/datasets/ds004816_datasets.json @@ -0,0 +1,36 @@ +{ + "dataset_id": "ds004816", + "date_retrieved": "2025-11-15T01:45:53.175607+00:00", + "dataset_description": { + "Name": "EEG-attention-rsvp-exp1", + "BIDSVersion": "1.0.2", + "License": "CC0", + "DatasetType": "raw", + "Authors": [ + "Grootswagers, Tijl", + "Robinson, Amanda", + "Shatek, Sofia", + "Carlson, Thomas" + ], + "ReferencesAndLinks": [ + "https://doi.org/10.51628/001c.21174", + "https://osf.io/7zhwp/" + ], + "HowToAcknowledge": "Grootswagers T., Robinson A.K., Shatek S.M., Carlson T.A. (2021). The neural dynamics underlying prioritisation of task-relevant information. Neurons, Behaviour, Data Analysis, and Theory, 5(1) https://doi.org/10.51628/001c.21174", + "DatasetDOI": "doi:10.18112/openneuro.ds004816.v1.0.0" + }, + "readme_content": "EEG data for Grootswagers et al 2021 experiment 1 (small letters on big objects)\n\nGrootswagers T., Robinson A.K., Shatek S.M., Carlson T.A. (2021). The neural dynamics underlying prioritisation of task-relevant information. Neurons, Behaviour, Data Analysis, and Theory, 5(1) https://doi.org/10.51628/001c.19129\n\nSee also https://osf.io/7zhwp/ and https://openneuro.org/datasets/ds004817", + "github_info": { + "repository_url": "https://github.com/OpenNeuroDatasets/ds004816", + "exists": true, + "description": "OpenNeuro dataset - EEG-attention-rsvp-exp1", + "created_at": "2023-10-26T00:01:57+00:00", + "updated_at": "2023-10-26T00:11:58+00:00", + "default_branch": "main" + }, + "retrieval_status": { + "dataset_description": "not_found", + "readme": "not_found", + "repository": "success" + } +} \ No newline at end of file diff --git a/datasets/ds004842_datasets.json b/datasets/ds004842_datasets.json new file mode 100644 index 0000000..65b31b7 --- /dev/null +++ b/datasets/ds004842_datasets.json @@ -0,0 +1,40 @@ +{ + "dataset_id": "ds004842", + "date_retrieved": "2025-11-15T01:45:56.425638+00:00", + "dataset_description": { + "Name": "TX15", + "License": "CC0", + "Authors": [ + "Gabriella Larkin", + "James A. Davis", + "Victor Paul", + "Marcel Cannon", + "Chris Manteuffel", + "Ben Brewster", + "Tony Johnson", + "Mike Dunkel", + "Stephen Gordon", + "Kevin King" + ], + "ReferencesAndLinks": [ + "" + ], + "BIDSVersion": "1.8.0", + "HEDVersion": "8.1.0", + "DatasetDOI": "doi:10.18112/openneuro.ds004842.v1.0.0" + }, + "readme_content": "TX15 dataset", + "github_info": { + "repository_url": "https://github.com/OpenNeuroDatasets/ds004842", + "exists": true, + "description": "OpenNeuro dataset - TX15", + "created_at": "2023-11-13T18:17:58+00:00", + "updated_at": "2023-11-13T18:23:51+00:00", + "default_branch": "main" + }, + "retrieval_status": { + "dataset_description": "not_found", + "readme": "not_found", + "repository": "success" + } +} \ No newline at end of file diff --git a/datasets/ds005286_datasets.json b/datasets/ds005286_datasets.json new file mode 100644 index 0000000..75102b8 --- /dev/null +++ b/datasets/ds005286_datasets.json @@ -0,0 +1,36 @@ +{ + "dataset_id": "ds005286", + "date_retrieved": "2025-11-15T01:45:59.668346+00:00", + "dataset_description": { + "Name": "30 By ANT", + "License": "CC0", + "Authors": [ + "Zhao Xiangyue", + "Zhou Jingyao", + "Zhang Libo", + "Duan Haoqing", + "Wei Shiyu", + "Bi Yanzhi", + "Hu Li" + ], + "ReferencesAndLinks": [ + "None" + ], + "BIDSVersion": "1.1.1", + "DatasetDOI": "doi:10.18112/openneuro.ds005286.v1.0.0" + }, + "readme_content": "1.Study introduction:\nIn this experiment, participants were initially exposed to a series of laser stimulations of varying intensities. Researchers identified the energy intensity corresponding to an average rating of 7 from the participants. Subsequently, each participant underwent 30 laser stimulis and provided verbal pain ratings one by one. The pain ratings were on a scale where 0 indicated no sensation at all, 4 indicated the onset of pain, 6 represented moderate pain, 8 indicated severe pain, and 10 denoted unbearable pain.\n2.Participant task information(description of the experiment): \nParticipants underwent laser stimulation and subsequently verbally rated the intensity of pain.\n3.Participant instructions(as exact as possible):\nParticipants were instructed to focus on the laser stimulation, keep their eyes open, and fix their gaze on the crosshairs displayed on the screen. After each laser stimulation, there is a five-second pause. Participants then rated the intensity of the pain. Subsequent trials began at random 5 seconds after the score was provided.\n4.References and links:\nNone\n5.Comment:\nAll laser markers are delayed by 100ms", + "github_info": { + "repository_url": "https://github.com/OpenNeuroDatasets/ds005286", + "exists": true, + "description": "OpenNeuro dataset - 30 By ANT", + "created_at": "2025-07-08T06:45:30+00:00", + "updated_at": "2025-07-08T06:55:48+00:00", + "default_branch": "main" + }, + "retrieval_status": { + "dataset_description": "not_found", + "readme": "not_found", + "repository": "success" + } +} \ No newline at end of file diff --git a/discovered_datasets.txt b/discovered_datasets.txt index 83df17c..ff10c55 100644 --- a/discovered_datasets.txt +++ b/discovered_datasets.txt @@ -273,6 +273,7 @@ ds004860 ds004865 ds004883 ds004902 +ds004940 ds004942 ds004944 ds004951 @@ -301,7 +302,6 @@ ds005121 ds005131 ds005169 ds005170 -ds005178 ds005185 ds005189 ds005207 @@ -319,6 +319,7 @@ ds005286 ds005289 ds005291 ds005292 +ds005293 ds005296 ds005305 ds005307 @@ -335,6 +336,7 @@ ds005398 ds005403 ds005406 ds005407 +ds005408 ds005410 ds005411 ds005415 @@ -377,6 +379,7 @@ ds005624 ds005628 ds005642 ds005648 +ds005662 ds005670 ds005672 ds005688 @@ -394,10 +397,12 @@ ds005857 ds005863 ds005866 ds005868 +ds005872 ds005873 ds005876 ds005907 ds005931 +ds005932 ds005946 ds005953 ds005960 @@ -440,3 +445,25 @@ ds006547 ds006554 ds006563 ds006593 +ds006629 +ds006647 +ds006648 +ds006695 +ds006720 +ds006735 +ds006761 +ds006768 +ds006777 +ds006780 +ds006801 +ds006802 +ds006803 +ds006817 +ds006839 +ds006848 +ds006850 +ds006861 +ds006866 +ds006890 +ds006910 +ds006923 diff --git a/embeddings/metadata/dataset_metadata_hashes.json b/embeddings/metadata/dataset_metadata_hashes.json index b7bdf8f..973d4b2 100644 --- a/embeddings/metadata/dataset_metadata_hashes.json +++ b/embeddings/metadata/dataset_metadata_hashes.json @@ -2398,5 +2398,29 @@ "content_sources": { "combined_metadata": "f38f38c36d27468e" } + }, + "ds005286": { + "history": [], + "current_hash": "9fc3c541d46856e7", + "last_checked": "2025-11-14T17:48:22.715632", + "content_sources": { + "combined_metadata": "9fc3c541d46856e7" + } + }, + "ds004842": { + "history": [], + "current_hash": "29fe2512f0087db7", + "last_checked": "2025-11-14T17:48:23.416899", + "content_sources": { + "combined_metadata": "29fe2512f0087db7" + } + }, + "ds004816": { + "history": [], + "current_hash": "71fbb5a5ef598bdd", + "last_checked": "2025-11-14T17:48:23.609085", + "content_sources": { + "combined_metadata": "71fbb5a5ef598bdd" + } } } \ No newline at end of file