generated from napari/napari-workshop-template
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest-env.py
72 lines (52 loc) · 1.57 KB
/
test-env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import matplotlib.pyplot as plt
import numpy as np
from skimage import data
from skimage.color import label2rgb
from skimage.filters import sobel
from skimage.measure import label
from skimage.segmentation import expand_labels, watershed
# Check that skimage works
coins = data.coins()
## Make segmentation using edge-detection and watershed.
edges = sobel(coins)
## Identify some background and foreground pixels from the intensity values.
## These pixels are used as seeds for watershed.
markers = np.zeros_like(coins)
foreground, background = 1, 2
markers[coins < 30.0] = background
markers[coins > 150.0] = foreground
ws = watershed(edges, markers)
seg1 = label(ws == foreground)
expanded = expand_labels(seg1, distance=10)
# Check that mpl works
## Show the segmentations.
fig, axes = plt.subplots(
nrows=1,
ncols=3,
figsize=(9, 5),
sharex=True,
sharey=True,
)
axes[0].imshow(coins, cmap="Greys_r")
axes[0].set_title("Original")
color1 = label2rgb(seg1, image=coins, bg_label=0)
axes[1].imshow(color1)
axes[1].set_title("Sobel+Watershed")
color2 = label2rgb(expanded, image=coins, bg_label=0)
axes[2].imshow(color2)
axes[2].set_title("Expanded labels")
for a in axes:
a.axis("off")
fig.tight_layout()
plt.show()
# Check that napari works
import napari
viewer = napari.Viewer()
image_layer = viewer.add_image(coins)
labels_layer = viewer.add_labels(seg1)
napari.run()
# Check that sklearn runs
from sklearn.linear_model import LogisticRegression
lg = LogisticRegression(solver='liblinear')
# Check that remote datasets can be loaded
cells = data.cells3d()