forked from MSREnable/GazeCapture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathITrackerData.py
511 lines (440 loc) · 20.8 KB
/
ITrackerData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import torch
import os
import os.path
import scipy.io as sio
import numpy as np
import math
from random import random, shuffle
# CPU data loader
from PIL import Image
import torchvision.transforms as transforms
from utility_functions.Utilities import centered_text
try:
# GPU data loader
from nvidia.dali.pipeline import Pipeline
import nvidia.dali.ops as ops
import nvidia.dali.types as types
from nvidia.dali.plugin.pytorch import DALIGenericIterator
except ImportError:
# If running on a non-CUDA system, stub out Pipeline to prevent code crash
class Pipeline:
def __init__(self, *args):
return
# If running on a non-CUDA system, stub out DALIGenericIterator to prevent code crash
class DALIGenericIterator:
def __init__(self, *args):
return
def normalize_image_transform(image_size, split, jitter, color_space):
normalize_image = []
# Only for training
if split == 'train':
normalize_image.append(transforms.Resize(240))
if jitter:
normalize_image.append(transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1))
normalize_image.append(transforms.RandomCrop(image_size))
# For training and Eval
normalize_image.append(transforms.Resize(image_size))
normalize_image.append(transforms.ToTensor())
if color_space == 'RGB':
normalize_image.append(transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])) # Well known ImageNet values
return transforms.Compose(normalize_image)
def resize_image_transform(image_size):
normalize_image = []
normalize_image.append(transforms.Resize(image_size))
normalize_image.append(transforms.ToTensor())
return transforms.Compose(normalize_image)
class ExternalSourcePipeline(Pipeline):
def __init__(self, data, batch_size, image_size, split, silent, num_threads, device_id, data_loader, color_space, shuffle=False):
super(ExternalSourcePipeline, self).__init__(batch_size,
num_threads,
device_id)
self.split = split
self.color_space = color_space
self.data_loader = data_loader
if shuffle:
data.shuffle()
self.sourceIterator = iter(data)
self.rowBatch = ops.ExternalSource()
self.imFaceBatch = ops.ExternalSource()
self.imEyeLBatch = ops.ExternalSource()
self.imEyeRBatch = ops.ExternalSource()
self.imFaceGridBatch = ops.ExternalSource()
self.gazeBatch = ops.ExternalSource()
self.frameBatch = ops.ExternalSource()
self.indexBatch = ops.ExternalSource()
mean = None
std = None
if color_space == 'RGB':
output_type = types.RGB
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255]
std=[0.229 * 255, 0.224 * 255, 0.225 * 255]
elif color_space == 'YCbCr':
output_type = types.YCbCr
elif color_space == 'L':
output_type = types.GRAY
elif color_space == 'BGR':
output_type = types.BGR
else:
print("Unsupported color_space:", color_space)
# Variation range for Saturation, Contrast, Brightness and Hue
self.dSaturation = ops.Uniform(range=[0.9, 1.1])
self.dContrast = ops.Uniform(range=[0.9, 1.1])
self.dBright = ops.Uniform(range=[0.9, 1.1])
self.dHue = ops.Uniform(range=[-0.1, 0.1])
if data_loader == "cpu":
print("Error: cpu data loader shouldn't be handled by DALI")
else:
# ---------- Decoding Operations --------- #
# ImageDecoder in mixed mode doesn't support YCbCr
# Ref: https://github.com/NVIDIA/DALI/pull/582/files
self.decode = ops.ImageDecoder(device="cpu", output_type=output_type)
# ---------- Augmentation Operations --------- #
# execute rest of the operations on the target device based upon the mode
device = "cpu" if data_loader == "dali_cpu" else "gpu"
self.resize_big = ops.Resize(device=device, resize_x=240, resize_y=240)
# depreciated replace with HSV and ops.BrightnessContrast soon
self.color_jitter = ops.ColorTwist(device=device, image_type=output_type)
# random area 0.93-1.0 corresponds to croping randomly from an image of size between (224-240)
self.crop = ops.RandomResizedCrop(device=device, random_area=[0.93, 0.93], size=image_size)
# ---------- Normalization Operations --------- #
self.resize = ops.Resize(device=device, resize_x=image_size[0], resize_y=image_size[1])
self.norm = ops.CropMirrorNormalize(device=device,
output_dtype=types.FLOAT,
output_layout='CHW',
image_type=output_type,
mean=mean,
std=std)
def define_graph(self):
self.row = self.rowBatch()
self.imFace = self.imFaceBatch()
self.imEyeL = self.imEyeLBatch()
self.imEyeR = self.imEyeRBatch()
self.imFaceGrid = self.imFaceGridBatch()
self.gaze = self.gazeBatch()
self.frame = self.frameBatch()
self.index = self.indexBatch()
sat, con, bri, hue = self.dSaturation(), self.dContrast(), self.dBright(), self.dHue()
def stream(image, augment=True):
# Decoding
image = self.decode(image)
if self.data_loader == "dali_gpu":
image = image.gpu()
# Augmentations (for training only)
if self.split == 'train' and augment:
image = self.resize_big(image)
image = self.color_jitter(image, saturation=sat, contrast=con, brightness=bri, hue=hue)
# Normalize
image = self.resize(image)
image = self.norm(image)
return image
# pass the input through dali stream
imFaceD = stream(self.imFace)
imEyeLD = stream(self.imEyeL)
imEyeRD = stream(self.imEyeR)
imFaceGridD = stream(self.imFaceGrid, False)
return (self.row, imFaceD, imEyeLD, imEyeRD, imFaceGridD, self.gaze, self.frame, self.index)
@property
def size(self):
return len(self.sourceIterator)
def iter_setup(self):
(rowBatch, imFaceBatch, imEyeLBatch, imEyeRBatch, imFaceGridBatch, gazeBatch, frameBatch,
indexBatch) = self.sourceIterator.next()
self.feed_input(self.row, rowBatch)
self.feed_input(self.imFace, imFaceBatch)
self.feed_input(self.imEyeL, imEyeLBatch)
self.feed_input(self.imEyeR, imEyeRBatch)
self.feed_input(self.imFaceGrid, imFaceGridBatch)
self.feed_input(self.gaze, gazeBatch)
self.feed_input(self.frame, frameBatch)
self.feed_input(self.index, indexBatch)
class ITrackerMetadata(object):
def __init__(self, dataPath, silent=True):
if not silent:
print('Loading iTracker dataset')
metadata_file = os.path.join(dataPath, 'metadata.mat')
self.metadata = self.loadMetadata(metadata_file, silent)
def loadMetadata(self, filename, silent):
if filename is None or not os.path.isfile(filename):
raise RuntimeError('There is no such file %s! Provide a valid dataset path.' % filename)
try:
# http://stackoverflow.com/questions/6273634/access-array-contents-from-a-mat-file-loaded-using-scipy-io-loadmat-python
if not silent:
print('\tReading metadata from %s' % filename)
metadata = sio.loadmat(filename, squeeze_me=True, struct_as_record=False)
except:
raise RuntimeError('Could not read metadata file %s! Provide a valid dataset path.' % filename)
return metadata
class Dataset:
def __init__(self, split, data, size, loader):
self.split = split
self.data = data
self.size = size
self.loader = loader
class ITrackerData(object):
def __init__(self,
dataPath,
metadata,
batch_size,
imSize,
gridSize,
split,
silent=True,
jitter=True,
color_space='YCbCr',
data_loader='cpu',
shard_id=0,
num_shards=1):
self.dataPath = dataPath
self.metadata = metadata
self.batch_size = batch_size
self.imSize = imSize
self.gridSize = gridSize
self.color_space = color_space
self.data_loader = data_loader
self.index = 0
self.split = split
# ======= Sharding configuration variables ========
if num_shards > 0:
self.num_shards = num_shards
else:
raise ValueError("num_shards cannot be negative")
if shard_id >= 0 and shard_id < self.num_shards:
self.shard_id = shard_id
else:
raise ValueError(f"shard_id should be between 0 and %d i.e. 0 <= shard_id < num_shards."%(num_shards))
# ====================================================
if self.split == 'test':
mask = self.metadata['labelTest']
elif self.split == 'val':
mask = self.metadata['labelVal']
elif self.split == 'train':
mask = self.metadata['labelTrain']
elif self.split == 'all':
mask = np.ones[len(self.metadata)]
else:
raise Exception('split should be test, val or train. The value of split was: {}'.format(self.split))
self.indices = np.argwhere(mask)[:, 0]
if not silent:
print('Loaded iTracker dataset split "%s" with %d records.' % (self.split, len(self.indices)))
if self.data_loader == 'cpu':
self.normalize_image = normalize_image_transform(image_size=self.imSize, jitter=jitter, split=self.split, color_space=self.color_space)
self.resize_transform = resize_image_transform(image_size=self.imSize)
self.mirror_transform = transforms.RandomHorizontalFlip(p=1.0)
self.mirrorCoordinates = np.array([-1.0, 1.0])
def __len__(self):
return math.floor(len(self.indices)/self.num_shards)
def loadImage(self, path):
try:
im = Image.open(path).convert(self.color_space)
except OSError:
raise RuntimeError('Could not read image: ' + path)
return im
def __getitem__(self, shard_index):
# mapping for shards: shard index to absolute index
index = self.shard_id * self.__len__() + shard_index
rowIndex = self.indices[index]
# TODO: Enable this for new format data
# imFacePath = os.path.join(self.dataPath,
# '%s/appleFace/%s.jpg' % (self.metadata['labelRecNum'][rowIndex],
# self.metadata['frameIndex'][rowIndex]))
# imEyeLPath = os.path.join(self.dataPath,
# '%s/appleLeftEye/%s.jpg' % (self.metadata['labelRecNum'][rowIndex],
# self.metadata['frameIndex'][rowIndex]))
# imEyeRPath = os.path.join(self.dataPath,
# '%s/appleRightEye/%s.jpg' % (self.metadata['labelRecNum'][rowIndex],
# self.metadata['frameIndex'][rowIndex]))
# imFaceGridPath = os.path.join(self.dataPath,
# '%s/faceGrid/%s.jpg' % (self.metadata['labelRecNum'][rowIndex],
# self.metadata['frameIndex'][rowIndex]))
# XXX Experimental: for old format data
imFacePath = os.path.join(self.dataPath,
'%05d/appleFace/%05d.jpg' % (self.metadata['labelRecNum'][rowIndex],
self.metadata['frameIndex'][rowIndex]))
imEyeLPath = os.path.join(self.dataPath,
'%05d/appleLeftEye/%05d.jpg' % (self.metadata['labelRecNum'][rowIndex],
self.metadata['frameIndex'][rowIndex]))
imEyeRPath = os.path.join(self.dataPath,
'%05d/appleRightEye/%05d.jpg' % (self.metadata['labelRecNum'][rowIndex],
self.metadata['frameIndex'][rowIndex]))
imFaceGridPath = os.path.join(self.dataPath,
'%05d/faceGrid/%05d.jpg' % (self.metadata['labelRecNum'][rowIndex],
self.metadata['frameIndex'][rowIndex]))
# Note: Converted from double (float64) to float (float32) as pipeline output is float in MSE calculation
gaze = np.array([self.metadata['labelDotXCam'][rowIndex], self.metadata['labelDotYCam'][rowIndex]], np.float32)
frame = np.array([self.metadata['labelRecNum'][rowIndex], self.metadata['frameIndex'][rowIndex]])
# faceGrid = self.makeGrid(self.metadata['labelFaceGrid'][rowIndex, :])
row = np.array([int(rowIndex)])
index = np.array([int(index)])
if self.data_loader == 'cpu':
# Image loading, transformation and normalization happen here
imFace = self.loadImage(imFacePath)
imEyeL = self.loadImage(imEyeLPath)
imEyeR = self.loadImage(imEyeRPath)
imfaceGrid = self.loadImage(imFaceGridPath)
# Data Augmentation: Mirroring
# mirror data with 50% probablity
if self.split == 'train' and random() >= 0.5:
imFace = transforms.functional.hflip(imFace)
imEyeR, imEyeL = transforms.functional.hflip(imEyeL), transforms.functional.hflip(imEyeR)
imfaceGrid = transforms.functional.hflip(imfaceGrid)
gaze = self.mirrorCoordinates * gaze
# Data Augmentation: Random Crop, Color Jitter
# faceGrid mustn't have these augmentations
imFace = self.normalize_image(imFace)
imEyeL = self.normalize_image(imEyeL)
imEyeR = self.normalize_image(imEyeR)
imfaceGrid = self.resize_transform(imfaceGrid)
# to tensor
row = torch.LongTensor([int(index)])
# faceGrid = torch.FloatTensor(faceGrid)
gaze = torch.FloatTensor(gaze)
return row, imFace, imEyeL, imEyeR, imfaceGrid, gaze, frame, index
else:
# image loading, transformation and normalization happen in ExternalDataPipeline
# we just pass imagePaths
return row, imFacePath, imEyeLPath, imEyeRPath, imFaceGridPath, gaze, frame, index
# TODO: Not in use anymore due to RC. Should eventually be removed
def makeGrid(self, params):
gridLen = self.gridSize[0] * self.gridSize[1]
grid = np.zeros([gridLen, ], np.float32)
indsY = np.array([i // self.gridSize[0] for i in range(gridLen)])
indsX = np.array([i % self.gridSize[0] for i in range(gridLen)])
condX = np.logical_and(indsX >= params[0], indsX < params[0] + params[2])
condY = np.logical_and(indsY >= params[1], indsY < params[1] + params[3])
cond = np.logical_and(condX, condY)
grid[cond] = 1
return grid
# used by dali
def __iter__(self):
self.size = self.__len__()
return self
def shuffle(self):
shuffle(self.indices)
def __next__(self):
rowBatch = []
imFaceBatch = []
imEyeLBatch = []
imEyeRBatch = []
imFaceGridBatch = []
gazeBatch = []
frameBatch = []
indexBatch = []
labels = []
for local_index in range(self.batch_size):
row, imFacePath, imEyeLPath, imEyeRPath, imFaceGridPath, gaze, frame, index = self.__getitem__(self.index)
self.index = (self.index + 1) % self.__len__()
imFace = open(imFacePath, 'rb')
imEyeL = open(imEyeLPath, 'rb')
imEyeR = open(imEyeRPath, 'rb')
imFaceGrid = open(imFaceGridPath, 'rb')
rowBatch.append(row)
imFaceBatch.append(np.frombuffer(imFace.read(), dtype=np.uint8))
imEyeLBatch.append(np.frombuffer(imEyeL.read(), dtype=np.uint8))
imEyeRBatch.append(np.frombuffer(imEyeR.read(), dtype=np.uint8))
imFaceGridBatch.append(np.frombuffer(imFaceGrid.read(), dtype=np.uint8))
gazeBatch.append(gaze)
frameBatch.append(frame)
indexBatch.append(index)
imFace.close()
imEyeL.close()
imEyeR.close()
imFaceGrid.close()
return rowBatch, imFaceBatch, imEyeLBatch, imEyeRBatch, imFaceGridBatch, gazeBatch, frameBatch, indexBatch
# For compatibiity with Python 2
def next(self):
return self.__next__()
def load_data(split,
dataPath,
metadata,
image_size,
grid_size,
workers,
batch_size,
verbose,
local_rank,
color_space,
data_loader,
eval_boost,
mode):
shuffle = True if split == 'train' else False
# Enable shading here for ddp2 mode only
if mode == "ddp2":
shard_id, num_shards = local_rank[0], torch.cuda.device_count()
else:
shard_id, num_shards = 0, 1
if eval_boost:
batch_size = batch_size if split == 'train' else batch_size * 2
data = ITrackerData(dataPath,
metadata,
batch_size,
image_size,
grid_size,
split,
silent=not verbose,
jitter=True,
color_space=color_space,
data_loader=data_loader,
shard_id=shard_id,
num_shards=num_shards)
size = len(data)
# DALI implementation would do a cross-shard shuffle
# CPU implementation would do a in-shard shuffle
if data_loader == "cpu":
loader = torch.utils.data.DataLoader(
data,
batch_size=batch_size,
shuffle=True,
num_workers=workers,
pin_memory=True)
elif data_loader == "dali_gpu" or data_loader == "dali_cpu":
pipes = [ExternalSourcePipeline(data,
batch_size=batch_size,
image_size=image_size,
split=split,
silent=not verbose,
num_threads=8,
device_id=local_rank[0],
data_loader=data_loader,
color_space=color_space,
shuffle=True)]
# DALI automatically allocates Pinned memory whereever possible
# auto_reset=True resets the iterator after each epoch
# DALIGenericIterator has inbuilt build for all pipelines
loader = DALIGenericIterator(pipes,
['row', 'imFace', 'imEyeL', 'imEyeR', 'imFaceGrid', 'gaze', 'frame', 'indices'],
size=len(data),
fill_last_batch=False,
last_batch_padded=True, auto_reset=True)
else:
raise ValueError(f"Invalid data_loader mode: %s"%(data_loader))
return Dataset(split, data, size, loader)
def load_all_data(path,
image_size,
grid_size,
workers,
batch_size,
verbose,
local_rank,
color_space='YCbCr',
data_loader='cpu',
eval_boost=False,
mode='none'):
print(centered_text('Loading Data'))
metadata = ITrackerMetadata(path, silent=not verbose).metadata
splits = ['train', 'val', 'test']
all_data = {
split: load_data(split,
path,
metadata,
image_size,
grid_size,
workers,
batch_size,
verbose,
local_rank,
color_space,
data_loader,
eval_boost,
mode)
for split in splits}
return all_data