-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotSortedSickAndNormal(highCorrDiffGraph).py
61 lines (48 loc) · 1.73 KB
/
plotSortedSickAndNormal(highCorrDiffGraph).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pickle
import networkx as nx
import itertools
import numpy as np
import matplotlib.pyplot as plt
# numGene = 1000
# numGeneAfterFilter=100
numGene = 16452
numGeneAfterFilter=2000
G = nx.Graph()
sickCorrFlattened=pickle.load(open('./prePickles/sickCorrFlattened.pickle','r'))
normalCorrFlattened=pickle.load(open('./prePickles/normalCorrFlattened.pickle','r'))
diffCorrFlattened = ( abs(i-j) for i,j in itertools.izip(sickCorrFlattened, normalCorrFlattened) )
def indexFlattenedGen(numGene):
for rawI in range(numGene):
for rawJ in range(rawI+1,numGene):
yield (rawI, rawJ)
indexFlattened = indexFlattenedGen(numGene)
for d, i in itertools.izip(diffCorrFlattened, indexFlattened):
if d>=0.5:
G.add_edge(i[0], i[1])
gDegree=G.degree().items()
gDegreeSorted=sorted(gDegree, key=lambda x: x[1], reverse=True)
gDegreeSorted = gDegreeSorted[:numGeneAfterFilter]
whichNodeSelected = [i[0] for i in gDegreeSorted]
whichNodeSelected.sort()
genes=pickle.load(open('./prePickles/gExpressions2.pickle','r'))
genes = genes[whichNodeSelected]
sickAndNormal=np.hsplit(genes,2)
sick=sickAndNormal[0]
normal=sickAndNormal[1]
sickCorr=np.corrcoef(sick)
normalCorr=np.corrcoef(normal)
numGene = len(whichNodeSelected)
sickCorrFlattened=np.zeros((numGene*numGene-numGene)/2,dtype=np.float32)
normalCorrFlattened=np.zeros((numGene*numGene-numGene)/2,dtype=np.float32)
itera=0
for rawI in range(numGene):
for rawJ in range(rawI+1,numGene):
sickCorrFlattened[itera]=sickCorr[rawI][rawJ]
normalCorrFlattened[itera]=normalCorr[rawI][rawJ]
itera+=1
sickCorrFlattened.sort()
normalCorrFlattened.sort()
plt.plot(sickCorrFlattened)
plt.plot(normalCorrFlattened)
plt.savefig('plotSortedSickandNormal(highCorrDiffGraph).pdf', transparent=True,format='pdf')
# plt.show()