Skip to content

[Bug]: The correctness of dj #156

@maths644311798

Description

@maths644311798

Issue Type

Usability

HEU Version

newest

OS Platform and Distribution

Ubuntu 22.04

Python Version

3.10

Compiler Version

gcc 14.2

Current Behavior?

In heu/library/algorithms/dj/README.md,

Decryption(sk, c):

- For each $j=1$ to $s$, do the following:
    - Compute $l_j = L_j(c^\lambda \bmod n^{j+1})$, where $L_j(z) = \frac{z-1}{n}\bmod n^j$
    - Compute $i_j=l_j-\sum_{k=2}^j{i_{j-1}\choose k}n^{k-1} \bmod n^k$

In this process, the module n^k is not correct. It should be n^j.
Then in secret_key.cc, the sentence

MPInt::MulMod(tmp.P, ind.P - MPInt{i - 1}, lut_->pq_pow[j - i + 1].P,
                    &tmp.P);
      MPInt::MulMod(tmp.Q, ind.Q - MPInt{i - 1}, lut_->pq_pow[j - i + 1].Q,
                    &tmp.Q);

seems wrong. The module lut_->pq_pow[j - i + 1].P is strange. I think lut_->pq_pow[j].P is a correct one.

Standalone code to reproduce the issue

MPInt SecretKey::Decrypt(const MPInt &ct) const {
  MPInt2 z, ls;
  // compute z = c^d mod n^(s+1)
  const auto &[ps1, qs1] = lut_->pq_pow[s_ + 1];
  z = {(ct % ps1).PowMod(lambda_, ps1), (ct % qs1).PowMod(lambda_, qs1)};
  //  compute ls = L(z) mod n^s
  const auto &[ps, qs] = lut_->pq_pow[s_];
  ls = {inv_pq_.P.MulMod((z.P - MPInt::_1_) / n_.P, ps),
        inv_pq_.Q.MulMod((z.Q - MPInt::_1_) / n_.Q, qs)};

  MPInt2 ind{ls.P % lut_->pq_pow[1].P, ls.Q % lut_->pq_pow[1].Q};
  MPInt2 l, tmp;
  for (auto j = 2u; j <= s_; ++j) {
    // compute l = L(c^d mod n^{j+1}) = ls mod n^j
    l = {ls.P % lut_->pq_pow[j].P, ls.Q % lut_->pq_pow[j].Q};
    // compute ind mod n^j
    tmp = ind;
    for (auto i = 2u; i <= j; ++i) {
      MPInt::MulMod(tmp.P, ind.P - MPInt{i - 1}, lut_->pq_pow[j - i + 1].P,
                    &tmp.P);
      MPInt::MulMod(tmp.Q, ind.Q - MPInt{i - 1}, lut_->pq_pow[j - i + 1].Q,
                    &tmp.Q);
      l.P -= tmp.P.MulMod(lut_->precomp[j][i].P, lut_->pq_pow[j].P);
      l.Q -= tmp.Q.MulMod(lut_->precomp[j][i].Q, lut_->pq_pow[j].Q);
    }
    ind = {l.P % lut_->pq_pow[j].P, l.Q % lut_->pq_pow[j].Q};
  }
  auto m_lambda = (ind.P + (ind.Q - ind.P) * pp_) % pmod_;
  return m_lambda.MulMod(mu_, pmod_);
}

Relevant log output

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions