-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathDracoPy.h
281 lines (245 loc) · 12.4 KB
/
DracoPy.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#include<vector>
#include<cstddef>
#include "draco/compression/decode.h"
#include "draco/compression/encode.h"
#include "draco/core/encoder_buffer.h"
#include "draco/core/vector_d.h"
#include "draco/mesh/triangle_soup_mesh_builder.h"
#include "draco/point_cloud/point_cloud_builder.h"
namespace DracoFunctions {
enum decoding_status { successful, not_draco_encoded, no_position_attribute, failed_during_decoding, no_tex_coord_attribute, no_normal_coord_attribute };
enum encoding_status { successful_encoding, failed_during_encoding };
struct PointCloudObject {
std::vector<float> points;
// Encoding options stored in metadata
bool encoding_options_set;
int quantization_bits;
double quantization_range;
std::vector<double> quantization_origin;
decoding_status decode_status;
};
struct MeshObject : PointCloudObject {
std::vector<float> normals;
std::vector<unsigned int> faces;
std::vector<float> tex_coord;
};
struct EncodedObject {
std::vector<unsigned char> buffer;
encoding_status encode_status;
};
MeshObject decode_buffer(const char *buffer, std::size_t buffer_len) {
std::cout << "Decode Buffer" << "Begin" << std::endl;
MeshObject meshObject;
draco::DecoderBuffer decoderBuffer;
decoderBuffer.Init(buffer, buffer_len);
draco::Decoder decoder;
auto statusor = decoder.DecodeMeshFromBuffer(&decoderBuffer);
std::cout << "Decode Buffer " << "Status : "<< std::boolalpha << statusor.ok() << std::endl;
if (!statusor.ok()) {
std::string status_string = statusor.status().error_msg_string();
if (status_string.compare("Not a Draco file.") || status_string.compare("Failed to parse Draco header.")) {
meshObject.decode_status = not_draco_encoded;
}
else {
meshObject.decode_status = failed_during_decoding;
}
return meshObject;
}
std::unique_ptr<draco::Mesh> in_mesh = std::move(statusor).value();
draco::Mesh *mesh = in_mesh.get();
//Position Attribute ID
const int pos_att_id = mesh->GetNamedAttributeId(draco::GeometryAttribute::POSITION);
std::cout << "Decode Buffer " << "Attribute Position : " << pos_att_id << std::endl;
if (pos_att_id < 0) {
meshObject.decode_status = no_position_attribute;
return meshObject;
}
std::cout << "Decode Buffer " << "Mesh Number Points : " << 3 * mesh->num_points() << std::endl;
meshObject.points.reserve(3 * mesh->num_points());
std::cout << "Decode Buffer " << "Mesh Number Faces : " << 3 * mesh->num_faces() << std::endl;
meshObject.faces.reserve(3 * mesh->num_faces());
const auto *const pos_att = mesh->attribute(pos_att_id);
std::array<float, 3> pos_val;
for (draco::PointIndex v(0); v < mesh->num_points(); ++v) {
if (!pos_att->ConvertValue<float, 3>(pos_att->mapped_index(v), &pos_val[0])) {
meshObject.decode_status = no_position_attribute;
return meshObject;
}
meshObject.points.push_back(pos_val[0]);
meshObject.points.push_back(pos_val[1]);
meshObject.points.push_back(pos_val[2]);
}
for (draco::FaceIndex i(0); i < mesh->num_faces(); ++i) {
const auto &f = mesh->face(i);
meshObject.faces.push_back(*(reinterpret_cast<const uint32_t *>(&(f[0]))));
meshObject.faces.push_back(*(reinterpret_cast<const uint32_t *>(&(f[1]))));
meshObject.faces.push_back(*(reinterpret_cast<const uint32_t *>(&(f[2]))));
}
const int tex_att_id = mesh->GetNamedAttributeId(draco::GeometryAttribute::TEX_COORD);
if(tex_att_id >= 0) {
const auto *const tex_att = mesh->attribute(tex_att_id);
meshObject.tex_coord.reserve(tex_att->size());
std::array<float, 2> tex_val;
std::cout << "Decode Buffer " << "Attribute Tex Coord : " << tex_att->size() << std::endl;
for (draco::PointIndex v(0); v < tex_att->size(); ++v) {
if (!tex_att->ConvertValue<float, 2>(tex_att->mapped_index(v), &tex_val[0])) {
std::cout << "Convert Error" << std::endl;
meshObject.decode_status = no_tex_coord_attribute;
}
meshObject.tex_coord.push_back(tex_val[0]);
meshObject.tex_coord.push_back(tex_val[1]);
}
}
const int normal_att_id = mesh->GetNamedAttributeId(draco::GeometryAttribute::NORMAL);
const auto *const normal_att = mesh->attribute(normal_att_id);
meshObject.normals.reserve(normal_att->size());
std::array<float, 3> normal_val;
std::cout << "Decode Buffer" << "Attribute Normal Coord : " << normal_att->size() << std::endl;
for (draco::PointIndex v(0); v < normal_att->size(); ++v){
if (!normal_att->ConvertValue<float, 3>(normal_att->mapped_index(v), &normal_val[0])){
std::cout << "Convert Error" << std::endl;
meshObject.decode_status = no_normal_coord_attribute;
}
meshObject.normals.push_back(normal_val[0]);
meshObject.normals.push_back(normal_val[1]);
meshObject.normals.push_back(normal_val[3]);
}
const draco::GeometryMetadata *metadata = mesh->GetMetadata();
meshObject.encoding_options_set = false;
if (metadata) {
metadata->GetEntryInt("quantization_bits", &(meshObject.quantization_bits));
if (metadata->GetEntryDouble("quantization_range", &(meshObject.quantization_range)) &&
metadata->GetEntryDoubleArray("quantization_origin", &(meshObject.quantization_origin))) {
meshObject.encoding_options_set = true;
}
}
meshObject.decode_status = successful;
return meshObject;
}
PointCloudObject decode_buffer_to_point_cloud(const char *buffer, std::size_t buffer_len) {
PointCloudObject pointCloudObject;
draco::DecoderBuffer decoderBuffer;
decoderBuffer.Init(buffer, buffer_len);
draco::Decoder decoder;
auto statusor = decoder.DecodePointCloudFromBuffer(&decoderBuffer);
if (!statusor.ok()) {
std::string status_string = statusor.status().error_msg_string();
if (status_string.compare("Not a Draco file.") || status_string.compare("Failed to parse Draco header.")) {
pointCloudObject.decode_status = not_draco_encoded;
}
else {
pointCloudObject.decode_status = failed_during_decoding;
}
return pointCloudObject;
}
std::unique_ptr<draco::PointCloud> in_point_cloud = std::move(statusor).value();
draco::PointCloud *point_cloud = in_point_cloud.get();
const int pos_att_id = point_cloud->GetNamedAttributeId(draco::GeometryAttribute::POSITION);
if (pos_att_id < 0) {
pointCloudObject.decode_status = no_position_attribute;
return pointCloudObject;
}
pointCloudObject.points.reserve(3 * point_cloud->num_points());
const auto *const pos_att = point_cloud->attribute(pos_att_id);
std::array<float, 3> pos_val;
for (draco::PointIndex v(0); v < point_cloud->num_points(); ++v) {
if (!pos_att->ConvertValue<float, 3>(pos_att->mapped_index(v), &pos_val[0])) {
pointCloudObject.decode_status = no_position_attribute;
return pointCloudObject;
}
pointCloudObject.points.push_back(pos_val[0]);
pointCloudObject.points.push_back(pos_val[1]);
pointCloudObject.points.push_back(pos_val[2]);
}
const draco::GeometryMetadata *metadata = point_cloud->GetMetadata();
pointCloudObject.encoding_options_set = false;
if (metadata) {
metadata->GetEntryInt("quantization_bits", &(pointCloudObject.quantization_bits));
if (metadata->GetEntryDouble("quantization_range", &(pointCloudObject.quantization_range)) &&
metadata->GetEntryDoubleArray("quantization_origin", &(pointCloudObject.quantization_origin))) {
pointCloudObject.encoding_options_set = true;
}
}
pointCloudObject.decode_status = successful;
return pointCloudObject;
}
void setup_encoder_and_metadata(draco::PointCloud *point_cloud_or_mesh, draco::Encoder &encoder, int compression_level, int quantization_bits, float quantization_range, const float *quantization_origin, bool create_metadata) {
int speed = 10 - compression_level;
encoder.SetSpeedOptions(speed, speed);
std::unique_ptr<draco::GeometryMetadata> metadata = std::unique_ptr<draco::GeometryMetadata>(new draco::GeometryMetadata());
if (quantization_origin == NULL || quantization_range == -1) {
encoder.SetAttributeQuantization(draco::GeometryAttribute::POSITION, quantization_bits);
}
else {
encoder.SetAttributeExplicitQuantization(draco::GeometryAttribute::POSITION, quantization_bits, 3, quantization_origin, quantization_range);
if (create_metadata) {
metadata->AddEntryDouble("quantization_range", quantization_range);
std::vector<double> quantization_origin_vec;
for (int i = 0; i < 3; i++) {
quantization_origin_vec.push_back(quantization_origin[i]);
}
metadata->AddEntryDoubleArray("quantization_origin", quantization_origin_vec);
}
}
if (create_metadata) {
metadata->AddEntryInt("quantization_bits", quantization_bits);
point_cloud_or_mesh->AddMetadata(std::move(metadata));
}
}
EncodedObject encode_mesh(const std::vector<float> &points, const std::vector<unsigned int> &faces, const std::vector<float> &normals, int quantization_bits,
int compression_level, float quantization_range, const float *quantization_origin, bool create_metadata) {
draco::TriangleSoupMeshBuilder mb;
mb.Start(faces.size());
const int pos_att_id = mb.AddAttribute(draco::GeometryAttribute::POSITION, 3, draco::DataType::DT_FLOAT32); //attribute_type, num_components, data_type
std::cout << "POSITION :" << pos_att_id << std::endl;
for (std::size_t i = 0; i <= faces.size() - 3; i += 3) {
auto point1Index = faces[i]*3;
auto point2Index = faces[i+1]*3;
auto point3Index = faces[i+2]*3;
mb.SetAttributeValuesForFace(pos_att_id, draco::FaceIndex(i), draco::Vector3f(points[point1Index], points[point1Index+1], points[point1Index+2]).data(), draco::Vector3f(points[point2Index], points[point2Index+1], points[point2Index+2]).data(), draco::Vector3f(points[point3Index], points[point3Index+1], points[point3Index+2]).data());
}
const int tex_att_id = mb.AddAttribute(draco::GeometryAttribute::TEX_COORD, 2, draco::DataType::DT_FLOAT32);
std::cout << "TEX_COORD :" << tex_att_id << std::endl;
std::unique_ptr<draco::Mesh> ptr_mesh = mb.Finalize();
draco::Mesh *mesh = ptr_mesh.get();
draco::Encoder encoder;
setup_encoder_and_metadata(mesh, encoder, compression_level, quantization_bits, quantization_range, quantization_origin, create_metadata);
draco::EncoderBuffer buffer;
const draco::Status status = encoder.EncodeMeshToBuffer(*mesh, &buffer);
EncodedObject encodedMeshObject;
encodedMeshObject.buffer = *((std::vector<unsigned char> *)buffer.buffer());
if (status.ok()) {
encodedMeshObject.encode_status = successful_encoding;
} else {
std::cout << "Draco encoding error: " << status.error_msg_string() << std::endl;
encodedMeshObject.encode_status = failed_during_encoding;
}
return encodedMeshObject;
}
EncodedObject encode_point_cloud(const std::vector<float> &points, int quantization_bits,
int compression_level, float quantization_range, const float *quantization_origin, bool create_metadata) {
int num_points = points.size() / 3;
draco::PointCloudBuilder pcb;
pcb.Start(num_points);
const int pos_att_id =
pcb.AddAttribute(draco::GeometryAttribute::POSITION, 3, draco::DataType::DT_FLOAT32);
for (draco::PointIndex i(0); i < num_points; i++) {
pcb.SetAttributeValueForPoint(pos_att_id, i, points.data() + 3 * i.value());
}
std::unique_ptr<draco::PointCloud> ptr_point_cloud = pcb.Finalize(true);
draco::PointCloud *point_cloud = ptr_point_cloud.get();
draco::Encoder encoder;
setup_encoder_and_metadata(point_cloud, encoder, compression_level, quantization_bits, quantization_range, quantization_origin, create_metadata);
draco::EncoderBuffer buffer;
const draco::Status status = encoder.EncodePointCloudToBuffer(*point_cloud, &buffer);
EncodedObject encodedPointCloudObject;
encodedPointCloudObject.buffer = *((std::vector<unsigned char> *)buffer.buffer());
if (status.ok()) {
encodedPointCloudObject.encode_status = successful_encoding;
} else {
std::cout << "Draco encoding error: " << status.error_msg_string() << std::endl;
encodedPointCloudObject.encode_status = failed_during_encoding;
}
return encodedPointCloudObject;
}
}