-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathapi.py
943 lines (797 loc) · 35.1 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
from dotenv import load_dotenv
import os
import asyncio
import tempfile
from collections import deque
import time
import uuid
import json
import re
import pandas as pd
import tiktoken
import logging
import yaml
import shutil
from fastapi import Body
from fastapi import FastAPI, HTTPException, Request, BackgroundTasks, Depends
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, Union
from contextlib import asynccontextmanager
from web import DuckDuckGoSearchAPIWrapper
from functools import lru_cache
import requests
import subprocess
import argparse
# GraphRAG related imports
from graphrag.query.context_builder.entity_extraction import EntityVectorStoreKey
from graphrag.query.indexer_adapters import (
read_indexer_covariates,
read_indexer_entities,
read_indexer_relationships,
read_indexer_reports,
read_indexer_text_units,
)
from graphrag.query.input.loaders.dfs import store_entity_semantic_embeddings
from graphrag.query.llm.oai.chat_openai import ChatOpenAI
from graphrag.query.llm.oai.embedding import OpenAIEmbedding
from graphrag.query.llm.oai.typing import OpenaiApiType
from graphrag.query.question_gen.local_gen import LocalQuestionGen
from graphrag.query.structured_search.local_search.mixed_context import LocalSearchMixedContext
from graphrag.query.structured_search.local_search.search import LocalSearch
from graphrag.query.structured_search.global_search.community_context import GlobalCommunityContext
from graphrag.query.structured_search.global_search.search import GlobalSearch
from graphrag.vector_stores.lancedb import LanceDBVectorStore
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv('indexing/.env')
LLM_API_BASE = os.getenv('LLM_API_BASE', '')
LLM_MODEL = os.getenv('LLM_MODEL')
LLM_PROVIDER = os.getenv('LLM_PROVIDER', 'openai').lower()
EMBEDDINGS_API_BASE = os.getenv('EMBEDDINGS_API_BASE', '')
EMBEDDINGS_MODEL = os.getenv('EMBEDDINGS_MODEL')
EMBEDDINGS_PROVIDER = os.getenv('EMBEDDINGS_PROVIDER', 'openai').lower()
INPUT_DIR = os.getenv('INPUT_DIR', './indexing/output')
ROOT_DIR = os.getenv('ROOT_DIR', 'indexing')
PORT = int(os.getenv('API_PORT', 8012))
LANCEDB_URI = f"{INPUT_DIR}/lancedb"
COMMUNITY_REPORT_TABLE = "create_final_community_reports"
ENTITY_TABLE = "create_final_nodes"
ENTITY_EMBEDDING_TABLE = "create_final_entities"
RELATIONSHIP_TABLE = "create_final_relationships"
COVARIATE_TABLE = "create_final_covariates"
TEXT_UNIT_TABLE = "create_final_text_units"
COMMUNITY_LEVEL = 2
# Global variables for storing search engines and question generator
local_search_engine = None
global_search_engine = None
question_generator = None
# Data models
class Message(BaseModel):
role: str
content: str
class QueryOptions(BaseModel):
query_type: str
preset: Optional[str] = None
community_level: Optional[int] = None
response_type: Optional[str] = None
custom_cli_args: Optional[str] = None
selected_folder: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Message]
temperature: Optional[float] = 0.7
max_tokens: Optional[int] = None
stream: Optional[bool] = False
query_options: Optional[QueryOptions] = None
class ChatCompletionResponseChoice(BaseModel):
index: int
message: Message
finish_reason: Optional[str] = None
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{uuid.uuid4().hex}")
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: Usage
system_fingerprint: Optional[str] = None
def list_output_folders():
return [f for f in os.listdir(INPUT_DIR) if os.path.isdir(os.path.join(INPUT_DIR, f))]
def list_folder_contents(folder_name):
folder_path = os.path.join(INPUT_DIR, folder_name, "artifacts")
if not os.path.exists(folder_path):
return []
return [item for item in os.listdir(folder_path) if item.endswith('.parquet')]
def normalize_api_base(api_base: str) -> str:
"""Normalize the API base URL by removing trailing slashes and /v1 or /api suffixes."""
api_base = api_base.rstrip('/')
if api_base.endswith('/v1') or api_base.endswith('/api'):
api_base = api_base[:-3]
return api_base
def get_models_endpoint(api_base: str, api_type: str) -> str:
"""Get the appropriate models endpoint based on the API type."""
normalized_base = normalize_api_base(api_base)
if api_type.lower() == 'openai':
return f"{normalized_base}/v1/models"
elif api_type.lower() == 'azure':
return f"{normalized_base}/openai/deployments?api-version=2022-12-01"
else: # For other API types (e.g., local LLMs)
return f"{normalized_base}/models"
async def fetch_available_models(settings: Dict[str, Any]) -> List[str]:
"""Fetch available models from the API."""
api_base = settings['api_base']
api_type = settings['api_type']
api_key = settings['api_key']
models_endpoint = get_models_endpoint(api_base, api_type)
headers = {"Authorization": f"Bearer {api_key}"} if api_key else {}
try:
response = requests.get(models_endpoint, headers=headers, timeout=10)
response.raise_for_status()
data = response.json()
if api_type.lower() == 'openai':
return [model['id'] for model in data['data']]
elif api_type.lower() == 'azure':
return [model['id'] for model in data['value']]
else:
# Adjust this based on the actual response format of your local LLM API
return [model['name'] for model in data['models']]
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching models: {str(e)}")
return []
def load_settings():
config_path = os.getenv('GRAPHRAG_CONFIG', 'config.yaml')
if os.path.exists(config_path):
with open(config_path, 'r') as config_file:
config = yaml.safe_load(config_file)
else:
config = {}
settings = {
'llm_model': os.getenv('LLM_MODEL', config.get('llm_model')),
'embedding_model': os.getenv('EMBEDDINGS_MODEL', config.get('embedding_model')),
'community_level': int(os.getenv('COMMUNITY_LEVEL', config.get('community_level', 2))),
'token_limit': int(os.getenv('TOKEN_LIMIT', config.get('token_limit', 4096))),
'api_key': os.getenv('GRAPHRAG_API_KEY', config.get('api_key')),
'api_base': os.getenv('LLM_API_BASE', config.get('api_base')),
'embeddings_api_base': os.getenv('EMBEDDINGS_API_BASE', config.get('embeddings_api_base')),
'api_type': os.getenv('API_TYPE', config.get('api_type', 'openai')),
}
return settings
return settings
async def setup_llm_and_embedder(settings):
logger.info("Setting up LLM and embedder")
try:
llm = ChatOpenAI(
api_key=settings['api_key'],
api_base=f"{settings['api_base']}/v1",
model=settings['llm_model'],
api_type=OpenaiApiType[settings['api_type'].capitalize()],
max_retries=20,
)
token_encoder = tiktoken.get_encoding("cl100k_base")
text_embedder = OpenAIEmbedding(
api_key=settings['api_key'],
api_base=f"{settings['embeddings_api_base']}/v1",
api_type=OpenaiApiType[settings['api_type'].capitalize()],
model=settings['embedding_model'],
deployment_name=settings['embedding_model'],
max_retries=20,
)
logger.info("LLM and embedder setup complete")
return llm, token_encoder, text_embedder
except Exception as e:
logger.error(f"Error setting up LLM and embedder: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to set up LLM and embedder: {str(e)}")
async def load_context(selected_folder, settings):
"""
Load context data including entities, relationships, reports, text units, and covariates
"""
logger.info("Loading context data")
try:
input_dir = os.path.join(INPUT_DIR, selected_folder, "artifacts")
entity_df = pd.read_parquet(f"{input_dir}/{ENTITY_TABLE}.parquet")
entity_embedding_df = pd.read_parquet(f"{input_dir}/{ENTITY_EMBEDDING_TABLE}.parquet")
entities = read_indexer_entities(entity_df, entity_embedding_df, settings['community_level'])
description_embedding_store = LanceDBVectorStore(collection_name="entity_description_embeddings")
description_embedding_store.connect(db_uri=LANCEDB_URI)
store_entity_semantic_embeddings(entities=entities, vectorstore=description_embedding_store)
relationship_df = pd.read_parquet(f"{input_dir}/{RELATIONSHIP_TABLE}.parquet")
relationships = read_indexer_relationships(relationship_df)
report_df = pd.read_parquet(f"{input_dir}/{COMMUNITY_REPORT_TABLE}.parquet")
reports = read_indexer_reports(report_df, entity_df, COMMUNITY_LEVEL)
text_unit_df = pd.read_parquet(f"{input_dir}/{TEXT_UNIT_TABLE}.parquet")
text_units = read_indexer_text_units(text_unit_df)
covariate_df = pd.read_parquet(f"{input_dir}/{COVARIATE_TABLE}.parquet")
claims = read_indexer_covariates(covariate_df)
logger.info(f"Number of claim records: {len(claims)}")
covariates = {"claims": claims}
logger.info("Context data loading complete")
return entities, relationships, reports, text_units, description_embedding_store, covariates
except Exception as e:
logger.error(f"Error loading context data: {str(e)}")
raise
async def setup_search_engines(llm, token_encoder, text_embedder, entities, relationships, reports, text_units,
description_embedding_store, covariates):
"""
Set up local and global search engines
"""
logger.info("Setting up search engines")
# Set up local search engine
local_context_builder = LocalSearchMixedContext(
community_reports=reports,
text_units=text_units,
entities=entities,
relationships=relationships,
covariates=covariates,
entity_text_embeddings=description_embedding_store,
embedding_vectorstore_key=EntityVectorStoreKey.ID,
text_embedder=text_embedder,
token_encoder=token_encoder,
)
local_context_params = {
"text_unit_prop": 0.5,
"community_prop": 0.1,
"conversation_history_max_turns": 5,
"conversation_history_user_turns_only": True,
"top_k_mapped_entities": 10,
"top_k_relationships": 10,
"include_entity_rank": True,
"include_relationship_weight": True,
"include_community_rank": False,
"return_candidate_context": False,
"embedding_vectorstore_key": EntityVectorStoreKey.ID,
"max_tokens": 12_000,
}
local_llm_params = {
"max_tokens": 2_000,
"temperature": 0.0,
}
local_search_engine = LocalSearch(
llm=llm,
context_builder=local_context_builder,
token_encoder=token_encoder,
llm_params=local_llm_params,
context_builder_params=local_context_params,
response_type="multiple paragraphs",
)
# Set up global search engine
global_context_builder = GlobalCommunityContext(
community_reports=reports,
entities=entities,
token_encoder=token_encoder,
)
global_context_builder_params = {
"use_community_summary": False,
"shuffle_data": True,
"include_community_rank": True,
"min_community_rank": 0,
"community_rank_name": "rank",
"include_community_weight": True,
"community_weight_name": "occurrence weight",
"normalize_community_weight": True,
"max_tokens": 12_000,
"context_name": "Reports",
}
map_llm_params = {
"max_tokens": 1000,
"temperature": 0.0,
"response_format": {"type": "json_object"},
}
reduce_llm_params = {
"max_tokens": 2000,
"temperature": 0.0,
}
global_search_engine = GlobalSearch(
llm=llm,
context_builder=global_context_builder,
token_encoder=token_encoder,
max_data_tokens=12_000,
map_llm_params=map_llm_params,
reduce_llm_params=reduce_llm_params,
allow_general_knowledge=False,
json_mode=True,
context_builder_params=global_context_builder_params,
concurrent_coroutines=32,
response_type="multiple paragraphs",
)
logger.info("Search engines setup complete")
return local_search_engine, global_search_engine, local_context_builder, local_llm_params, local_context_params
def format_response(response):
"""
Format the response by adding appropriate line breaks and paragraph separations.
"""
paragraphs = re.split(r'\n{2,}', response)
formatted_paragraphs = []
for para in paragraphs:
if '```' in para:
parts = para.split('```')
for i, part in enumerate(parts):
if i % 2 == 1: # This is a code block
parts[i] = f"\n```\n{part.strip()}\n```\n"
para = ''.join(parts)
else:
para = para.replace('. ', '.\n')
formatted_paragraphs.append(para.strip())
return '\n\n'.join(formatted_paragraphs)
@asynccontextmanager
async def lifespan(app: FastAPI):
global settings
try:
logger.info("Loading settings...")
settings = load_settings()
logger.info("Settings loaded successfully.")
except Exception as e:
logger.error(f"Error loading settings: {str(e)}")
raise
yield
logger.info("Shutting down...")
app = FastAPI(lifespan=lifespan)
# Create a cache for loaded contexts
context_cache = {}
@lru_cache()
def get_settings():
return load_settings()
async def get_context(selected_folder: str, settings: dict = Depends(get_settings)):
if selected_folder not in context_cache:
try:
llm, token_encoder, text_embedder = await setup_llm_and_embedder(settings)
entities, relationships, reports, text_units, description_embedding_store, covariates = await load_context(selected_folder, settings)
local_search_engine, global_search_engine, local_context_builder, local_llm_params, local_context_params = await setup_search_engines(
llm, token_encoder, text_embedder, entities, relationships, reports, text_units,
description_embedding_store, covariates
)
question_generator = LocalQuestionGen(
llm=llm,
context_builder=local_context_builder,
token_encoder=token_encoder,
llm_params=local_llm_params,
context_builder_params=local_context_params,
)
context_cache[selected_folder] = {
"local_search_engine": local_search_engine,
"global_search_engine": global_search_engine,
"question_generator": question_generator
}
except Exception as e:
logger.error(f"Error loading context for folder {selected_folder}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to load context for folder {selected_folder}")
return context_cache[selected_folder]
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
try:
logger.info(f"Received request for model: {request.model}")
if request.model == "direct-chat":
logger.info("Routing to direct chat")
return await run_direct_chat(request)
elif request.model.startswith("graphrag-"):
logger.info("Routing to GraphRAG query")
if not request.query_options or not request.query_options.selected_folder:
raise HTTPException(status_code=400, detail="Selected folder is required for GraphRAG queries")
return await run_graphrag_query(request)
elif request.model == "duckduckgo-search:latest":
logger.info("Routing to DuckDuckGo search")
return await run_duckduckgo_search(request)
elif request.model == "full-model:latest":
logger.info("Routing to full model search")
return await run_full_model_search(request)
else:
raise HTTPException(status_code=400, detail=f"Invalid model specified: {request.model}")
except HTTPException as he:
logger.error(f"HTTP Exception: {str(he)}")
raise he
except Exception as e:
logger.error(f"Error in chat completion: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
async def run_direct_chat(request: ChatCompletionRequest) -> ChatCompletionResponse:
try:
if not LLM_API_BASE:
raise ValueError("LLM_API_BASE environment variable is not set")
headers = {"Content-Type": "application/json"}
payload = {
"model": LLM_MODEL,
"messages": [{"role": msg.role, "content": msg.content} for msg in request.messages],
"stream": False
}
# Optional parameters
if request.temperature is not None:
payload["temperature"] = request.temperature
if request.max_tokens is not None:
payload["max_tokens"] = request.max_tokens
full_url = f"{normalize_api_base(LLM_API_BASE)}/v1/chat/completions"
logger.info(f"Sending request to: {full_url}")
logger.info(f"Payload: {payload}")
try:
response = requests.post(full_url, json=payload, headers=headers, timeout=10)
response.raise_for_status()
except requests.exceptions.RequestException as req_ex:
logger.error(f"Request to LLM API failed: {str(req_ex)}")
if isinstance(req_ex, requests.exceptions.ConnectionError):
raise HTTPException(status_code=503, detail="Unable to connect to LLM API. Please check your API settings.")
elif isinstance(req_ex, requests.exceptions.Timeout):
raise HTTPException(status_code=504, detail="Request to LLM API timed out")
else:
raise HTTPException(status_code=500, detail=f"Request to LLM API failed: {str(req_ex)}")
result = response.json()
logger.info(f"Received response: {result}")
content = result['choices'][0]['message']['content']
return ChatCompletionResponse(
model=LLM_MODEL,
choices=[
ChatCompletionResponseChoice(
index=0,
message=Message(
role="assistant",
content=content
),
finish_reason=None
)
],
usage=None
)
except HTTPException as he:
logger.error(f"HTTP Exception in direct chat: {str(he)}")
raise he
except Exception as e:
logger.error(f"Unexpected error in direct chat: {str(e)}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during the direct chat: {str(e)}")
def get_embeddings(text: str) -> List[float]:
settings = load_settings()
embeddings_api_base = settings['embeddings_api_base']
headers = {"Content-Type": "application/json"}
if EMBEDDINGS_PROVIDER == 'ollama':
payload = {
"model": EMBEDDINGS_MODEL,
"prompt": text
}
full_url = f"{embeddings_api_base}/api/embeddings"
else: # OpenAI-compatible API
payload = {
"model": EMBEDDINGS_MODEL,
"input": text
}
full_url = f"{embeddings_api_base}/v1/embeddings"
try:
response = requests.post(full_url, json=payload, headers=headers)
response.raise_for_status()
except requests.exceptions.RequestException as req_ex:
logger.error(f"Request to Embeddings API failed: {str(req_ex)}")
raise HTTPException(status_code=500, detail=f"Failed to get embeddings: {str(req_ex)}")
result = response.json()
if EMBEDDINGS_PROVIDER == 'ollama':
return result['embedding']
else:
return result['data'][0]['embedding']
async def run_graphrag_query(request: ChatCompletionRequest) -> ChatCompletionResponse:
try:
query_options = request.query_options
query = request.messages[-1].content # Get the last user message as the query
cmd = ["python", "-m", "graphrag.query"]
cmd.extend(["--data", f"./indexing/output/{query_options.selected_folder}/artifacts"])
cmd.extend(["--method", query_options.query_type.split('-')[1]]) # 'global' or 'local'
if query_options.community_level:
cmd.extend(["--community_level", str(query_options.community_level)])
if query_options.response_type:
cmd.extend(["--response_type", query_options.response_type])
# Handle preset CLI args
if query_options.preset and query_options.preset != "Custom Query":
preset_args = get_preset_args(query_options.preset)
cmd.extend(preset_args)
# Handle custom CLI args
if query_options.custom_cli_args:
cmd.extend(query_options.custom_cli_args.split())
cmd.append(query)
logger.info(f"Executing GraphRAG query: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"GraphRAG query failed: {result.stderr}")
return ChatCompletionResponse(
model=request.model,
choices=[
ChatCompletionResponseChoice(
index=0,
message=Message(
role="assistant",
content=result.stdout
),
finish_reason="stop"
)
],
usage=Usage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0
)
)
except Exception as e:
logger.error(f"Error in GraphRAG query: {str(e)}")
raise HTTPException(status_code=500, detail=f"An error occurred during the GraphRAG query: {str(e)}")
def get_preset_args(preset: str) -> List[str]:
preset_args = {
"Default Global Search": ["--community_level", "2", "--response_type", "Multiple Paragraphs"],
"Default Local Search": ["--community_level", "2", "--response_type", "Multiple Paragraphs"],
"Detailed Global Analysis": ["--community_level", "3", "--response_type", "Multi-Page Report"],
"Detailed Local Analysis": ["--community_level", "3", "--response_type", "Multi-Page Report"],
"Quick Global Summary": ["--community_level", "1", "--response_type", "Single Paragraph"],
"Quick Local Summary": ["--community_level", "1", "--response_type", "Single Paragraph"],
"Global Bullet Points": ["--community_level", "2", "--response_type", "List of 3-7 Points"],
"Local Bullet Points": ["--community_level", "2", "--response_type", "List of 3-7 Points"],
"Comprehensive Global Report": ["--community_level", "4", "--response_type", "Multi-Page Report"],
"Comprehensive Local Report": ["--community_level", "4", "--response_type", "Multi-Page Report"],
"High-Level Global Overview": ["--community_level", "1", "--response_type", "Single Page"],
"High-Level Local Overview": ["--community_level", "1", "--response_type", "Single Page"],
"Focused Global Insight": ["--community_level", "3", "--response_type", "Single Paragraph"],
"Focused Local Insight": ["--community_level", "3", "--response_type", "Single Paragraph"],
}
return preset_args.get(preset, [])
ddg_search = DuckDuckGoSearchAPIWrapper(max_results=5)
async def run_duckduckgo_search(request: ChatCompletionRequest) -> ChatCompletionResponse:
query = request.messages[-1].content
results = ddg_search.results(query, max_results=5)
if not results:
content = "No results found for the given query."
else:
content = "DuckDuckGo Search Results:\n\n"
for result in results:
content += f"Title: {result['title']}\n"
content += f"Snippet: {result['snippet']}\n"
content += f"Link: {result['link']}\n"
if 'date' in result:
content += f"Date: {result['date']}\n"
if 'source' in result:
content += f"Source: {result['source']}\n"
content += "\n"
return ChatCompletionResponse(
model=request.model,
choices=[
ChatCompletionResponseChoice(
index=0,
message=Message(
role="assistant",
content=content
),
finish_reason="stop"
)
],
usage=Usage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0
)
)
async def run_full_model_search(request: ChatCompletionRequest) -> ChatCompletionResponse:
query = request.messages[-1].content
# Run all search types
graphrag_global = await run_graphrag_query(ChatCompletionRequest(model="graphrag-global-search:latest", messages=request.messages, query_options=request.query_options))
graphrag_local = await run_graphrag_query(ChatCompletionRequest(model="graphrag-local-search:latest", messages=request.messages, query_options=request.query_options))
duckduckgo = await run_duckduckgo_search(request)
# Combine results
combined_content = f"""Full Model Search Results:
Global Search:
{graphrag_global.choices[0].message.content}
Local Search:
{graphrag_local.choices[0].message.content}
DuckDuckGo Search:
{duckduckgo.choices[0].message.content}
"""
return ChatCompletionResponse(
model=request.model,
choices=[
ChatCompletionResponseChoice(
index=0,
message=Message(
role="assistant",
content=combined_content
),
finish_reason="stop"
)
],
usage=Usage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0
)
)
@app.get("/health")
async def health_check():
return {"status": "ok"}
@app.get("/v1/models")
async def list_models():
settings = load_settings()
try:
api_models = await fetch_available_models(settings)
except Exception as e:
logger.error(f"Error fetching API models: {str(e)}")
api_models = []
# Include the hardcoded models
hardcoded_models = [
{"id": "graphrag-local-search:latest", "object": "model", "owned_by": "graphrag"},
{"id": "graphrag-global-search:latest", "object": "model", "owned_by": "graphrag"},
{"id": "duckduckgo-search:latest", "object": "model", "owned_by": "duckduckgo"},
{"id": "full-model:latest", "object": "model", "owned_by": "combined"},
]
# Combine API models with hardcoded models
all_models = [{"id": model, "object": "model", "owned_by": "api"} for model in api_models] + hardcoded_models
return JSONResponse(content={"data": all_models})
class PromptTuneRequest(BaseModel):
root: str = "./{ROOT_DIR}"
domain: Optional[str] = None
method: str = "random"
limit: int = 15
language: Optional[str] = None
max_tokens: int = 2000
chunk_size: int = 200
no_entity_types: bool = False
output: str = "./{ROOT_DIR}/prompts"
class PromptTuneResponse(BaseModel):
status: str
message: str
# Global variable to store the latest logs
prompt_tune_logs = deque(maxlen=100)
async def run_prompt_tuning(request: PromptTuneRequest):
cmd = ["python", "-m", "graphrag.prompt_tune"]
# Create a temporary directory for output
with tempfile.TemporaryDirectory() as temp_output:
# Expand environment variables in the root path
root_path = os.path.expandvars(request.root)
cmd.extend(["--root", root_path])
cmd.extend(["--method", request.method])
cmd.extend(["--limit", str(request.limit)])
if request.domain:
cmd.extend(["--domain", request.domain])
if request.language:
cmd.extend(["--language", request.language])
cmd.extend(["--max-tokens", str(request.max_tokens)])
cmd.extend(["--chunk-size", str(request.chunk_size)])
if request.no_entity_types:
cmd.append("--no-entity-types")
# Use the temporary directory for output
cmd.extend(["--output", temp_output])
logger.info(f"Executing prompt tuning command: {' '.join(cmd)}")
try:
process = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
async def read_stream(stream):
while True:
line = await stream.readline()
if not line:
break
line = line.decode().strip()
prompt_tune_logs.append(line)
logger.info(line)
await asyncio.gather(
read_stream(process.stdout),
read_stream(process.stderr)
)
await process.wait()
if process.returncode == 0:
logger.info("Prompt tuning completed successfully")
# Replace the existing template files with the newly generated prompts
dest_dir = os.path.join(ROOT_DIR, "prompts")
for filename in os.listdir(temp_output):
if filename.endswith(".txt"):
source_file = os.path.join(temp_output, filename)
dest_file = os.path.join(dest_dir, filename)
shutil.move(source_file, dest_file)
logger.info(f"Replaced {filename} in {dest_file}")
return PromptTuneResponse(status="success", message="Prompt tuning completed successfully. Existing prompts have been replaced.")
else:
logger.error("Prompt tuning failed")
return PromptTuneResponse(status="error", message="Prompt tuning failed. Check logs for details.")
except Exception as e:
logger.error(f"Prompt tuning failed: {str(e)}")
return PromptTuneResponse(status="error", message=f"Prompt tuning failed: {str(e)}")
@app.post("/v1/prompt_tune")
async def prompt_tune(request: PromptTuneRequest, background_tasks: BackgroundTasks):
background_tasks.add_task(run_prompt_tuning, request)
return {"status": "started", "message": "Prompt tuning process has been started in the background"}
@app.get("/v1/prompt_tune_status")
async def prompt_tune_status():
return {
"status": "running" if prompt_tune_logs else "idle",
"logs": list(prompt_tune_logs)
}
class IndexingRequest(BaseModel):
llm_model: str
embed_model: str
llm_api_base: str
embed_api_base: str
root: str
verbose: bool = False
nocache: bool = False
resume: Optional[str] = None
reporter: str = "rich"
emit: List[str] = ["parquet"]
custom_args: Optional[str] = None
llm_params: Dict[str, Any] = Field(default_factory=dict)
embed_params: Dict[str, Any] = Field(default_factory=dict)
# Global variable to store the latest indexing logs
indexing_logs = deque(maxlen=100)
async def run_indexing(request: IndexingRequest):
cmd = ["python", "-m", "graphrag.index"]
cmd.extend(["--root", request.root])
if request.verbose:
cmd.append("--verbose")
if request.nocache:
cmd.append("--nocache")
if request.resume:
cmd.extend(["--resume", request.resume])
cmd.extend(["--reporter", request.reporter])
cmd.extend(["--emit", ",".join(request.emit)])
# Set environment variables for LLM and embedding models
env: Dict[str, Any] = os.environ.copy()
env["GRAPHRAG_LLM_MODEL"] = request.llm_model
env["GRAPHRAG_EMBED_MODEL"] = request.embed_model
env["GRAPHRAG_LLM_API_BASE"] = LLM_API_BASE
env["GRAPHRAG_EMBED_API_BASE"] = EMBEDDINGS_API_BASE
# Set environment variables for LLM parameters
for key, value in request.llm_params.items():
env[f"GRAPHRAG_LLM_{key.upper()}"] = str(value)
# Set environment variables for embedding parameters
for key, value in request.embed_params.items():
env[f"GRAPHRAG_EMBED_{key.upper()}"] = str(value)
# Add custom CLI arguments
if request.custom_args:
cmd.extend(request.custom_args.split())
logger.info(f"Executing indexing command: {' '.join(cmd)}")
logger.info(f"Environment variables: {env}")
try:
process = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
env=env
)
async def read_stream(stream):
while True:
line = await stream.readline()
if not line:
break
line = line.decode().strip()
indexing_logs.append(line)
logger.info(line)
await asyncio.gather(
read_stream(process.stdout),
read_stream(process.stderr)
)
await process.wait()
if process.returncode == 0:
logger.info("Indexing completed successfully")
return {"status": "success", "message": "Indexing completed successfully"}
else:
logger.error("Indexing failed")
return {"status": "error", "message": "Indexing failed. Check logs for details."}
except Exception as e:
logger.error(f"Indexing failed: {str(e)}")
return {"status": "error", "message": f"Indexing failed: {str(e)}"}
@app.post("/v1/index")
async def start_indexing(request: IndexingRequest, background_tasks: BackgroundTasks):
background_tasks.add_task(run_indexing, request)
return {"status": "started", "message": "Indexing process has been started in the background"}
@app.get("/v1/index_status")
async def indexing_status():
return {
"status": "running" if indexing_logs else "idle",
"logs": list(indexing_logs)
}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Launch the GraphRAG API server")
parser.add_argument("--host", type=str, default="127.0.0.1", help="Host to bind the server to")
parser.add_argument("--port", type=int, default=PORT, help="Port to bind the server to")
parser.add_argument("--reload", action="store_true", help="Enable auto-reload mode")
args = parser.parse_args()
import uvicorn
uvicorn.run(
"api:app",
host=args.host,
port=args.port,
reload=args.reload
)