-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathptt.yaml
151 lines (138 loc) · 4.38 KB
/
ptt.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
CLASS_NAMES: Car # ['Car', 'Pedestrian', 'Cyclist', 'Van']
DATA_CONFIG:
DATASET: 'KittiTrackingDataset'
DATA_PATH: '../data/kitti'
DEBUG: False # whether debug mode
REF_COOR: 'lidar' # lidar / camera
USE_Z_AXIS: True # whether use the z prediction of model
LOAD_FROM_DATABASE: True # whether use the memory to save time
LIDAR_CROP_OFFSET: 10.0 # the crop offset when training
NUM_CANDIDATES_PERFRAME: 4 # generate random offsets per frame
SEARCH_INPUT_SIZE: 1024 # the regularized points number of search area
TEMPLATE_INPUT_SIZE: 512 # the regularized points number of template area
SEARCH_BB_OFFSET: 0.0
SEARCH_BB_SCALE: 1.25
MODEL_BB_OFFSET: 0.0
MODEL_BB_SCALE: 1.25
REFINE_BOX_SIZE: True # whether scale the box by a ratio, adopted from p2b
POINT_CLOUD_RANGE: [-1, -1, -1] # -1 means unlimited
DATA_SPLIT: {
'train': train,
'test': test
}
SAMPLED_INTERVAL: 1 # only for training
INFO_PATH: {
'train': kitti_infos_train.pkl,
'test': kitti_infos_test.pkl,
}
FOV_POINTS_ONLY: False
POINT_FEATURE_ENCODING: {
encoding_type: absolute_coordinates_encoding,
used_feature_list: [ 'x', 'y', 'z' ],
src_feature_list: [ 'x', 'y', 'z', 'intensity' ],
}
MODEL:
NAME: PTT # PTT / P2B
BACKBONE_3D:
NAME: PointNet2BackboneLight
DEBUG: False # whether debug mode
SA_CONFIG:
SAMPLE_METHOD: ['fps', 'sequence', 'sequence'] # fps/sequence/rs ffps not support
USE_XYZ: True
NORMALIZE_XYZ: True
NPOINTS_SEARCH: [512, 256, 128]
NPOINTS_TEMPLATE: [256, 128, 64]
RADIUS: [0.3, 0.5, 0.7]
NSAMPLE: [32, 32, 32]
MLPS: [[0, 64, 64, 128],
[128, 128, 128, 256],
[256, 128, 128, 256]]
SIMILARITY_MODULE:
NAME: CosineSimAug
DEBUG: False # whether debug mode
MLP:
CHANNELS: [260, 256, 256, 256]
BN: True
CONV:
CHANNELS: [256, 256, 256]
BN: True
CENTROID_HEAD:
NAME: CentroidVotingHead
DEBUG: False # whether debug mode
CLS_USE_SEARCH_XYZ: False
CLS_FC:
CHANNELS: [256, 256, 256, 1]
REG_FC:
CHANNELS: [259, 256, 256, 259]
TRANSFORMER_BLOCK:
ENABLE: True
NAME: TransformerBlock # TransformerBlock / MulTransformerBlock
DIM_INPUT: 256
DIM_MODEL: 512
KNN: 16
N_HEADS: 1
N_LAYERS: 1
LOSS_CONFIG:
CLS_LOSS: BinaryCrossEntropy
CLS_LOSS_REDUCTION: 'mean'
CLS_LOSS_POS_WEIGHT: 1.0
REG_LOSS: smooth-l1
LOSS_WEIGHTS: {
'centroids_cls_weight': 0.2,
'centroids_reg_weight': 1.0
}
BOX_HEAD:
NAME: BoxVotingHead
DEBUG: False # whether debug mode
FC: [256, 256, 256, 5]
SA_CONFIG:
NPOINTS: 64
RADIUS: 0.3
NSAMPLE: 16
MLPS: [257, 256, 256, 256]
USE_XYZ: True
NORMALIZE_XYZ: True
SAMPLE_METHOD: 'fps'
TRANSFORMER_BLOCK:
ENABLE: True
NAME: TransformerBlock # TransformerBlock / MulTransformerBlock
DIM_INPUT: 256
DIM_MODEL: 512
KNN: 16
N_HEADS: 1
N_LAYERS: 1
LOSS_CONFIG:
CLS_LOSS: BinaryCrossEntropy
CLS_LOSS_REDUCTION: 'none'
CLS_LOSS_POS_WEIGHT: 2.0
REG_LOSS: smooth-l1
LOSS_WEIGHTS: {
'boxes_cls_weight': 1.5,
'boxes_reg_weight': 0.2
}
OPTIMIZATION:
DEBUG: False # whether debug mode
BATCH_SIZE_PER_GPU: 48
NUM_EPOCHS: 60
# optimizer
OPTIMIZER: adam
LR: 0.001
WEIGHT_DECAY: 0
BETAS: [0.5, 0.999]
EPS: 1e-06
# scheduler
SCHEDULER: 'step'
STEP_SIZE: 12
GAMMA: 0.2
# grad clip
GRAD_NORM_CLIP: 10
TRAIN:
WITH_EVAL:
ENABLE: False
START_EPOCH: 3
INTERVAL: 1
TEST:
VISUALIZE: False
SAVE_PCD: False # TODO check could use or not
SHAPE_AGGREGATION: firstandprevious # first/previous/firstandprevious/all
REF_BOX: previous_result # previous_result/previous_gt/current_gt