-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbase.py
195 lines (163 loc) · 5.87 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import matplotlib.pyplot as plt
import torch
import time
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, ToTensor, Normalize, Lambda
from torch.utils.data import DataLoader
from tqdm import tqdm
from FFNetwork import FFNetwork
from FFEncoding import FFEncoding
overlay_y_on_x = FFEncoding.overlay
import time
def get_data_loaders(train_batch_size=50, test_batch_size=50):
transform = Compose(
[
ToTensor(),
Normalize((0.1307,), (0.3081,)),
Lambda(lambda x: torch.flatten(x)),
]
)
train_loader = DataLoader(
MNIST("./data/", train=True, download=True, transform=transform),
batch_size=train_batch_size,
shuffle=True,
)
test_loader = DataLoader(
MNIST("./data/", train=False, download=True, transform=transform),
batch_size=test_batch_size,
shuffle=False,
)
return train_loader, test_loader
def visualize_sample(data, name="", idx=0):
reshaped = data[idx].cpu().reshape(28, 28)
plt.figure(figsize=(4, 4))
plt.title(name)
plt.imshow(reshaped, cmap="gray")
plt.show()
def plot_errors(training_errors, testing_errors, EPOCHS):
plt.figure(figsize=(10, 6)) # Adjust the figsize to make the plot wider
plt.plot(
range(1, EPOCHS + 1), training_errors, label="Training Error"
) # Use training_errors instead of errors
plt.plot(
range(1, EPOCHS + 1), testing_errors, label="Testing Error"
) # Use testing_errors instead of errors
plt.xlabel("Epoch")
plt.ylabel("Error")
plt.title("Error over Epochs")
plt.legend()
plt.xticks(range(1, EPOCHS + 1)) # Set x-axis tick labels to 1, 2, ...
plt.savefig("error_plot_30_epochs.png") # Save the plot as a PNG file
plt.show()
def training_loop(model, iterator, device, encoding="overlay"):
model.train()
if batched_per_layer:
model(iterator, device)
else:
model.to(device)
for _, x_data in tqdm(enumerate(iterator)):
model(x_data, device)
def test_loop(model, data_loader, device):
model.eval()
batch_error = 0
for x, y in data_loader:
x, y = x.to(device), y.to(device)
batch_error += calc_error(model, x, y, device)
avg_error = batch_error / len(data_loader)
print(f"error: {avg_error}")
return avg_error
def eval_loop(model, input, device, batched_per_layer=False, encoding="overlay"):
"""
eval_loop(
model -> nn.Module model
input -> tensor input for eval
device -> torch.device
bached_per_layer -> False by default, if true then load each layer sequentially on device and store the output
encoding -> overlay by default
)
"""
if batched_per_layer == True:
if encoding == "overlay":
goodness_per_label = []
for label in range(10):
h = overlay_y_on_x(input, label)
goodness = []
for module in model.children():
module.to(device)
h = module(h)
goodness += [h.pow(2).mean(1)]
module.to("cpu")
goodness_per_label += [sum(goodness).unsqueeze(1)]
goodness_per_label = torch.cat(goodness_per_label, 1)
return goodness_per_label.argmax(1)
else:
model.to(device)
if encoding == "overlay":
goodness_per_label = []
for label in range(10):
h = overlay_y_on_x(input, label)
goodness = []
for module in model.children():
h = module(h)
goodness += [h.pow(2).mean(1)]
goodness_per_label += [sum(goodness).unsqueeze(1)]
goodness_per_label = torch.cat(goodness_per_label, 1)
return goodness_per_label.argmax(1)
def calc_error(model, x, y, device) -> float:
model.eval()
return (
1
- eval_loop(model, x, device, batched_per_layer=batched_per_layer)
.eq(y)
.float()
.mean()
.item()
)
if __name__ == "__main__":
# Define parameters
EPOCHS = 10
BATCH_SIZE = 5000
TRAIN_BATCH_SIZE = BATCH_SIZE
TEST_BATCH_SIZE = BATCH_SIZE
batched_per_layer = False
encoding = "overlay"
torch.manual_seed(1234)
# Build train and test loaders
train_loader, test_loader = get_data_loaders(
train_batch_size=TRAIN_BATCH_SIZE, test_batch_size=TEST_BATCH_SIZE
)
# Define device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Build network
net = FFNetwork([784, 1000, 1000])
training_errors = []
testing_errors = []
# Iterator in place of DataLoader
data_iter = []
# Encode true and false labels on images to create positive and negative data
print("Encoding positive and negative data with correct and incorrect labels")
for x, y in tqdm(train_loader):
x_pos, x_neg = None, None
if encoding == "overlay":
x_pos = overlay_y_on_x(x, y)
rand_mask = torch.randint(0, 9, y.size())
y_rnd = (y + rand_mask + 1) % 10
x_neg = overlay_y_on_x(x, y_rnd)
data_iter.append((x_pos, x_neg))
for epoch in range(EPOCHS):
print(f"==== EPOCH: {epoch} ====")
start = time.time()
print("Training.....")
training_loop(net, data_iter, device)
print("eval train data")
training_error = test_loop(net, train_loader, device)
training_errors.append(training_error)
print("eval test data")
testing_error = test_loop(net, test_loader, device)
testing_errors.append(testing_error)
end = time.time()
elapsed = end - start
print(f"Completed epoch {epoch} in {elapsed} seconds")
# Plot errors
plot_errors(training_errors, testing_errors, EPOCHS)