-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhyper_params.py
78 lines (68 loc) · 3.9 KB
/
hyper_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import json
import math
def generate_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default="SUPPORT",
choices=["Synthetic-I", "Synthetic-II", "Synthetic-III",
"SUPPORT", "NACD", "MIMIC"],
help="Dataset name.")
parser.add_argument('--model', type=str, default="BayesianMTLR",
choices=["MTLR", "BayesianHorseshoeLinearMTLR",
"BayesianElementwiseMTLR", "BayesianHorseshoeMTLR",
"BayesianLinearMTLR", "BayesianMTLR",
"CoxPH", "BayesianHorseshoeLinearCox",
"BayesianElementwiseCox", "BayesianHorseshoeCox",
"BayesianLinearCox", "BayesianCox"],
help="Model name.")
# General parameters
parser.add_argument('--num_epochs', type=int, default=5000,
help="Number of maximum training epoch.")
parser.add_argument('--patience', type=int, default=50,
help="Number of patience epoch for convergence. Only used if 'early_stop' == True")
parser.add_argument('--early_stop', type=bool, default=True,
help="Whether using early stop for training.")
parser.add_argument('--seed', type=int, default=39,
help="Random seed for initialization")
parser.add_argument('--batch_size', type=int, default=32,
help="Batch size for training.")
parser.add_argument('--lr', type=float, default=0.00008, # 0.005 for cox, 0.00008 for mtlr
help="Learning rate.")
parser.add_argument('--verbose', type=bool, default=True,
help="Verbose.")
parser.add_argument('--hidden_size', type=int, default=50,
help="Hidden neurons in 2-layer network.")
parser.add_argument('--dropout', type=float, default=0.6,
help="Dropout rate.")
# BNN parameters
parser.add_argument('--mu_scale', type=float, default=None,
help="Scaling rate for initialize the mean of weights.")
parser.add_argument('--rho_scale', type=float, default=-5.,
help="Scaling rate for initialize the standard deviation of weights.")
parser.add_argument('--n_samples_train', type=int, default=10,
help="Number of samples to draw from the variational posterior for calculating ELBO.")
parser.add_argument('--n_samples_test', type=int, default=100,
help="Number of samples to draw for predicting.")
# Mixture Gaussian parameters
parser.add_argument('--pi', type=float, default=0.5,
help="Mixing coefficient for mixture Gaussian Distribution.")
parser.add_argument('--sigma1', type=float, default=1,
help="Standard deviation 1 for mixture Gaussian Distribution.")
parser.add_argument('--sigma2', type=float, default=math.exp(-6),
help="Standard deviation 2 for mixture Gaussian Distribution.")
# Horseshoe parameters
parser.add_argument('--weight_cauchy_scale', type=float, default=1,
help="Half-cauchy scale for local shrinkage parameters lambda.")
parser.add_argument('--global_cauchy_scale', type=float, default=1,
help="Half-cauchy scale for global shrinkage parameter theta.")
# MTLR parameters
parser.add_argument('--c1', type=float, default=0.01,
help="Hyperparameter for the penalty term. Not used for BNN-based model")
args = parser.parse_args()
return args
def load_parser(file: str):
parser = argparse.ArgumentParser()
args = parser.parse_args()
with open(file, 'r') as f:
args.__dict__ = json.load(f)
return args