-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_models.py
414 lines (358 loc) · 19 KB
/
run_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import math
import numpy as np
import argparse
import pandas as pd
from tqdm import trange
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset
from datetime import datetime
from datasets import make_data
from loss import mtlr_nll, cox_nll
from models import BayesianBaseModel
from models import mtlr_survival, mtlr, BayesHsLinMtlr, BayesEleMtlr, BayesHsMtlr, BayesLinMtlr, BayesMtlr
from models import cox_survival, CoxPH, BayesHsLinCox, BayesEleCox, BayesHsCox, BayesLinCox, BayesCox
from utils import (save_predictions, save_params, train_val_test_stratified_split, reformat_survival, print_performance,
NumericArrayLike, make_time_bins, two_sided_olshen)
from plots import plot_weights_dist, plot_curve_with_bar, plot_weights_hist
from ci_evaluation import thickness, coverage
from hyper_params import load_parser, generate_parser
from SurvivalEVAL import BaseEvaluator
credible_region_sizes = np.arange(0.1, 1, 0.1)
def train_model(
model: nn.Module,
data_train: pd.DataFrame,
time_bins: NumericArrayLike,
config: argparse.Namespace,
path: str,
random_state: int,
reset_model: bool = True,
device: torch.device = torch.device("cuda")
) -> nn.Module:
if config.verbose:
print(f"Training {model.get_name()}: reset mode is {reset_model}, number of epochs is {config.num_epochs}, "
f"learning rate is {config.lr}, C1 is {config.c1}, "
f"batch size is {config.batch_size}, device is {device}.")
data_train, _, data_val = train_val_test_stratified_split(data_train, stratify_colname='both',
frac_train=0.9, frac_test=0.1,
random_state=random_state)
train_size = data_train.shape[0]
val_size = data_val.shape[0]
optimizer = optim.Adam(model.parameters(), lr=config.lr)
if reset_model:
model.reset_parameters()
model = model.to(device)
model.train()
best_val_nll = np.inf
best_ep = -1
pbar = trange(config.num_epochs, disable=not config.verbose)
start_time = datetime.now()
if isinstance(model, mtlr):
x, y = reformat_survival(data_train, time_bins)
x_val, y_val = reformat_survival(data_val, time_bins)
x_val, y_val = x_val.to(device), y_val.to(device)
train_loader = DataLoader(TensorDataset(x, y), batch_size=config.batch_size, shuffle=True)
for i in pbar:
nll_loss = 0
for xi, yi in train_loader:
xi, yi = xi.to(device), yi.to(device)
optimizer.zero_grad()
y_pred = model.forward(xi)
loss = mtlr_nll(y_pred, yi, model, C1=config.c1, average=False)
loss.backward()
optimizer.step()
nll_loss += (loss / train_size).item()
logits_outputs = model.forward(x_val)
eval_nll = mtlr_nll(logits_outputs, y_val, model, C1=0, average=True)
pbar.set_description(f"[epoch {i + 1: 4}/{config.num_epochs}]")
pbar.set_postfix_str(f"nll-loss = {nll_loss:.4f}; "
f"Validation nll = {eval_nll.item():.4f};")
if config.early_stop:
if best_val_nll > eval_nll:
best_val_nll = eval_nll
best_ep = i
torch.save(model, path)
if (i - best_ep) > config.patience:
print(f"Validation loss converges at {best_ep}-th epoch.")
break
elif isinstance(model, BayesEleMtlr) or isinstance(model, BayesLinMtlr):
x, y = reformat_survival(data_train, time_bins)
x_val, y_val = reformat_survival(data_val, time_bins)
x_val, y_val = x_val.to(device), y_val.to(device)
train_loader = DataLoader(TensorDataset(x, y), batch_size=config.batch_size, shuffle=True)
for i in pbar:
total_loss = 0
total_log_likelihood = 0
total_kl_divergence = 0
for xi, yi in train_loader:
xi, yi = xi.to(device), yi.to(device)
optimizer.zero_grad()
loss, log_prior, log_variational_posterior, log_likelihood = model.sample_elbo(xi, yi, train_size)
loss.backward()
optimizer.step()
if isinstance(model, BayesHsMtlr) or isinstance(model, BayesHsLinMtlr):
model.fixed_point_update()
total_loss += loss.item() / train_size
total_log_likelihood += log_likelihood.item() / train_size
total_kl_divergence += (log_variational_posterior.item() -
log_prior.item()) * config.batch_size / train_size**2
val_loss, _, _, val_log_likelihood = model.sample_elbo(x_val, y_val, dataset_size=val_size)
val_loss /= val_size
val_log_likelihood /= val_size
pbar.set_description(f"[epoch {i + 1: 4}/{config.num_epochs}]")
pbar.set_postfix_str(f"Train: Total = {total_loss:.4f}, "
f"KL = {total_kl_divergence:.4f}, "
f"nll = {total_log_likelihood:.4f}; "
f"Val: Total = {val_loss.item():.4f}, "
f"nll = {val_log_likelihood.item():.4f}; ")
if config.early_stop:
if best_val_nll > val_loss:
best_val_nll = val_loss
best_ep = i
torch.save(model, path)
if (i - best_ep) > config.patience:
print(f"Validation loss converges at {best_ep}-th epoch.")
break
elif isinstance(model, CoxPH):
x_train, t_train, e_train = (torch.tensor(data_train.drop(["time", "event"], axis=1).values, dtype=torch.float),
torch.tensor(data_train["time"].values, dtype=torch.float),
torch.tensor(data_train["event"].values, dtype=torch.float))
x_val, t_val, e_val = (torch.tensor(data_val.drop(["time", "event"], axis=1).values, dtype=torch.float).to(device),
torch.tensor(data_val["time"].values, dtype=torch.float).to(device),
torch.tensor(data_val["event"].values, dtype=torch.float).to(device))
train_loader = DataLoader(TensorDataset(x_train, t_train, e_train), batch_size=train_size, shuffle=True)
model.config.batch_size = train_size
for i in pbar:
nll_loss = 0
for xi, ti, ei in train_loader:
xi, ti, ei = xi.to(device), ti.to(device), ei.to(device)
optimizer.zero_grad()
y_pred = model.forward(xi)
nll_loss = cox_nll(y_pred, ti, ei, model, C1=config.c1)
nll_loss.backward()
optimizer.step()
# here should have only one iteration
logits_outputs = model.forward(x_val)
eval_nll = cox_nll(logits_outputs, t_val, e_val, model, C1=0)
pbar.set_description(f"[epoch {i + 1: 4}/{config.num_epochs}]")
pbar.set_postfix_str(f"nll-loss = {nll_loss.item():.4f}; "
f"Validation nll = {eval_nll.item():.4f};")
if config.early_stop:
if best_val_nll > eval_nll:
best_val_nll = eval_nll
best_ep = i
torch.save(model, path)
if (i - best_ep) > config.patience:
print(f"Validation loss converges at {best_ep}-th epoch.")
break
elif isinstance(model, BayesEleCox) or isinstance(model, BayesLinCox):
x_train, t_train, e_train = (torch.tensor(data_train.drop(["time", "event"], axis=1).values, dtype=torch.float),
torch.tensor(data_train["time"].values, dtype=torch.float),
torch.tensor(data_train["event"].values, dtype=torch.float))
x_val, t_val, e_val = (torch.tensor(data_val.drop(["time", "event"], axis=1).values, dtype=torch.float).to(device),
torch.tensor(data_val["time"].values, dtype=torch.float).to(device),
torch.tensor(data_val["event"].values, dtype=torch.float).to(device))
train_loader = DataLoader(TensorDataset(x_train, t_train, e_train), batch_size=train_size, shuffle=True)
model.config.batch_size = train_size
for i in pbar:
total_loss = 0
total_log_likelihood = 0
total_kl_divergence = 0
for xi, ti, ei in train_loader:
xi, ti, ei = xi.to(device), ti.to(device), ei.to(device)
optimizer.zero_grad()
loss, log_prior, log_variational_posterior, log_likelihood = model.sample_elbo(xi, ti, ei, train_size)
loss.backward()
optimizer.step()
if isinstance(model, BayesHsLinCox) or isinstance(model, BayesHsCox):
model.fixed_point_update()
total_loss += loss.item()
total_log_likelihood += log_likelihood.item()
total_kl_divergence += log_variational_posterior.item() - log_prior.item()
val_loss, _, _, val_log_likelihood = model.sample_elbo(x_val, t_val, e_val, dataset_size=val_size)
pbar.set_description(f"[epoch {i + 1: 4}/{config.num_epochs}]")
pbar.set_postfix_str(f"Train: Total = {total_loss:.4f}, "
f"KL = {total_kl_divergence:.4f}, "
f"nll = {total_log_likelihood:.4f}; "
f"Val: Total = {val_loss.item():.4f}, "
f"nll = {val_log_likelihood.item():.4f}; ")
if config.early_stop:
if best_val_nll > val_loss:
best_val_nll = val_loss
best_ep = i
torch.save(model, path)
if (i - best_ep) > config.patience:
print(f"Validation loss converges at {best_ep}-th epoch.")
break
else:
raise TypeError("Model type cannot be identified.")
end_time = datetime.now()
training_time = end_time - start_time
print(f"Training time: {training_time.total_seconds()}")
# model.eval()
model = torch.load(path)
if isinstance(model, CoxPH) or isinstance(model, BayesEleCox) or isinstance(model, BayesLinCox):
model.calculate_baseline_survival(x_train.to(device), t_train.to(device), e_train.to(device))
return model
def make_ensemble_mtlr_prediction(
model: BayesianBaseModel,
x: torch.Tensor,
time_bins: NumericArrayLike,
config: argparse.Namespace
) -> (torch.Tensor, torch.Tensor, torch.Tensor):
model.eval()
start_time = datetime.now()
with torch.no_grad():
# ensemble_output should have size: n_samples * dataset_size * n_bin
logits_outputs = model.forward(x, sample=True, n_samples=config.n_samples_test)
end_time = datetime.now()
inference_time = end_time - start_time
print(f"Inference time: {inference_time.total_seconds()}")
survival_outputs = mtlr_survival(logits_outputs, with_sample=True)
mean_survival_outputs = survival_outputs.mean(dim=0)
time_bins = torch.cat([torch.tensor([0]), time_bins], 0).to(survival_outputs.device)
return mean_survival_outputs, time_bins, survival_outputs
def make_ensemble_cox_prediction(
model: BayesianBaseModel,
x: torch.Tensor,
config: argparse.Namespace
) -> (torch.Tensor, torch.Tensor, torch.Tensor):
model.eval()
start_time = datetime.now()
with torch.no_grad():
logits_outputs = model.forward(x, sample=True, n_samples=config.n_samples_test)
end_time = datetime.now()
inference_time = end_time - start_time
print(f"Inference time: {inference_time.total_seconds()}")
survival_outputs = cox_survival(model.baseline_survival, logits_outputs)
mean_survival_outputs = survival_outputs.mean(dim=0)
time_bins = model.time_bins
return mean_survival_outputs, time_bins, survival_outputs
def make_mtlr_prediction(
model: mtlr,
x: torch.Tensor,
time_bins: NumericArrayLike,
config: argparse.Namespace
):
model.eval()
start_time = datetime.now()
with torch.no_grad():
pred = model.forward(x)
end_time = datetime.now()
inference_time = end_time - start_time
print(f"Inference time: {inference_time.total_seconds()}")
survival_curves = mtlr_survival(pred, with_sample=False)
time_bins = torch.cat([torch.tensor([0]), time_bins], dim=0).to(survival_curves.device)
return survival_curves, time_bins, survival_curves.unsqueeze(0).repeat(config.n_samples_test, 1, 1)
def make_cox_prediction(
model: CoxPH,
x: torch.Tensor,
config: argparse.Namespace
):
model.eval()
start_time = datetime.now()
with torch.no_grad():
pred = model.forward(x)
end_time = datetime.now()
inference_time = end_time - start_time
print(f"Inference time: {inference_time.total_seconds()}")
survival_curves = cox_survival(model.baseline_survival, pred)
survival_curves = survival_curves.squeeze()
time_bins = model.time_bins
return survival_curves, time_bins, survival_curves.unsqueeze(0).repeat(config.n_samples_test, 1, 1)
def main():
args = generate_parser()
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(42)
torch.manual_seed(42)
# torch.autograd.set_detect_anomaly(True)
data, coef = make_data(args.dataset)
assert "time" in data.columns and "event" in data.columns, "The event time variable and censor indicator " \
"variable is missing or need to be renamed."
args.n_features = data.shape[1]
args.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
args.device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(args.device)
path = save_params(args)
if 'true_time' in data.columns:
feature_names = data.drop(["time", "event", "true_time"], axis=1).columns.to_list()
num_features = args.n_features - 3
else:
feature_names = data.drop(["time", "event"], axis=1).columns.to_list()
num_features = args.n_features - 2
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
data_train, _, data_test = train_val_test_stratified_split(data, stratify_colname='both',
frac_train=0.8, frac_test=0.2,
random_state=seed)
if 'true_time' in data.columns:
data_train = data_train.drop(columns=["true_time"])
data_test = data_test.drop(columns=["time"])
data_test = data_test.rename(columns={'true_time': 'time'})
data_test.loc[:, "event"] = np.ones(data_test.shape[0])
time_bins = make_time_bins(data_train["time"].values, event=data_train["event"].values)
# time_bins = torch.cat([time_bins, torch.tensor([data_train["time"].values.max()])], dim=0) # delete
num_time_bins = len(time_bins)
if args.model == "MTLR":
model = mtlr(in_features=num_features, num_time_bins=num_time_bins, config=args)
elif args.model == "BayesianLinearMTLR":
model = BayesLinMtlr(in_features=num_features, num_time_bins=num_time_bins, config=args)
elif args.model == "BayesianMTLR":
model = BayesMtlr(in_features=num_features, num_time_bins=num_time_bins, config=args)
elif args.model == "BayesianHorseshoeLinearMTLR":
model = BayesHsLinMtlr(in_features=num_features, num_time_bins=num_time_bins, config=args)
elif args.model == "BayesianElementwiseMTLR":
model = BayesEleMtlr(in_features=num_features, num_time_bins=num_time_bins, config=args)
elif args.model == "BayesianHorseshoeMTLR":
model = BayesHsMtlr(in_features=num_features, num_time_bins=num_time_bins, config=args)
elif args.model == "CoxPH":
model = CoxPH(in_features=num_features, config=args)
elif args.model == "BayesianLinearCox":
model = BayesLinCox(in_features=num_features, config=args)
elif args.model == "BayesianCox":
model = BayesCox(in_features=num_features, config=args)
elif args.model == "BayesianHorseshoeLinearCox":
model = BayesHsLinCox(in_features=num_features, config=args)
elif args.model == "BayesianElementwiseCox":
model = BayesEleCox(in_features=num_features, config=args)
elif args.model == "BayesianHorseshoeCox":
model = BayesHsCox(in_features=num_features, config=args)
else:
raise NotImplementedError
print(model)
model = train_model(model, data_train, time_bins, config=args, path=path + f"/exp.pth",
random_state=seed, reset_model=True, device=device)
x_test = torch.tensor(data_test.drop(["time", "event"], axis=1).values, dtype=torch.float, device=device)
if isinstance(model, mtlr):
survival_outputs, time_bins, ensemble_outputs = make_mtlr_prediction(model, x_test, time_bins, config=args)
elif isinstance(model, BayesEleMtlr) or isinstance(model, BayesLinMtlr):
survival_outputs, time_bins, ensemble_outputs = make_ensemble_mtlr_prediction(model, x_test, time_bins,
config=args)
elif isinstance(model, CoxPH):
survival_outputs, time_bins, ensemble_outputs = make_cox_prediction(model, x_test, config=args)
elif isinstance(model, BayesEleCox) or isinstance(model, BayesLinCox):
survival_outputs, time_bins, ensemble_outputs = make_ensemble_cox_prediction(model, x_test, config=args)
else:
raise NotImplementedError
print('*' * 10 + 'Start Evaluation' + '*' * 10)
# plot_curve_with_bar(time_bins, survival_outputs, upper_outputs, lower_outputs, index=0)
eval = BaseEvaluator(survival_outputs, time_bins, data_test.time.values, data_test.event.values,
data_train.time.values, data_train.event.values)
print(eval.d_calibration()[1])
print("Concordance:", eval.concordance(ties='All')[0])
print("MAE:", eval.l1_loss(method="Margin"))
print("D-cal:", eval.d_calibration()[0])
## Drop X% of the data method
coverage_stats = {}
for percentage in credible_region_sizes:
drop_num = math.floor(0.5 * args.n_samples_test * (1 - percentage))
lower_outputs = torch.kthvalue(ensemble_outputs, k=1 + drop_num, dim=0)[0]
upper_outputs = torch.kthvalue(ensemble_outputs, k=args.n_samples_test - drop_num, dim=0)[0]
coverage_stats[percentage] = coverage(time_bins, upper_outputs, lower_outputs,
data_test.time.values, data_test.event.values)
print("C-cal:", coverage_stats)
if __name__ == '__main__':
main()