-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_baseline.py
373 lines (345 loc) · 17.5 KB
/
run_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import argparse
import os
import numpy as np
import pandas as pd
from datetime import datetime
from tqdm import trange
import torch
import torch.nn as nn
from sklearn.preprocessing import StandardScaler
from sklearn_pandas import DataFrameMapper
import wandb
import torchtuples as tt
# models
from lifelines import KaplanMeierFitter
from sksurv.ensemble import ComponentwiseGradientBoostingSurvivalAnalysis
from lifelines.fitters.weibull_aft_fitter import WeibullAFTFitter
from model import CoxPH, MTLR, CQRNN, LogNormalNN
from pycox.models import DeepHitSingle, CoxTime
from pycox.models.cox_time import MLPVanillaCoxTime
from utils import save_params, set_seed, print_performance, pad_tensor
from utils.util_survival import survival_data_split, xcal_from_hist, make_time_bins, format_pred_sksurv, \
make_mono_quantiles
from args import generate_parser
from data import make_survival_data
from Evaluator import SurvivalEvaluator, QuantileRegEvaluator
folder = 'logs/Baseline'
# create folder if it does not exist
if not os.path.exists(folder):
os.makedirs(folder)
def main(args=None):
if isinstance(args, argparse.Namespace):
wandb.init(
project="ConformalSurvDist-time",
config=args,
name=args.model + "_" + args.data + "_baseline"
)
else:
wandb.init(config=args)
wandb.define_metric("C-index", summary="mean")
wandb.define_metric("IBS", summary="mean")
wandb.define_metric("MAE_Hinge", summary="mean")
wandb.define_metric("MAE_PO", summary="mean")
wandb.define_metric("RMSE_Hinge", summary="mean")
wandb.define_metric("RMSE_PO", summary="mean")
wandb.define_metric("KM-cal", summary="mean")
wandb.define_metric("X-cal", summary="mean")
wandb.define_metric("train_time", summary="mean")
wandb.define_metric("infer_time", summary="mean")
args = wandb.config
data, cols_stdz = make_survival_data(args.data)
features = data.columns.to_list()
if 'true_time' in features:
features.remove('true_time')
assert "time" in data.columns and "event" in data.columns, "The event time variable and censor indicator " \
"variable is missing or need to be renamed."
cols_wo_stdz = list(set(features).symmetric_difference(cols_stdz)) # including time and event
stdz = [([col], StandardScaler()) for col in cols_stdz]
wo_stdz = [(col, None) for col in cols_wo_stdz]
columns_transform = stdz + wo_stdz
if args.early_stop:
pct_train = 0.8
pct_val = 0.1
pct_test = 0.1
else:
pct_train = 0.9
pct_val = 0.0
pct_test = 0.1
args.n_features = len(features) - 2 # excluding time and event
args.timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
args.device = "cuda:0" if torch.cuda.is_available() else "cpu"
device = torch.device(args.device)
path = save_params(args)
ci = []
mae_hinge = []
mae_po = []
rmse_hinge = []
rmse_po = []
ibs = []
km_cal = []
xcal_stats = []
train_times = []
infer_times = []
pbar_outer = trange(args.n_exp, disable=not args.verbose, desc='Experiment')
for i in pbar_outer:
seed_i = args.seed + i
set_seed(seed_i, device)
data_train, data_val, data_test = survival_data_split(data, stratify_colname='both', frac_train=pct_train,
frac_val=pct_val, frac_test=pct_test, random_state=seed_i)
if args.data in ["synth1", "synth2"]:
# remove the true time column for training
data_train = data_train.drop(columns=['true_time'])
data_val = data_val.drop(columns=['true_time'])
# use the true time for evaluation
data_test = data_test.drop(columns=['time'])
data_test = data_test.rename(columns={'true_time': 'time'})
data_test.event = np.ones(data_test.shape[0])
# standardize the data
# [features] to keep the order, otherwise the feature order will be changed and the result is not reproducible
mapper_df = DataFrameMapper(columns_transform, df_out=True)
data_train = mapper_df.fit_transform(data_train).astype('float32')[features]
data_val = mapper_df.transform(data_val).astype('float32')[features] if not data_val.empty else data_val
data_test = mapper_df.transform(data_test).astype('float32')[features]
data_train_val = pd.concat([data_train, data_val], ignore_index=True) if not data_val.empty else data_train
x_train = data_train.drop(["time", "event"], axis=1).values
t_train, e_train = data_train["time"].values, data_train["event"].values
x_val = data_val.drop(["time", "event"], axis=1).values if not data_val.empty else None
t_val, e_val = data_val["time"].values, data_val["event"].values if not data_val.empty else None
x_test = data_test.drop(['time', 'event'], axis=1).values
t_test, e_test = data_test["time"].values, data_test["event"].values
x_train_val = data_train_val.drop(["time", "event"], axis=1).values
t_train_val, e_train_val = data_train_val["time"].values, data_train_val["event"].values
# create time bins for discrete survival analysis models
if args.model in ["MTLR", "DeepHit"]:
discrete_bins = make_time_bins(t_train, event=e_train)
if args.model == "DeepHit":
# the first bin of DeepHit must smaller than the smallest time in the data
discrete_bins[0] = max(t_train_val.min() - 1e-5, 0)
if args.model == "KM":
model = KaplanMeierFitter()
start_time = datetime.now()
model.fit(t_train_val, event_observed=e_train_val)
mid_time = datetime.now()
km_curve = model.survival_function_.KM_estimate.values
time_coordinates = model.survival_function_.index.values
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
# use the KM curve for the training data as the prediction
surv_test = np.repeat(km_curve[np.newaxis, :], x_test.shape[0], axis=0)
elif args.model == "CoxPH":
model = CoxPH(
n_features=args.n_features,
hidden_size=args.neurons,
norm=args.norm,
activation=args.activation,
dropout=args.dropout
)
start_time = datetime.now()
model.fit(data_train, data_val, device=device, batch_size=args.batch_size, epochs=args.n_epochs,
lr=args.lr, lr_min=1e-3 * args.lr, weight_decay=args.weight_decay, early_stop=args.early_stop,
fname=folder + f'/{model.__class__.__name__}', verbose=args.verbose)
mid_time = datetime.now()
x_test = torch.from_numpy(x_test).float().to(device)
surv_test = model.predict_survival(x_test)
time_coordinates = model.time_bins
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
elif args.model == "MTLR":
model = MTLR(
n_features=args.n_features,
time_bins=discrete_bins,
hidden_size=args.neurons,
norm=args.norm,
activation=args.activation,
dropout=args.dropout
)
start_time = datetime.now()
model.fit(data_train, data_val, device=device, batch_size=args.batch_size, epochs=args.n_epochs,
lr=args.lr, lr_min=1e-3 * args.lr, weight_decay=args.weight_decay, early_stop=args.early_stop,
fname=folder + f'/{model.__class__.__name__}', verbose=args.verbose)
mid_time = datetime.now()
x_test = torch.from_numpy(x_test).float().to(device)
surv_test = model.predict_survival(x_test)
time_coordinates = model.time_bins
time_coordinates = pad_tensor(time_coordinates, 0, where='start')
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
elif args.model == "CQRNN":
model = CQRNN(
n_features=args.n_features,
hidden_size=args.neurons,
n_quantiles=args.n_quantiles,
norm=args.norm,
activation=args.activation,
dropout=args.dropout
)
start_time = datetime.now()
model.fit(data_train, data_val, device=device, batch_size=args.batch_size, epochs=args.n_epochs,
lr=args.lr, lr_min=1e-3 * args.lr, weight_decay=args.weight_decay, early_stop=args.early_stop,
fname=folder + f'/{model.__class__.__name__}', verbose=args.verbose)
mid_time = datetime.now()
x_test = torch.from_numpy(x_test).float().to(device)
quan_test = model.predict_quantiles(x_test)
# quan_test = pad_tensor(quan_test, 0, where='start') # for quantile = 0, the prediction is 0
quan_levels = model.quan_levels
# quan_levels = pad_tensor(quan_levels, 0, where='start')
quan_levels, quan_test = make_mono_quantiles(quan_levels.cpu().numpy(), quan_test.cpu().numpy(),
method=args.mono_method, seed=seed_i)
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
elif args.model == "LogNormalNN":
model = LogNormalNN(
n_features=args.n_features,
hidden_size=args.neurons,
norm=args.norm,
activation=args.activation,
dropout=args.dropout,
lam=args.lam
)
start_time = datetime.now()
model.fit(data_train, data_val, device=device, batch_size=args.batch_size, epochs=args.n_epochs,
lr=args.lr, lr_min=1e-3 * args.lr, weight_decay=args.weight_decay, early_stop=args.early_stop,
fname=folder + f'/{model.__class__.__name__}', verbose=args.verbose)
mid_time = datetime.now()
x_test = torch.from_numpy(x_test).float().to(device)
surv_test = model.predict_survival(x_test)
time_coordinates = model.time_bins
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
elif args.model == "DeepHit":
labtrans = DeepHitSingle.label_transform(discrete_bins.numpy())
net = tt.practical.MLPVanilla(in_features=args.n_features, num_nodes=args.neurons,
out_features=labtrans.out_features, batch_norm=args.norm,
dropout=args.dropout, activation=getattr(nn, args.activation))
model = DeepHitSingle(net, tt.optim.Adam, device=args.device, alpha=0.2, sigma=0.1, duration_index=labtrans.cuts)
model.label_transform = labtrans
y_train = model.label_transform.transform(*(t_train, e_train))
y_val = model.label_transform.transform(*(t_val, e_val))
val = (x_val, y_val)
val_size = x_val.shape[0]
model.optimizer.set_lr(args.lr)
model.optimizer.set('weight_decay', args.weight_decay)
if args.early_stop:
callbacks = [tt.callbacks.EarlyStopping()]
else:
callbacks = None
start_time = datetime.now()
model.fit(input=x_train, target=y_train, batch_size=args.batch_size, epochs=args.n_epochs,
callbacks=callbacks, verbose=args.verbose, val_data=val, val_batch_size=val_size)
mid_time = datetime.now()
surv_df = model.predict_surv_df(x_test)
time_coordinates = surv_df.index.values
surv_test = surv_df.values.T
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
elif args.model == "CoxTime":
labtrans = CoxTime.label_transform()
labtrans.fit(t_train, e_train)
net = MLPVanillaCoxTime(in_features=args.n_features, num_nodes=args.neurons, batch_norm=args.norm,
dropout=args.dropout, activation=getattr(nn, args.activation))
model = CoxTime(net, tt.optim.Adam, device=args.device, labtrans=labtrans)
model.label_transform = labtrans
y_train = model.label_transform.fit_transform(*(t_train, e_train))
y_val = model.label_transform.transform(*(t_val, e_val))
val = (x_val, y_val)
val_size = x_val.shape[0]
model.optimizer.set_lr(args.lr)
model.optimizer.set('weight_decay', args.weight_decay)
if args.early_stop:
callbacks = [tt.callbacks.EarlyStopping()]
else:
callbacks = None
start_time = datetime.now()
model.fit(input=x_train, target=y_train, batch_size=args.batch_size, epochs=args.n_epochs,
callbacks=callbacks, verbose=args.verbose, val_data=val, val_batch_size=val_size)
model.compute_baseline_hazards()
mid_time = datetime.now()
surv_df = model.predict_surv_df(x_test)
time_coordinates = surv_df.index.values
surv_test = surv_df.values.T
# add the initial time point
time_coordinates = np.concatenate([np.array([0]), time_coordinates], 0)
surv_test = np.concatenate([np.ones([surv_test.shape[0], 1]), surv_test], 1)
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
elif args.model == "GB":
y_train_val = np.empty(dtype=[('cens', bool), ('time', np.float64)], shape=t_train_val.shape[0])
y_train_val['cens'] = e_train_val
y_train_val['time'] = t_train_val
model = ComponentwiseGradientBoostingSurvivalAnalysis(loss='coxph', n_estimators=100, random_state=seed_i)
start_time = datetime.now()
model.fit(x_train_val, y_train_val)
mid_time = datetime.now()
pred_surv = model.predict_survival_function(x_test)
surv_test, time_coordinates = format_pred_sksurv(pred_surv)
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
elif args.model == "AFT":
model = WeibullAFTFitter(penalizer=0.01)
start_time = datetime.now()
model.fit(data_train_val, duration_col='time', event_col='event')
mid_time = datetime.now()
surv_df = model.predict_survival_function(data_test)
time_coordinates = surv_df.index.values
surv_test = surv_df.values.T
time_coordinates = np.concatenate([np.array([0]), time_coordinates], 0)
surv_test = np.concatenate([np.ones([surv_test.shape[0], 1]), surv_test], 1)
infer_time = (datetime.now() - mid_time).total_seconds()
train_time = (mid_time - start_time).total_seconds()
else:
raise ValueError(f"Unknown model name: {args.model}")
# evaluate the performance
if args.model != "CQRNN":
evaler = SurvivalEvaluator(surv_test, time_coordinates, t_test, e_test, t_train_val, e_train_val,
predict_time_method="Median", interpolation='Pchip')
else:
evaler = QuantileRegEvaluator(quan_test, quan_levels, t_test, e_test, t_train_val, e_train_val,
predict_time_method="Median", interpolation='Pchip')
c_index = evaler.concordance()[0]
ibs_score = evaler.integrated_brier_score(num_points=10)
hinge_abs = evaler.mae(method='Hinge', verbose=False)
po_abs = evaler.mae(method='Pseudo_obs', verbose=False)
hinge_sq = evaler.rmse(method='Hinge', verbose=False)
po_sq = evaler.rmse(method='Pseudo_obs', verbose=False)
km_cal_score = evaler.km_calibration()
_, dcal_hist = evaler.d_calibration()
xcal_score = xcal_from_hist(dcal_hist)
ci.append(c_index)
ibs.append(ibs_score)
mae_hinge.append(hinge_abs)
mae_po.append(po_abs)
rmse_hinge.append(hinge_sq)
rmse_po.append(po_sq)
km_cal.append(km_cal_score)
xcal_stats.append(xcal_score)
train_times.append(train_time)
infer_times.append(infer_time)
wandb.log({'C-index': c_index,
'IBS': ibs_score,
'MAE_Hinge': hinge_abs,
'MAE_PO': po_abs,
'RMSE_Hinge': hinge_sq,
'RMSE_PO': po_sq,
'KM-cal': km_cal_score,
'X-cal': xcal_score,
'train_time': train_time, # no calibration time for baseline models
'infer_time': infer_time})
print_performance(
path=path,
Cindex=ci,
IBS=ibs,
MAE_Hinge=mae_hinge,
MAE_PO=mae_po,
RMSE_Hinge=rmse_hinge,
RMSE_PO=rmse_po,
KM_cal=km_cal,
xCal_stats=xcal_stats,
train_times=train_times,
infer_times=infer_times
)
if __name__ == '__main__':
# enable for debugging
# torch.autograd.set_detect_anomaly(True)
args = generate_parser()
main(args)
wandb.finish()