This repository has been archived by the owner on Sep 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathtest_mot16.py
105 lines (84 loc) · 3.83 KB
/
test_mot16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# from tracker import SSTTracker
from sst_tracker import TrackSet as SSTTracker
import cv2
from data.mot_data_reader import MOTDataReader
import numpy as np
from config.config import config
from utils.timer import Timer
import argparse
import os
parser = argparse.ArgumentParser(description='Single Shot Joint Tracker Test')
parser.add_argument('--version', default='v1', help='current version')
parser.add_argument('--mot_root', default=config['mot_root'], help='MOT ROOT')
parser.add_argument('--type', default=config['type'], help='train/test')
parser.add_argument('--show_image', default=True, help='show image if true, or hidden')
parser.add_argument('--save_video', default=False, help='save video if true')
parser.add_argument('--mot_version', default=16, help='mot version')
args = parser.parse_args()
def test():
if args.type == 'train':
dataset_index = [2, 4, 5, 9, 10, 11, 13]
# dataset_index = [10]
dataset_detection_type = {'-DPM', '-FRCNN', '-SDP'}
dataset_detection_type = {'-FRCNN'}
if args.type == 'test':
# dataset_index = [1, 3, 6, 7, 8, 12, 14]
dataset_index = [3]
dataset_detection_type = {'-DPM', '-FRCNN', '-SDP'}
dataset_detection_type = {'-FRCNN'}
dataset_detection_type = {''}
dataset_image_folder_format = os.path.join(args.mot_root, args.type+'/MOT'+str(args.mot_version)+'-{:02}{}/img1')
detection_file_name_format=os.path.join(args.mot_root, args.type+'/MOT'+str(args.mot_version)+'-{:02}{}/det/det.txt')
saved_file_name_format = 'MOT'+str(args.mot_version)+'-{:02}{}.txt'
save_video_name_format = 'MOT'+str(args.mot_version)+'-{:02}{}.avi'
f = lambda format_str: [format_str.format(index, type) for type in dataset_detection_type for index in dataset_index]
timer = Timer()
for image_folder, detection_file_name, saved_file_name, save_video_name in zip(f(dataset_image_folder_format), f(detection_file_name_format), f(saved_file_name_format), f(save_video_name_format)):
print('start processing '+saved_file_name)
tracker = SSTTracker()
reader = MOTDataReader(image_folder = image_folder,
detection_file_name =detection_file_name)
i = 0
result = list()
result_str = saved_file_name
for item in reader:
i += 1
if i > len(reader):
break
if item is None:
continue
img = item[0]
det = item[1]
if img is None or det is None or len(det)==0:
continue
if len(det) > config['max_object']:
det = det[:config['max_object'], :]
h, w, _ = img.shape
if i == 1 and args.save_video:
vw = cv2.VideoWriter(save_video_name, cv2.VideoWriter_fourcc('M','J','P','G'), 10, (w, h))
det[:, [2,4]] /= float(w)
det[:, [3,5]] /= float(h)
timer.tic()
image_org = tracker.update(img, det[:, 2:6], args.show_image)
timer.toc()
print('{}:{}, {}\r'.format(saved_file_name, i, int(i*100/len(reader))))
if args.show_image and not image_org is None:
cv2.imshow('res', image_org)
cv2.waitKey(10)
if args.save_video and not image_org is None:
vw.write(image_org)
# save result
# for t in tracker.tracks:
# n = t.nodes[-1]
# if t.age == 1:
# b = n.box
# result.append(
# [i] + [t.id] + [b[0]*w, b[1]*h, b[2]*w, b[3]*h] + [-1, -1, -1, -1]
# )
# save data
np.savetxt(saved_file_name, np.array(result).astype(int), fmt='%i')
print(result_str)
print(timer.total_time)
print(timer.average_time)
if __name__ == '__main__':
test()