This repository has been archived by the owner on Sep 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathtracker.py
692 lines (584 loc) · 24.5 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
from layer.sst import build_sst
from config.config import config
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from scipy.optimize import linear_sum_assignment
import matplotlib.pyplot as plt
class TrackUtil:
@staticmethod
def convert_detection(detection):
'''
transform the current detection center to [-1, 1]
:param detection: detection
:return: translated detection
'''
# get the center, and format it in (-1, 1)
center = (2 * detection[:, 0:2] + detection[:, 2:4]) - 1.0
center = torch.from_numpy(center.astype(float)).float()
center.unsqueeze_(0)
center.unsqueeze_(2)
center.unsqueeze_(3)
if TrackerConfig.cuda:
return Variable(center.cuda())
return Variable(center)
@staticmethod
def convert_image(image):
'''
transform image to the FloatTensor (1, 3,size, size)
:param image: same as update parameter
:return: the transformed image FloatTensor (i.e. 1x3x900x900)
'''
image = cv2.resize(image, TrackerConfig.image_size).astype(np.float32)
image -= TrackerConfig.mean_pixel
image = torch.FloatTensor(image)
image = image.permute(2, 0, 1)
image.unsqueeze_(dim=0)
if TrackerConfig.cuda:
return Variable(image.cuda())
return Variable(image)
@staticmethod
def get_iou(pre_boxes, next_boxes):
h = len(pre_boxes)
w = len(next_boxes)
if h == 0 or w == 0:
return []
iou = np.zeros((h, w), dtype=float)
for i in range(h):
b1 = np.copy(pre_boxes[i, :])
b1[2:] = b1[:2] + b1[2:]
for j in range(w):
b2 = np.copy(next_boxes[j, :])
b2[2:] = b2[:2] + b2[2:]
delta_h = min(b1[2], b2[2]) - max(b1[0], b2[0])
delta_w = min(b1[3], b2[3])-max(b1[1], b2[1])
if delta_h < 0 or delta_w < 0:
expand_area = (max(b1[2], b2[2]) - min(b1[0], b2[0])) * (max(b1[3], b2[3]) - min(b1[1], b2[1]))
area = (b1[2] - b1[0]) * (b1[3] - b1[1]) + (b2[2] - b2[0]) * (b2[3] - b2[1])
iou[i,j] = -(expand_area - area) / area
else:
overlap = delta_h * delta_w
area = (b1[2]-b1[0])*(b1[3]-b1[1]) + (b2[2]-b2[0])*(b2[3]-b2[1]) - max(overlap, 0)
iou[i,j] = overlap / area
return iou
@staticmethod
def get_node_similarity(n1, n2, frame_index, recorder):
if n1.frame_index > n2.frame_index:
n_max = n1
n_min = n2
elif n1.frame_index < n2.frame_index:
n_max = n2
n_min = n1
else: # in the same frame_index
return None
f_max = n_max.frame_index
f_min = n_min.frame_index
# not recorded in recorder
if frame_index - f_min >= TrackerConfig.max_track_node:
return None
return recorder.all_similarity[f_max][f_min][n_min.id, n_max.id]
@staticmethod
def get_merge_similarity(t1, t2, frame_index, recorder):
'''
Get the similarity between two tracks
:param t1: track 1
:param t2: track 2
:param frame_index: current frame_index
:param recorder: recorder
:return: the similairty (float value). if valid, return None
'''
merge_value = []
if t1 is t2:
return None
all_f1 = [n.frame_index for n in t1.nodes]
all_f2 = [n.frame_index for n in t2.nodes]
for i, f1 in enumerate(all_f1):
for j, f2 in enumerate(all_f2):
compare_f = [f1 + 1, f1 - 1]
for f in compare_f:
if f not in all_f1 and f == f2:
n1 = t1.nodes[i]
n2 = t2.nodes[j]
s = TrackUtil.get_node_similarity(n1, n2, frame_index, recorder)
if s is None:
continue
merge_value += [s]
if len(merge_value) == 0:
return None
return np.mean(np.array(merge_value))
@staticmethod
def merge(t1, t2):
'''
merge t2 to t1, after that t2 is set invalid
:param t1: track 1
:param t2: track 2
:return: None
'''
all_f1 = [n.frame_index for n in t1.nodes]
all_f2 = [n.frame_index for n in t2.nodes]
for i, f2 in enumerate(all_f2):
if f2 not in all_f1:
insert_pos = 0
for j, f1 in enumerate(all_f1):
if f2 < f1:
break
insert_pos += 1
t1.nodes.insert(insert_pos, t2.nodes[i])
# remove some nodes in t1 in order to keep t1 satisfy the max nodes
if len(t1.nodes) > TrackerConfig.max_track_node:
t1.nodes = t1.nodes[-TrackerConfig.max_track_node:]
t1.age = min(t1.age, t2.age)
t2.valid = False
class TrackerConfig:
max_record_frame = 30
max_track_age = 30
max_track_node = 30
max_draw_track_node = 30
max_object = config['max_object']
sst_model_path = config['resume']
cuda = config['cuda']
mean_pixel = config['mean_pixel']
image_size = (config['sst_dim'], config['sst_dim'])
min_iou_frame_gap = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
min_iou = [0.3, 0.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -7.0]
# min_iou = [pow(0.3, i) for i in min_iou_frame_gap]
min_merge_threshold = 0.9
max_bad_node = 0.9
decay = 0.995
roi_verify_max_iteration = 2
roi_verify_punish_rate = 0.6
@staticmethod
def set_configure(all_choice):
min_iou_frame_gaps = [
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
]
min_ious = [
# [0.4, 0.3, 0.25, 0.2, 0.1, 0.0, -1.0, -2.0, -3.0, -4.0, -4.5, -5.0, -5.5, -6.0, -6.5, -7.0],
[0.3, 0.1, 0.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0],
[0.3, 0.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -7.0],
[0.2, 0.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -7.0],
[0.1, 0.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -7.0],
[-1.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0],
[0.4, 0.3, 0.25, 0.2, 0.1, 0.0, -1.0, -2.0, -3.0, -4.0, -4.5, -5.0, -5.5, -6.0, -6.5, -7.0],
]
decays = [1-0.01*i for i in range(11)]
roi_verify_max_iterations = [2, 3, 4, 5, 6]
roi_verify_punish_rates = [0.6, 0.4, 0.2, 0.1, 0.0, 1.0]
max_track_ages = [i*3 for i in range(1,11)]
max_track_nodes = [i*3 for i in range(1,11)]
if all_choice is None:
return
TrackerConfig.min_iou_frame_gap = min_iou_frame_gaps[all_choice[0]]
TrackerConfig.min_iou = min_ious[all_choice[0]]
TrackerConfig.decay = decays[all_choice[1]]
TrackerConfig.roi_verify_max_iteration = roi_verify_max_iterations[all_choice[2]]
TrackerConfig.roi_verify_punish_rate = roi_verify_punish_rates[all_choice[3]]
TrackerConfig.max_track_age = max_track_ages[all_choice[4]]
TrackerConfig.max_track_node = max_track_nodes[all_choice[5]]
@staticmethod
def get_configure_str(all_choice):
return "{}_{}_{}_{}_{}_{}".format(all_choice[0], all_choice[1], all_choice[2], all_choice[3], all_choice[4], all_choice[5])
@staticmethod
def get_all_choices():
# return [(1, 1, 0, 0, 4, 2)]
return [(i1, i2, i3, i4, i5, i6) for i1 in range(5) for i2 in range(5) for i3 in range(5) for i4 in range(5) for i5 in range(5) for i6 in range(5)]
@staticmethod
def get_all_choices_decay():
return [(1, i2, 0, 0, 4, 2) for i2 in range(11)]
@staticmethod
def get_all_choices_max_track_node():
return [(1, i2, 0, 0, 4, 2) for i2 in range(11)]
@staticmethod
def get_choices_age_node():
return [(0, 0, 0, 0, a, n) for a in range(10) for n in range(10)]
@staticmethod
def get_ua_choice():
return (5, 0, 4, 1, 5, 5)
class FeatureRecorder:
'''
Record features and boxes every frame
'''
def __init__(self):
self.max_record_frame = TrackerConfig.max_record_frame
self.all_frame_index = np.array([], dtype=int)
self.all_features = {}
self.all_boxes = {}
self.all_similarity = {}
self.all_iou = {}
def update(self, sst, frame_index, features, boxes):
# if the coming frame in the new frame
if frame_index not in self.all_frame_index:
# if the recorder have reached the max_record_frame.
if len(self.all_frame_index) == self.max_record_frame:
del_frame = self.all_frame_index[0]
del self.all_features[del_frame]
del self.all_boxes[del_frame]
del self.all_similarity[del_frame]
del self.all_iou[del_frame]
self.all_frame_index = self.all_frame_index[1:]
# add new item for all_frame_index, all_features and all_boxes. Besides, also add new similarity
self.all_frame_index = np.append(self.all_frame_index, frame_index)
self.all_features[frame_index] = features
self.all_boxes[frame_index] = boxes
self.all_similarity[frame_index] = {}
for pre_index in self.all_frame_index[:-1]:
delta = pow(TrackerConfig.decay, (frame_index - pre_index)/3.0)
pre_similarity = sst.forward_stacker_features(Variable(self.all_features[pre_index]), Variable(features), fill_up_column=False)
self.all_similarity[frame_index][pre_index] = pre_similarity*delta
self.all_iou[frame_index] = {}
for pre_index in self.all_frame_index[:-1]:
iou = TrackUtil.get_iou(self.all_boxes[pre_index], boxes)
self.all_iou[frame_index][pre_index] = iou
else:
self.all_features[frame_index] = features
self.all_boxes[frame_index] = boxes
index = self.all_frame_index.__index__(frame_index)
for pre_index in self.all_frame_index[:index+1]:
if pre_index == self.all_frame_index[-1]:
continue
pre_similarity = sst.forward_stacker_features(Variable(self.all_features[pre_index]), Variable(self.all_features[-1]))
self.all_similarity[frame_index][pre_index] = pre_similarity
iou = TrackUtil.get_iou(self.all_boxes[pre_index], boxes)
self.all_similarity[frame_index][pre_index] = iou
def get_feature(self, frame_index, detection_index):
'''
get the feature by the specified frame index and detection index
:param frame_index: start from 0
:param detection_index: start from 0
:return: the corresponding feature at frame index and detection index
'''
if frame_index in self.all_frame_index:
features = self.all_features[frame_index]
if len(features) == 0:
return None
if detection_index < len(features):
return features[detection_index]
return None
def get_box(self, frame_index, detection_index):
if frame_index in self.all_frame_index:
boxes = self.all_boxes[frame_index]
if len(boxes) == 0:
return None
if detection_index < len(boxes):
return boxes[detection_index]
return None
def get_features(self, frame_index):
if frame_index in self.all_frame_index:
features = self.all_features[frame_index]
else:
return None
if len(features) == 0:
return None
return features
def get_boxes(self, frame_index):
if frame_index in self.all_frame_index:
boxes = self.all_boxes[frame_index]
else:
return None
if len(boxes) == 0:
return None
return boxes
class Node:
'''
The Node is the basic element of a track. it contains the following information:
1) extracted feature (it'll get removed when it isn't active
2) box (a box (l, t, r, b)
3) label (active label indicating keeping the features)
4) detection, the formated box
'''
def __init__(self, frame_index, id):
self.frame_index = frame_index
self.id = id
def get_box(self, frame_index, recoder):
if frame_index - self.frame_index >= TrackerConfig.max_record_frame:
return None
return recoder.all_boxes[self.frame_index][self.id, :]
def get_iou(self, frame_index, recoder, box_id):
if frame_index - self.frame_index >= TrackerConfig.max_track_node:
return None
return recoder.all_iou[frame_index][self.frame_index][self.id, box_id]
class Track:
'''
Track is the class of track. it contains all the node and manages the node. it contains the following information:
1) all the nodes
2) track id. it is unique it identify each track
3) track pool id. it is a number to give a new id to a new track
4) age. age indicates how old is the track
5) max_age. indicates the dead age of this track
'''
_id_pool = 0
def __init__(self):
self.nodes = list()
self.id = Track._id_pool
Track._id_pool += 1
self.age = 0
self.valid = True # indicate this track is merged
self.color = tuple((np.random.rand(3) * 255).astype(int).tolist())
def __del__(self):
for n in self.nodes:
del n
def add_age(self):
self.age += 1
def reset_age(self):
self.age = 0
def add_node(self, frame_index, recorder, node):
# iou judge
if len(self.nodes) > 0:
n = self.nodes[-1]
iou = n.get_iou(frame_index, recorder, node.id)
delta_frame = frame_index - n.frame_index
if delta_frame in TrackerConfig.min_iou_frame_gap:
iou_index = TrackerConfig.min_iou_frame_gap.index(delta_frame)
# if iou < TrackerConfig.min_iou[iou_index]:
if iou < TrackerConfig.min_iou[-1]:
return False
self.nodes.append(node)
self.reset_age()
return True
def get_similarity(self, frame_index, recorder):
similarity = []
for n in self.nodes:
f = n.frame_index
id = n.id
if frame_index - f >= TrackerConfig.max_track_node:
continue
similarity += [recorder.all_similarity[frame_index][f][id, :]]
if len(similarity) == 0:
return None
a = np.array(similarity)
return np.sum(np.array(similarity), axis=0)
def verify(self, frame_index, recorder, box_id):
for n in self.nodes:
delta_f = frame_index - n.frame_index
if delta_f in TrackerConfig.min_iou_frame_gap:
iou_index = TrackerConfig.min_iou_frame_gap.index(delta_f)
iou = n.get_iou(frame_index, recorder, box_id)
if iou is None:
continue
if iou < TrackerConfig.min_iou[iou_index]:
return False
return True
class Tracks:
'''
Track set. It contains all the tracks and manage the tracks. it has the following information
1) tracks. the set of tracks
2) keep the previous image and features
'''
def __init__(self):
self.tracks = list() # the set of tracks
self.max_drawing_track = TrackerConfig.max_draw_track_node
def __getitem__(self, item):
return self.tracks[item]
def append(self, track):
self.tracks.append(track)
self.volatile_tracks()
def volatile_tracks(self):
if len(self.tracks) > TrackerConfig.max_object:
# start to delete the most oldest tracks
all_ages = [t.age for t in self.tracks]
oldest_track_index = np.argmax(all_ages)
del self.tracks[oldest_track_index]
def get_track_by_id(self, id):
for t in self.tracks:
if t.id == id:
return t
return None
def get_similarity(self, frame_index, recorder):
ids = []
similarity = []
for t in self.tracks:
s = t.get_similarity(frame_index, recorder)
if s is None:
continue
similarity += [s]
ids += [t.id]
similarity = np.array(similarity)
track_num = similarity.shape[0]
if track_num > 0:
box_num = similarity.shape[1]
else:
box_num = 0
if track_num == 0 :
return np.array(similarity), np.array(ids)
similarity = np.repeat(similarity, [1]*(box_num-1)+[track_num], axis=1)
return np.array(similarity), np.array(ids)
def one_frame_pass(self):
keep_track_set = list()
for i, t in enumerate(self.tracks):
t.add_age()
if t.age > TrackerConfig.max_track_age:
continue
keep_track_set.append(i)
self.tracks = [self.tracks[i] for i in keep_track_set]
def merge(self, frame_index, recorder):
t_l = len(self.tracks)
res = np.zeros((t_l, t_l), dtype=float)
# get track similarity matrix
for i, t1 in enumerate(self.tracks):
for j, t2 in enumerate(self.tracks):
s = TrackUtil.get_merge_similarity(t1, t2, frame_index, recorder)
if s is None:
res[i, j] = 0
else:
res[i, j] = s
# get the track pair which needs merged
used_indexes = []
merge_pair = []
for i, t1 in enumerate(self.tracks):
if i in used_indexes:
continue
max_track_index = np.argmax(res[i, :])
if i != max_track_index and res[i, max_track_index] > TrackerConfig.min_merge_threshold:
used_indexes += [max_track_index]
merge_pair += [(i, max_track_index)]
# start merge
for i, j in merge_pair:
TrackUtil.merge(self.tracks[i], self.tracks[j])
# remove the invalid tracks
self.tracks = [t for t in self.tracks if t.valid]
def show(self, frame_index, recorder, image):
h, w, _ = image.shape
# draw rectangle
for t in self.tracks:
if len(t.nodes) > 0 and t.age < 2:
b = t.nodes[-1].get_box(frame_index, recorder)
if b is None:
continue
txt = '({}, {})'.format(t.id, t.nodes[-1].id)
image = cv2.putText(image, txt, (int(b[0]*w),int((b[1])*h)), cv2.FONT_HERSHEY_SIMPLEX, 1, t.color, 3)
image = cv2.rectangle(image, (int(b[0]*w),int((b[1])*h)), (int((b[0]+b[2])*w), int((b[1]+b[3])*h)), t.color, 2)
# draw line
for t in self.tracks:
if t.age > 1:
continue
if len(t.nodes) > self.max_drawing_track:
start = len(t.nodes) - self.max_drawing_track
else:
start = 0
for n1, n2 in zip(t.nodes[start:], t.nodes[start+1:]):
b1 = n1.get_box(frame_index, recorder)
b2 = n2.get_box(frame_index, recorder)
if b1 is None or b2 is None:
continue
c1 = (int((b1[0] + b1[2]/2.0)*w), int((b1[1] + b1[3])*h))
c2 = (int((b2[0] + b2[2] / 2.0) * w), int((b2[1] + b2[3]) * h))
image = cv2.line(image, c1, c2, t.color, 2)
return image
# The tracker is compatible with pytorch (cuda)
class SSTTracker:
def __init__(self):
Track._id_pool = 0
self.first_run = True
self.image_size = TrackerConfig.image_size
self.model_path = TrackerConfig.sst_model_path
self.cuda = TrackerConfig.cuda
self.mean_pixel = TrackerConfig.mean_pixel
self.max_object = TrackerConfig.max_object
self.frame_index = 0
self.load_model()
self.recorder = FeatureRecorder()
self.tracks = Tracks()
def load_model(self):
# load the model
self.sst = build_sst('test', 900)
if self.cuda:
cudnn.benchmark = True
self.sst.load_state_dict(torch.load(config['resume']))
self.sst = self.sst.cuda()
else:
self.sst.load_state_dict(torch.load(config['resume'], map_location='cpu'))
self.sst.eval()
def update(self, image, detection, show_image, frame_index, force_init=False):
'''
Update the state of tracker, the following jobs should be done:
1) extract the features
2) stack the features together
3) get the similarity matrix
4) do assignment work
5) save the previous image
:param image: the opencv readed image, format is hxwx3
:param detections: detection array. numpy array (l, r, w, h) and they all formated in (0, 1)
'''
self.frame_index = frame_index
# format the image and detection
h, w, _ = image.shape
image_org = np.copy(image)
image = TrackUtil.convert_image(image)
detection_org = np.copy(detection)
detection = TrackUtil.convert_detection(detection)
# features can be (1, 10, 450)
features = self.sst.forward_feature_extracter(image, detection)
# update recorder
self.recorder.update(self.sst, self.frame_index, features.data, detection_org)
if self.frame_index == 0 or force_init or len(self.tracks.tracks) == 0:
for i in range(detection.shape[1]):
t = Track()
n = Node(self.frame_index, i)
t.add_node(self.frame_index, self.recorder, n)
self.tracks.append(t)
self.tracks.one_frame_pass()
# self.frame_index += 1
return self.tracks.show(self.frame_index, self.recorder, image_org)
# get tracks similarity
y, ids = self.tracks.get_similarity(self.frame_index, self.recorder)
if len(y) > 0:
#3) find the corresponding by the similar matrix
row_index, col_index = linear_sum_assignment(-y)
col_index[col_index >= detection_org.shape[0]] = -1
# verification by iou
verify_iteration = 0
while verify_iteration < TrackerConfig.roi_verify_max_iteration:
is_change_y = False
for i in row_index:
box_id = col_index[i]
track_id = ids[i]
if box_id < 0:
continue
t = self.tracks.get_track_by_id(track_id)
if not t.verify(self.frame_index, self.recorder, box_id):
y[i, box_id] *= TrackerConfig.roi_verify_punish_rate
is_change_y = True
if is_change_y:
row_index, col_index = linear_sum_assignment(-y)
col_index[col_index >= detection_org.shape[0]] = -1
else:
break
verify_iteration += 1
print(verify_iteration)
#4) update the tracks
for i in row_index:
track_id = ids[i]
t = self.tracks.get_track_by_id(track_id)
col_id = col_index[i]
if col_id < 0:
continue
node = Node(self.frame_index, col_id)
t.add_node(self.frame_index, self.recorder, node)
#5) add new track
for col in range(len(detection_org)):
if col not in col_index:
node = Node(self.frame_index, col)
t = Track()
t.add_node(self.frame_index, self.recorder, node)
self.tracks.append(t)
# remove the old track
self.tracks.one_frame_pass()
# merge the tracks
# if self.frame_index % 20 == 0:
# self.tracks.merge(self.frame_index, self.recorder)
# if show_image:
image_org = self.tracks.show(self.frame_index, self.recorder, image_org)
# self.frame_index += 1
return image_org
# self.frame_index += 1
# image_org = cv2.resize(image_org, (320, 240))
# vw.write(image_org)
# plt.imshow(image_org)