This repository has been archived by the owner on Sep 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathtrain_mot15.py
234 lines (186 loc) · 9.31 KB
/
train_mot15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import argparse
from torch.autograd import Variable
import torch.utils.data as data
import numpy as np
import cv2
from data.mot import MOTTrainDataset
from config.config import config
from layer.sst import build_sst
from utils.augmentations import SSJAugmentation, collate_fn
from layer.sst_loss import SSTLoss
import time
import torchvision.utils as vutils
from utils.operation import show_circle, show_batch_circle_image
str2bool = lambda v: v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='Single Shot Joint Tracker Train')
parser.add_argument('--version', default='v1', help='current version')
parser.add_argument('--basenet', default=config['base_net_folder'], help='pretrained base model')
parser.add_argument('--matching_threshold', default=0.5, type=float, help='Min Jaccard index for matching')
parser.add_argument('--batch_size', default=config['batch_size'], type=int, help='Batch size for training')
parser.add_argument('--resume', default=config['resume'], type=str, help='Resume from checkpoint')
parser.add_argument('--num_workers', default=config['num_workers'], type=int, help='Number of workers used in dataloading')
parser.add_argument('--iterations', default=config['iterations'], type=int, help='Number of training iterations')
parser.add_argument('--start_iter', default=config['start_iter'], type=int, help='Begin counting iterations starting from this value (used with resume)')
parser.add_argument('--cuda', default=config['cuda'], type=str2bool, help='Use cuda to train model')
parser.add_argument('--lr', '--learning-rate', default=config['learning_rate'], type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--log_iters', default=True, type=bool, help='Print the loss at each iteration')
parser.add_argument('--tensorboard',default=True, type=str2bool, help='Use tensor board x for loss visualization')
parser.add_argument('--port', default=6006, type=int, help='set vidom port')
parser.add_argument('--send_images', type=str2bool, default=True, help='Sample a random image from each 10th batch, send it to visdom after augmentations step')
parser.add_argument('--save_folder', default=config['save_folder'], help='Location to save checkpoint models')
parser.add_argument('--mot_root', default=config['mot_root'], help='Location of VOC root directory')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
if 'save_images_folder' in config and not os.path.exists(config['save_images_folder']):
os.mkdir(config['save_images_folder'])
sst_dim = config['sst_dim']
means = config['mean_pixel']
batch_size = args.batch_size
max_iter = args.iterations
weight_decay = args.weight_decay
if 'learning_rate_decay_by_epoch' in config:
stepvalues = list((config['epoch_size'] * i for i in config['learning_rate_decay_by_epoch']))
save_weights_iteration = config['save_weight_every_epoch_num'] * config['epoch_size']
else:
stepvalues = (90000, 95000)
save_weights_iteration = 5000
gamma = args.gamma
momentum = args.momentum
if args.tensorboard:
from tensorboardX import SummaryWriter
if not os.path.exists(config['log_folder']):
os.mkdir(config['log_folder'])
writer = SummaryWriter(log_dir=config['log_folder'])
sst_net = build_sst('train')
net = sst_net
if args.cuda:
net = torch.nn.DataParallel(sst_net)
cudnn.benchmark = True
if args.resume:
print('Resuming training, loading {}...'.format(args.resume))
sst_net.load_weights(args.resume)
else:
vgg_weights = torch.load(args.basenet)
print('Loading the base network...')
sst_net.vgg.load_state_dict(vgg_weights)
if args.cuda:
net = net.cuda()
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
m.bias.data.zero_()
if not args.resume:
print('Initializing weights...')
sst_net.extras.apply(weights_init)
sst_net.selector.apply(weights_init)
sst_net.final_net.apply(weights_init)
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
criterion = SSTLoss(args.cuda)
def train():
net.train()
current_lr = config['learning_rate']
print('Loading Dataset...')
dataset = MOTTrainDataset(args.mot_root,
SSJAugmentation(
sst_dim, means
)
)
epoch_size = len(dataset) // args.batch_size
print('Training SSJ on', dataset.dataset_name)
step_index = 0
batch_iterator = None
data_loader = data.DataLoader(dataset, batch_size,
num_workers=args.num_workers,
shuffle=True,
collate_fn=collate_fn,
pin_memory=False)
for iteration in range(args.start_iter, max_iter):
if (not batch_iterator) or (iteration % epoch_size == 0):
# create batch iterator
batch_iterator = iter(data_loader)
all_epoch_loss = []
if iteration in stepvalues:
step_index += 1
current_lr = adjust_learning_rate(optimizer, args.gamma, step_index)
# load train data
img_pre, img_next, boxes_pre, boxes_next, labels, valid_pre, valid_next=\
next(batch_iterator)
if args.cuda:
img_pre = Variable(img_pre.cuda())
img_next = Variable(img_next.cuda())
boxes_pre = Variable(boxes_pre.cuda())
boxes_next = Variable(boxes_next.cuda())
valid_pre = Variable(valid_pre.cuda(), volatile=True)
valid_next = Variable(valid_next.cuda(), volatile=True)
labels = Variable(labels.cuda(), volatile=True)
else:
img_pre = Variable(img_pre)
img_next = Variable(img_next)
boxes_pre = Variable(boxes_pre)
boxes_next = Variable(boxes_next)
valid_pre = Variable(valid_pre)
valid_next = Variable(valid_next)
labels = Variable(labels, volatile=True)
# forward
t0 = time.time()
out = net(img_pre, img_next, boxes_pre, boxes_next, valid_pre, valid_next)
optimizer.zero_grad()
loss_pre, loss_next, loss_similarity, loss, accuracy_pre, accuracy_next, accuracy, predict_indexes = criterion(out, labels, valid_pre, valid_next)
loss.backward()
optimizer.step()
t1 = time.time()
all_epoch_loss += [loss.data.cpu()]
if iteration % 10 == 0:
print('Timer: %.4f sec.' % (t1 - t0))
print('iter ' + repr(iteration) + ', ' + repr(epoch_size) + ' || epoch: %.4f ' % (iteration/(float)(epoch_size)) + ' || Loss: %.4f ||' % (loss.data[0]), end=' ')
if args.tensorboard:
if len(all_epoch_loss) > 30:
writer.add_scalar('data/epoch_loss', float(np.mean(all_epoch_loss)), iteration)
writer.add_scalar('data/learning_rate', current_lr, iteration)
writer.add_scalar('loss/loss', loss.data.cpu(), iteration)
writer.add_scalar('loss/loss_pre', loss_pre.data.cpu(), iteration)
writer.add_scalar('loss/loss_next', loss_next.data.cpu(), iteration)
writer.add_scalar('loss/loss_similarity', loss_similarity.data.cpu(), iteration)
writer.add_scalar('accuracy/accuracy', accuracy.data.cpu(), iteration)
writer.add_scalar('accuracy/accuracy_pre', accuracy_pre.data.cpu(), iteration)
writer.add_scalar('accuracy/accuracy_next', accuracy_next.data.cpu(), iteration)
# add weights
if iteration % 1000 == 0:
for name, param in net.named_parameters():
writer.add_histogram(name, param.clone().cpu().data.numpy(), iteration)
# add images
if args.send_images and iteration % 1000 == 0:
result_image = show_batch_circle_image(img_pre, img_next, boxes_pre, boxes_next, valid_pre, valid_next, predict_indexes, iteration)
writer.add_image('WithLabel/ImageResult', vutils.make_grid(result_image, nrow=2, normalize=True, scale_each=True), iteration)
if iteration % save_weights_iteration == 0:
print('Saving state, iter:', iteration)
torch.save(sst_net.state_dict(),
os.path.join(
args.save_folder,
'sst300_0712_' + repr(iteration) + '.pth'))
torch.save(sst_net.state_dict(), args.save_folder + '' + args.version + '.pth')
def adjust_learning_rate(optimizer, gamma, step):
"""Sets the learning rate to the initial LR decayed by 10 at every specified step
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
lr = args.lr * (gamma ** (step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
train()