-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJohnsonAPSP.cpp
1739 lines (1557 loc) · 51.6 KB
/
JohnsonAPSP.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include<bits/stdc++.h>
#include <time.h>
using namespace std;
struct vertex;
struct edge;
struct binomialheap;
struct fibheap;
struct vertex{
int val; // the value of this node / index of this node
edge* ed[100000]; // array of edges
int ctr; // total no. of edges
int inci; // the no. of incident edges on this node
int visi; // wether this node is visited yet or not
int indeg;
int dist; // the distance of this node from the given source
int fintime;
int posinbinheap; // the position of this node in the binary heap array/vertex
int funch; // the bellman ford value of distance from the additional node added
binomialheap* binomialnode;
fibheap* fibnode;
};
struct edge{
vertex* tail; // pointer to vertex that is at the tail
vertex* head; // pointer to the vertex that is at the head
int type; // the type of edge i.e forward , backward etc.
int weight; // the weight associated with this edge
};
struct binomialheap{
int rank=-1; // rank is -1 if there are no children and rank increases as children increase
binomialheap* children[100]; //here throughout the code the children are stored such that if the rank[jth child] < rank[ith child] then j < i
binomialheap* parent; // pointer to parent binomial node
vertex* node; // pointer to the graph vertex contained in the is binomial node
};
struct fibheap{
int rank=-1; // rank is -1 if there are no children and rank increases as children increase
list <fibheap*> children; //here throughout the code the children are stored such that if the rank[jth child] < rank[ith child] then j < i
fibheap* parent=NULL; // pointer to parent fibonacci node
vertex* node; // pointer to the graph vertex contained in the is fibonacci node
int loser=0; // if one of it's child is cut then loser is 1 , else it is 0 ,and if loser is 1 and another child is cut then the entire node is cut and put in the list
list<fibheap*>::iterator parentit; // if parent is not NULL then this will point to the location of itself in the parent's list of children
};
//bEllman ford stuff:-
int belford(vertex v[],int sizev,int sizee)
{
vertex* src;
vertex vnew;
edge e[sizev];
vnew.val=sizev+1;
vnew.ctr=0;
vnew.visi=0;
vnew.inci=-1;
vnew.indeg=0;
vnew.dist=999999;
vnew.fintime=-1;
for(int i=0;i<sizev;i++)
{
e[i].tail=&vnew;
e[i].head=&v[i];
e[i].type=0;
e[i].weight=0;
v[i].ed[v[i].ctr++]=&e[i];
vnew.ed[vnew.ctr++]=&e[i];
v[i].indeg++;
}
int temp2,flag,ctr,ctr2;
ctr2=0;
ctr=0;
int j;
src=&vnew;
for(j=0;j<=sizev+1;j++)
{
flag=0;
for(int i=0;i<sizev;i++)
{
v[i].visi=0;
}
queue <vertex*> q;
vertex* temp;
src->visi=1;
src->dist=0;
q.push(src);
while(!q.empty())
{
temp=q.front();
q.pop();
for(int i=0;i<temp->ctr;i++)
{
if((temp->ed[i])->head==temp)
{
continue;
}
else if((temp->ed[i])->tail==temp)
{
if((temp->ed[i])->head->visi==0)
{
(temp->ed[i])->head->visi=1;
q.push((temp->ed[i])->head);
}
temp2=((temp->ed[i])->head)->dist;
ctr2++;
((temp->ed[i])->head)->dist=min(((temp->ed[i])->head)->dist,(((temp->ed[i])->tail)->dist)+(temp->ed[i]->weight));
if(temp2!=((temp->ed[i])->head)->dist)
{
ctr++;
flag=1;
}
}
}
}
if(flag==0)
{
break;
}
}
if(flag==1)
{
return -1;
}
else if(flag==0)
{
for(int i=0;i<sizev;i++)
{
v[i].ctr--;
v[i].funch=v[i].dist;
v[i].dist=999999;
v[i].visi=0;
}
}
return 0;
}
// bellman ford stuff ends
//array stuff
void dijkstraarray(vertex v[],int s,int sizev)
{
int source=s-1;
vector<vertex*>v1;
vertex* temp;
v[source].dist=0;
for(int i=0;i<sizev;i++)
{
temp=&v[i];
v1.push_back(temp);
}
int intermediatesize=sizev-1;
int k=0;
while(k!=intermediatesize+1)
{
vertex* temp2;
for(int i=k;i<=intermediatesize;i++) // simple code for sorting
{
for(int j=k;j<=intermediatesize;j++)
{
if(j==intermediatesize)
{
break;
}
if(v1[j]->dist>v1[j+1]->dist)
{
temp2=v1[j+1];
v1[j+1]=v1[j];
v1[j]=temp2;
}
else if(v1[j]->dist==v1[j+1]->dist)
{
if(v1[j]->val>v1[j+1]->val)
{
temp2=v1[j+1];
v1[j+1]=v1[j];
v1[j]=temp2;
}
}
}
}
temp=v1[k];
temp->visi=1;
k++;
int j;
for(int i=0;i<temp->ctr;i++)
{
if((temp->ed[i])->tail==temp&&(temp->ed[i])->head->visi==0)
{
((temp->ed[i])->head)->dist=min(((temp->ed[i])->head)->dist,(((temp->ed[i])->tail)->dist)+(temp->ed[i]->weight));
}
}
}
for(int i=0;i<sizev;i++)
{
if(v[i].dist!=999999)
{
printf("%d ",v[i].dist-(v[source].funch)+v[i].funch);
}
else
{
printf("%d ",v[i].dist);
}
}
printf("\n");
}
void dijkstraundirarray(vertex v[],int s,int sizev)
{
int source=s-1;
vector<vertex*>v1;
vertex* temp;
v[source].dist=0;
for(int i=0;i<sizev;i++)
{
temp=&v[i];
v1.push_back(temp);
}
int intermediatesize=sizev-1;
int k=0;
while(k!=intermediatesize+1)
{
vertex* temp2;
for(int i=k;i<=intermediatesize;i++) // simple code for sorting
{
for(int j=k;j<=intermediatesize;j++)
{
if(j==intermediatesize)
{
break;
}
if(v1[j]->dist>v1[j+1]->dist)
{
temp2=v1[j+1];
v1[j+1]=v1[j];
v1[j]=temp2;
}
else if(v1[j]->dist==v1[j+1]->dist)
{
if(v1[j]->val>v1[j+1]->val)
{
temp2=v1[j+1];
v1[j+1]=v1[j];
v1[j]=temp2;
}
}
}
}
temp=v1[k];
temp->visi=1;
k++;
for(int i=0;i<temp->ctr;i++)
{
if((temp->ed[i])->tail==temp&&(temp->ed[i])->head->visi==0)
{
((temp->ed[i])->head)->dist=min(((temp->ed[i])->head)->dist,(((temp->ed[i])->tail)->dist)+(temp->ed[i]->weight));
}
else if((temp->ed[i])->head==temp&&(temp->ed[i])->tail->visi==0)
{
((temp->ed[i])->tail)->dist=min(((temp->ed[i])->tail)->dist,(((temp->ed[i])->head)->dist)+(temp->ed[i]->weight));
}
}
}
for(int i=0;i<sizev;i++)
{
printf("%d ",v[i].dist);
}
printf("\n");
}
//array stuff ends
// Binary Heap Stuff
struct func{
bool operator()(vertex* a,vertex* b) const{
return (a->dist)>(b->dist);
}
};
void percolatebinheap(int loc, vector<vertex *> &v1, int downoup, int heapsize)
{
vertex* temp2;
if(downoup==1) //precolating down
{
while((2*loc)+1<=heapsize) //ensures that this node has children
{
if((2*loc)+2>heapsize) //if has only 1 child
{
if(v1[loc]->dist<v1[(2*loc)+1]->dist) //if the child's value is bigger
{
break;
}
else if(v1[loc]->dist==v1[(2*loc)+1]->dist) //if child's dist value is same then considering the lexicographically smaller one as the one to be above
{
if(v1[loc]->val<v1[(2*loc)+1]->val)
{
break;
}
else
{
temp2=v1[(2*loc)+1];
v1[(2*loc)+1]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+1;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+1;
}
}
else //child's dist value is smaller
{
temp2=v1[(2*loc)+1];
v1[(2*loc)+1]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+1;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+1;
}
continue;
}
if(v1[loc]->dist<v1[(2*loc)+1]->dist&&v1[loc]->dist<v1[(2*loc)+2]->dist) // the dist value of parent is smaller than both the children
{
break;
}
else
{
if(v1[(2*loc)+1]->dist<v1[(2*loc)+2]->dist) //looking at the child with the smaller dist value
{
if(v1[loc]->dist==v1[(2*loc)+1]->dist) //if that dist value is equal to the parent then lexicographically
{
if(v1[loc]->val<v1[(2*loc)+1]->val)
{
break;
}
else
{
temp2=v1[(2*loc)+1];
v1[(2*loc)+1]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+1;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+1;
break;
}
}
temp2=v1[(2*loc)+1]; //if the dist value of parent is larger than the child in question
v1[(2*loc)+1]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+1;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+1;
}
else if(v1[(2*loc)+2]->dist<v1[(2*loc)+1]->dist) //if the other child's dist value is smaller
{
if(v1[loc]->dist==v1[(2*loc)+2]->dist) // if the parent's and child's dist values are same
{
if(v1[loc]->val<v1[(2*loc)+2]->val) //lexicographically smaller
{
break;
}
else
{
temp2=v1[(2*loc)+2];
v1[(2*loc)+2]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+2;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+2;
break;
}
}
temp2=v1[(2*loc)+2]; // the childs dist value is smaller
v1[(2*loc)+2]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+2;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+2;
}
else if(v1[(2*loc)+2]->dist==v1[(2*loc)+1]->dist) // if the dist value of both the children are same
{
if(v1[loc]->dist==v1[(2*loc)+2]->dist) // if the dist value of parents and children are equal
{
if(v1[loc]->val<v1[(2*loc)+1]->val&&v1[loc]->val<v1[(2*loc)+2]->val) //if the number of the parent is lower than both the children
{
break;
}
else if(v1[loc]->val>v1[(2*loc)+1]->val&&v1[loc]->val>v1[(2*loc)+2]->val) //if number greater than both the children
{
if(v1[(2*loc)+2]->val>v1[(2*loc)+1]->val) //exchanging with the smaller numbered child
{
temp2=v1[(2*loc)+1];
v1[(2*loc)+1]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+1;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+1;
}
else // same as above
{
temp2=v1[(2*loc)+2];
v1[(2*loc)+2]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+2;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+2;
}
}
else if(v1[loc]->val>v1[(2*loc)+1]->val&&v1[loc]->val<v1[(2*loc)+2]->val) // number greater than one of the child and lesser than the other
{
temp2=v1[(2*loc)+1];
v1[(2*loc)+1]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+1;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+1;
}
else if(v1[loc]->val<v1[(2*loc)+1]->val&&v1[loc]->val>v1[(2*loc)+2]->val)
{
temp2=v1[(2*loc)+2];
v1[(2*loc)+2]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+2;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+2;
}
}
else if(v1[loc]->dist>v1[(2*loc)+1]->dist) //in case the dist value of parent is greater than children,children have same dist value
{
if(v1[(2*loc)+1]->val<v1[(2*loc)+2]->val)
{
temp2=v1[(2*loc)+1];
v1[(2*loc)+1]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+1;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+1;
}
else
{
temp2=v1[(2*loc)+2];
v1[(2*loc)+2]=v1[loc];
v1[loc]->posinbinheap=(2*loc)+2;
v1[loc]=temp2;
v1[loc]->posinbinheap=loc;
loc=(2*loc)+2;
}
}
}
}
}
}
else if(downoup==0) //percolating up
{
vertex* parent;
int index;
while(loc>0)
{
if(loc%2==0) //who is the parent
{
parent=v1[(loc-1)/2];
index=(loc-1)/2;
}
else
{
parent=v1[loc/2];
index=loc/2;
}
if(parent->dist<v1[loc]->dist) // if parent's dist is already lower
{
break;
}
else if(parent->dist==v1[loc]->dist && parent->val<v1[loc]->val ) //if the parent's distance value is same but the numbering is lesser
{
break;
}
else
{
temp2=parent;
v1[index]=v1[loc];
v1[loc]->posinbinheap=index;
v1[loc]=parent;
v1[loc]->posinbinheap=loc;
loc=index;
continue;
}
}
}
}
void dijkstrabinary(vertex v[],int s,int sizev)
{
int source=s-1;
vector<vertex*>v1;
vertex* temp;
v[source].dist=0;
for(int i=0;i<sizev;i++)
{
temp=&v[i];
v1.push_back(temp);
}
make_heap(v1.begin(),v1.end(),func()); // just to make initial heap
auto it = v1.begin();
for(int i=0;i<sizev;i++)
{
temp=*it;
temp->posinbinheap=i;
it++;
}
int intermediatesize=sizev-1;
while(!v1.empty())
{
temp=v1.front();
temp->visi=1;
v1[0]=v1[intermediatesize--];
v1.pop_back();
vertex* temp2;
v1[0]->posinbinheap=0;
percolatebinheap(0,v1,1,intermediatesize); //Starting from root to percolate down
int j;
for(int i=0;i<temp->ctr;i++)
{
if((temp->ed[i])->tail==temp&&(temp->ed[i])->head->visi==0)
{
((temp->ed[i])->head)->dist=min(((temp->ed[i])->head)->dist,(((temp->ed[i])->tail)->dist)+(temp->ed[i]->weight));
j=((temp->ed[i])->head)->posinbinheap;
percolatebinheap(j,v1,0,intermediatesize); //Starting from updated distance to percolate up
}
}
}
for(int i=0;i<sizev;i++)
{
if(v[i].dist!=999999)
{
printf("%d ",v[i].dist-(v[source].funch)+v[i].funch);
}
else
{
printf("%d ",v[i].dist);
}
}
printf("\n");
}
void dijkstraundirbinary(vertex v[],int s,int sizev)
{
int source=s-1;
vector<vertex*>v1;
vertex* temp;
v[source].dist=0;
for(int i=0;i<sizev;i++)
{
temp=&v[i];
v1.push_back(temp);
}
make_heap(v1.begin(),v1.end(),func()); //making min heap
auto it = v1.begin();
for(int i=0;i<sizev;i++)
{
temp=*it;
temp->posinbinheap=i;
it++;
}
int intermediatesize=sizev-1;
while(!v1.empty())
{
temp=v1.front();
temp->visi=1;
v1[0]=v1[intermediatesize--];
int i=0;
v1.pop_back();
vertex* temp2;
v1[0]->posinbinheap=0;
percolatebinheap(0,v1,1,intermediatesize); //Starting from root to percolate down
int j;
for(int i=0;i<temp->ctr;i++)
{
if((temp->ed[i])->tail==temp&&(temp->ed[i])->head->visi==0)
{
((temp->ed[i])->head)->dist=min(((temp->ed[i])->head)->dist,(((temp->ed[i])->tail)->dist)+(temp->ed[i]->weight));
j=((temp->ed[i])->head)->posinbinheap;
percolatebinheap(j,v1,0,intermediatesize); //Starting from updated distance to percolate up
}
else if((temp->ed[i])->head==temp&&(temp->ed[i])->tail->visi==0)
{
((temp->ed[i])->tail)->dist=min(((temp->ed[i])->tail)->dist,(((temp->ed[i])->head)->dist)+(temp->ed[i]->weight));
j=((temp->ed[i])->tail)->posinbinheap;
percolatebinheap(j,v1,0,intermediatesize); //Starting from updated distance to percolate up
}
}
}
for(int i=0;i<sizev;i++)
{
printf("%d ",v[i].dist);
}
printf("\n");
}
// Binary heap stuff ends
//binomial heap stuff starts :-
void joinbinomialheap(list<binomialheap*> &l1,list<binomialheap*> &l2) // just joins the 2 binomial heaps into a single linked list in ascending order of rank
{
for(auto it1=l1.begin();it1!=l1.end();it1++)
{
if(l2.empty())
{
break;
}
else
{
auto it2=l2.begin();
while((*it2)->rank<=(*it1)->rank)
{
l1.insert(it1,(*it2));
l2.pop_front();
if(l2.empty())
{
break;
}
it2=l2.begin();
}
}
}
if(l2.empty()!=1) //if the original list is finished and the rank of the remaining items in list 2 is higher then inserting all of them in the end
{
while(l2.empty()!=1)
{
binomialheap* temporaary=*(l2.begin());
l1.push_back(temporaary);
auto ita=l2.begin();
l2.erase(ita);
}
}
}
void fixjointbinomialheap(list<binomialheap*> &l1)
{
for(auto it=l1.begin();it!=l1.end();it++)
{
auto tempit2=it;
auto tempit=it;
tempit++; //tempit is the pointer to the next binomial tree
if(tempit==l1.end())
{
break;
}
if((*it)->rank<(*(tempit))->rank) // if the rank of the next bin tree is larger
{
continue;
}
else if((*it)->rank==(*tempit)->rank) //if the rank of the next and the current binary trees are equal
{
tempit++;
if(tempit!=l1.end())
{
if((*it)->rank==(*tempit)->rank) // if the rank of the next->next binary tree is also equal then skip
{
continue;
}
else if((*it)->rank!=(*tempit)->rank) // if the rank of the current and the next binary trees are same but the next next is different
{
tempit--;
if((*tempit)->node->dist<(*it)->node->dist) //now checking which one to make whose parents
{
(*it)->parent=(*tempit);
(*tempit)->rank++;
(*tempit)->children[(*tempit)->rank]=(*it);
tempit2=it;
tempit2--;
l1.erase(it);
it=tempit2;
}
else if((*tempit)->node->dist>(*it)->node->dist)
{
(*tempit)->parent=(*it);
(*it)->rank++;
(*it)->children[(*it)->rank]=(*tempit);
l1.erase(tempit);
it--;
}
else if((*tempit)->node->dist==(*it)->node->dist) // if the dist value is dijkstra is same then we would check and put smaller index for lexicographic order
{
if((*tempit)->node->val<(*it)->node->val)
{
(*it)->parent=(*tempit);
(*tempit)->rank++;
(*tempit)->children[(*tempit)->rank]=(*it);
tempit2=it;
tempit2--;
l1.erase(it);
it=tempit2;
}
else
{
(*tempit)->parent=(*it);
(*it)->rank++;
(*it)->children[(*it)->rank]=(*tempit);
l1.erase(tempit);
it--;
} // in all of the above if-else when the trees are merged then the arrangement is made such that the same merged tree is encountered in the next iteration as well
}
}
}
else // if there is no next next node in list
{
tempit--;
if((*tempit)->node->dist<(*it)->node->dist) //now checking which one to make whose parents
{
(*it)->parent=(*tempit);
(*tempit)->rank++;
(*tempit)->children[(*tempit)->rank]=(*it);
tempit2=it;
tempit2--;
l1.erase(it);
it=tempit2;
}
else if((*tempit)->node->dist>(*it)->node->dist)
{
(*tempit)->parent=(*it);
(*it)->rank++;
(*it)->children[(*it)->rank]=(*tempit);
l1.erase(tempit);
it--;
}
else if((*tempit)->node->dist==(*it)->node->dist) // if the dist value is dijkstra is same then we would check and put smaller index for lexicographic order
{
if((*tempit)->node->val<(*it)->node->val)
{
(*it)->parent=(*tempit);
(*tempit)->rank++;
(*tempit)->children[(*tempit)->rank]=(*it);
tempit2=it;
tempit2--;
l1.erase(it);
it=tempit2;
}
else
{
(*tempit)->parent=(*it);
(*it)->rank++;
(*it)->children[(*it)->rank]=(*tempit);
l1.erase(tempit);
it--;
} // in all of the above if-else when the trees are merged then the arrangement is made such that the same merged tree is encountered in the next iteration as well
}
}
}
}
}
vertex* extractminbinomialheap(list<binomialheap*> &l1,list<binomialheap*> &l2) // l2 is a completely empty list
{
int min = 9999999;
auto pointertomin=l1.begin();
for(auto it=l1.begin();it!=l1.end();it++)// loop to find the min element in the list of binomial heap
{
if((*it)->node->dist<min) //if the dist of current tree is less then update min
{
min=(*it)->node->dist;
pointertomin=it;
}
else if((*it)->node->dist==min) // if we find a min distance equal then we check for index for lexicographic ordering
{
if((*pointertomin)->node->val<(*it)->node->val)
{
continue;
}
else
{
pointertomin=it;
}
}
else //if the distance is greater than the current min.
{
continue;
}
}
for(int i=0;i<=(*pointertomin)->rank;i++) // now making a seperate list of the children of the extracted node
{
(*pointertomin)->children[i]->parent=NULL;
l2.push_back((*pointertomin)->children[i]);
}
vertex* temp;
temp=(*pointertomin)->node;
l1.erase(pointertomin);
return temp; // returning the vertex with the minimum dist.
}
void percolateupbinomialheap(vertex* v) // percolating up after decrease key
{
binomialheap* temp;
vertex* temp2;
temp=v->binomialnode;
while(temp->parent!=NULL) // till there are parents to percolate up to
{
if(temp->node->dist<temp->parent->node->dist) // if the dist of parent is more then swap
{
temp2=temp->node;
temp->node=temp->parent->node;
temp->node->binomialnode=temp;
temp->parent->node=temp2;
temp->parent->node->binomialnode=temp->parent;
temp=temp->parent;
}
else if(temp->node->dist>temp->parent->node->dist) // if the dist of parent is less then break
{
break;
}
else if(temp->node->dist==temp->parent->node->dist) // if the dist of parent is same as child then check index for lexicographic
{
if(temp->node->val<temp->parent->node->val) // if the index of the child is less then swapping
{
temp2=temp->node;
temp->node=temp->parent->node;
temp->node->binomialnode=temp;
temp->parent->node=temp2;
temp->parent->node->binomialnode=temp->parent;
temp=temp->parent;
}
else if(temp->node->val>temp->parent->node->val) // else no need to swap
{
break;
}
}
}
}
void dijkstrabinomial(vertex v[],int s,int sizev)
{
binomialheap *h= new binomialheap[sizev];
list <binomialheap*> original;
list<binomialheap*> secondary;
original.clear();
secondary.clear();
int source=s-1;
v[source].dist=0;
for(int i=0;i<sizev;i++)
{
h[i].parent=NULL;
h[i].node=&v[i];
v[i].binomialnode=&h[i];
secondary.push_back(&h[i]);
joinbinomialheap(original,secondary);
fixjointbinomialheap(original);
secondary.clear();
}
secondary.clear();
vertex* temp;
while(original.empty()!=1)
{
secondary.clear();
temp=extractminbinomialheap(original,secondary);
joinbinomialheap(original,secondary);
fixjointbinomialheap(original);
for(int i=0;i<temp->ctr;i++)
{
if((temp->ed[i])->tail==temp&&(temp->ed[i])->head->visi==0)
{
((temp->ed[i])->head)->dist=min(((temp->ed[i])->head)->dist,(((temp->ed[i])->tail)->dist)+(temp->ed[i]->weight));
percolateupbinomialheap(((temp->ed[i])->head)); //Starting from updated distance to percolate up
}
}
}
for(int i=0;i<sizev;i++)
{
if(v[i].dist!=999999)
{
printf("%d ",v[i].dist-(v[source].funch)+v[i].funch);
}
else
{
printf("%d ",v[i].dist);
}
}
printf("\n");
}
void dijkstraundirbinomial(vertex v[],int s,int sizev)
{
int source=s-1;
vertex* temp;
v[source].dist=0;
binomialheap *h= new binomialheap[sizev];
list <binomialheap*> original;
list<binomialheap*> secondary;
original.clear();
secondary.clear();
for(int i=0;i<sizev;i++)
{
h[i].parent=NULL;
h[i].node=&v[i];
v[i].binomialnode=&h[i];
secondary.push_back(&h[i]);
joinbinomialheap(original,secondary);
fixjointbinomialheap(original);
secondary.clear();
}
secondary.clear();
while(original.empty()!=1)
{
secondary.clear();
temp=extractminbinomialheap(original,secondary);
joinbinomialheap(original,secondary);
fixjointbinomialheap(original);
for(int i=0;i<temp->ctr;i++)
{
if((temp->ed[i])->tail==temp&&(temp->ed[i])->head->visi==0)
{
((temp->ed[i])->head)->dist=min(((temp->ed[i])->head)->dist,(((temp->ed[i])->tail)->dist)+(temp->ed[i]->weight));
percolateupbinomialheap(((temp->ed[i])->head)); //Starting from updated distance to percolate up
}
else if((temp->ed[i])->head==temp&&(temp->ed[i])->tail->visi==0)
{