You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* update generate_build_config to support cxx11abi tag
* test prebuild ci
* update docs/zh_cn/get_started.md
* update docs/en/get_started.md
* fix prebuild ci
* update prebuilt_package_windows.md
* update prebuild ci deps
* fix prebuild ci
* try to fix prebuild ci
* fix prebuild ci
* remove trigger [no ci]
This tutorial takes `mmdeploy-1.0.0rc3-windows-amd64-onnxruntime1.8.1.zip` and `mmdeploy-1.0.0rc3-windows-amd64-cuda11.1-tensorrt8.2.3.0.zip` as examples to show how to use the prebuilt packages.
24
+
This tutorial takes `mmdeploy-1.0.0rc3-windows-amd64.zip` and `mmdeploy-1.0.0rc3-windows-amd64-cuda11.3.zip` as examples to show how to use the prebuilt packages. The former support onnxruntime cpu inference, the latter support onnxruntime-gpu and tensorrt inference.
25
25
26
26
The directory structure of the prebuilt package is as follows, where the `dist` folder is about model converter, and the `sdk` folder is related to model inference.
27
27
28
28
```
29
29
.
30
-
|-- dist
31
-
`-- sdk
32
-
|-- bin
33
-
|-- example
34
-
|-- include
35
-
|-- lib
36
-
`-- python
30
+
├── build_sdk.ps1
31
+
├── example
32
+
├── include
33
+
├── install_opencv.ps1
34
+
├── lib
35
+
├── README.md
36
+
├── set_env.ps1
37
+
└── thirdparty
37
38
```
38
39
39
40
## Prerequisite
40
41
41
42
In order to use the prebuilt package, you need to install some third-party dependent libraries.
42
43
43
-
1. Follow the [get_started](../get_started.md) documentation to create a virtual python environment and install pytorch, torchvision and mmcv-full. To use the C interface of the SDK, you need to install [vs2019+](https://visualstudio.microsoft.com/), [OpenCV](https://github.com/opencv/opencv/releases).
44
+
1. Follow the [get_started](../get_started.md) documentation to create a virtual python environment and install pytorch, torchvision and mmcv. To use the C interface of the SDK, you need to install [vs2019+](https://visualstudio.microsoft.com/), [OpenCV](https://github.com/opencv/opencv/releases).
44
45
45
46
:point_right: It is recommended to use `pip` instead of `conda` to install pytorch and torchvision
46
47
@@ -80,9 +81,8 @@ In order to use `ONNX Runtime` backend, you should also do the following steps.
80
81
5. Install `mmdeploy` (Model Converter) and `mmdeploy_runtime` (SDK Python API).
:exclamation: Restart powershell to make the environment variables setting take effect. You can check whether the settings are in effect by `echo $env:PATH`.
2. Add environment variables or copy the runtime libraries to the same level directory of exe
317
+
Refer to the README.md in sdk folder
329
318
330
-
:point_right: The purpose is to make the exe find the relevant dll
319
+
2. Build examples
331
320
332
-
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-1.0.0rc3-windows-amd64-onnxruntime1.8.1\sdk\bin`) to the `PATH`.
333
-
334
-
If choose to copy the dynamic libraries, copy the dll in the bin directory to the same level directory of the just compiled exe (build/Release).
321
+
Refer to the README.md in sdk folder
335
322
336
323
3. Inference:
337
324
338
325
It is recommended to use `CMD` here.
339
326
340
-
Under `mmdeploy-1.0.0rc3-windows-amd64-onnxruntime1.8.1\\sdk\\example\\build\\Release` directory:
327
+
Under `mmdeploy-1.0.0rc3-windows-amd64\\example\\cpp\\build\\Release` directory:
341
328
342
329
```
343
330
.\image_classification.exe cpu C:\workspace\work_dir\onnx\resnet\ C:\workspace\mmclassification\demo\demo.JPEG
344
331
```
345
332
346
333
#### TensorRT
347
334
348
-
1. Build examples
349
-
350
-
Under `mmdeploy-1.0.0rc3-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example` directory
351
-
352
-
```
353
-
// Path should be modified according to the actual location
2. Add environment variables or copy the runtime libraries to the same level directory of exe
335
+
1. Add environment variables
365
336
366
-
:point_right: The purpose is to make the exe find the relevant dll
337
+
Refer to the README.md in sdk folder
367
338
368
-
If choose to add environment variables, add the runtime libraries path of `mmdeploy` (`mmdeploy-1.0.0rc3-windows-amd64-cuda11.1-tensorrt8.2.3.0\sdk\bin`) to the `PATH`.
339
+
2. Build examples
369
340
370
-
If choose to copy the dynamic libraries, copy the dll in the bin directory to the same level directory of the just compiled exe (build/Release).
341
+
Refer to the README.md in sdk folder
371
342
372
343
3. Inference
373
344
374
345
It is recommended to use `CMD` here.
375
346
376
-
Under `mmdeploy-1.0.0rc3-windows-amd64-cuda11.1-tensorrt8.2.3.0\\sdk\\example\\build\\Release` directory
347
+
Under `mmdeploy-1.0.0rc3-windows-amd64-cuda11.3\\example\\cpp\\build\\Release` directory
377
348
378
349
```
379
350
.\image_classification.exe cuda C:\workspace\work_dir\trt\resnet C:\workspace\mmclassification\demo\demo.JPEG
0 commit comments