-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
43 lines (39 loc) · 1.58 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import json
from influence import MaskRcnn
from tqdm import tqdm
os.mkdir('groundtruths')
os.mkdir('detections')
class_names = {0: 'BG', 1: 'Ctobacco', 2: 'Btobacco', 3: 'Xtobacco'}
info = json.load(open('data/val.json', 'r'))
for inf in info['images']:
file_name = inf['file_name']
id = inf['id']
with open(os.path.join('groundtruths', os.path.splitext(file_name)[0] + '.txt'), 'w') as f:
for annotation in info['annotations']:
if id == annotation['image_id']:
f.write(class_names[annotation['category_id']])
for crood in annotation['bbox']:
f.write(' ')
f.write(str(round(crood)))
f.write('\n')
maskrcnn = MaskRcnn()
maskrcnn.init_app(r'logs\20211123T1226\mask_rcnn_0011.h5', class_names) # path
info = json.load(open('data/val.json', 'r'))['images']
for img_dict in tqdm(info):
path = os.path.join('before', img_dict['file_name'])
result = maskrcnn.predict(path, flag=False)
with open(os.path.join('detections', os.path.splitext(img_dict['file_name'])[0] + '.txt'), 'w') as f:
for i in range(len(result['class_ids'])):
f.write(class_names[result['class_ids'][i]])
f.write(' ')
f.write(str(result['scores'][i]))
f.write(' ')
f.write(str(result['rois'][i][1]))
f.write(' ')
f.write(str(result['rois'][i][0]))
f.write(' ')
f.write(str(result['rois'][i][3]))
f.write(' ')
f.write(str(result['rois'][i][2]))
f.write('\n')