-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_mot.py
102 lines (81 loc) · 3.78 KB
/
eval_mot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
import torch
import shutil
from pathlib import Path
from tqdm import tqdm
from tracking.utils import *
from track import Tracking
class EvalTracking(Tracking):
def __init__(self, yolo_model, reid_model, img_size, filter_class, conf_thres, iou_thres, max_cosine_dist, max_iou_dist, nn_budget, max_age, n_init) -> None:
super().__init__(yolo_model, reid_model, img_size=img_size, filter_class=filter_class, conf_thres=conf_thres, iou_thres=iou_thres, max_cosine_dist=max_cosine_dist, max_iou_dist=max_iou_dist, nn_budget=nn_budget, max_age=max_age, n_init=n_init)
def postprocess(self, pred, img1, img0, txt_path, frame_idx):
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.filter_class)
for det in pred:
if len(det):
boxes = scale_boxes(det[:, :4], img0.shape[:2], img1.shape[-2:]).cpu()
features = self.extract_features(boxes, img0)
self.tracker.predict()
self.tracker.update(boxes, det[:, 5], features)
for track in self.tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1: continue
x1, y1, x2, y2 = track.to_tlbr()
w, h = x2 - x1, y2 - y1
with open(txt_path, 'a') as f:
f.write(f"{frame_idx+1},{track.track_id},{x1:.4f},{y1:.4f},{w:.4f},{h:.4f},-1,-1,-1,-1\n")
else:
self.tracker.increment_ages()
@torch.no_grad()
def predict(self, image, txt_path, frame_idx):
img = self.preprocess(image)
pred = self.model(img)[0]
self.postprocess(pred, img, image, txt_path, frame_idx)
def argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--root', type=str, default='/home/sithu/datasets/MOT16')
parser.add_argument('--yolo-model', type=str, default='checkpoints/crowdhuman_yolov5m.pt')
parser.add_argument('--reid-model', type=str, default='CLIP-RN50')
parser.add_argument('--img-size', type=int, default=640)
parser.add_argument('--filter-class', nargs='+', type=int, default=0)
parser.add_argument('--conf-thres', type=float, default=0.4)
parser.add_argument('--iou-thres', type=float, default=0.5)
parser.add_argument('--max-cosine-dist', type=float, default=0.2)
parser.add_argument('--max-iou-dist', type=int, default=0.7)
parser.add_argument('--nn-budget', type=int, default=100)
parser.add_argument('--max-age', type=int, default=70)
parser.add_argument('--n-init', type=int, default=3)
return parser.parse_args()
if __name__ == '__main__':
args = argument_parser()
tracking = EvalTracking(
args.yolo_model,
args.reid_model,
args.img_size,
args.filter_class,
args.conf_thres,
args.iou_thres,
args.max_cosine_dist,
args.max_iou_dist,
args.nn_budget,
args.max_age,
args.n_init
)
save_path = Path('data') / 'trackers' / 'mot_challenge' / 'MOT16-train' / 'mot_det' / 'data'
if save_path.exists():
shutil.rmtree(save_path)
save_path.mkdir(parents=True)
root = Path(args.root) / 'train'
folders = root.iterdir()
total_fps = []
for folder in folders:
tracking.tracker.reset()
reader = SequenceStream(folder / 'img1')
txt_path = save_path / f"{folder.stem}.txt"
fps = FPS(len(reader.frames))
for i, frame in tqdm(enumerate(reader), total=len(reader)):
fps.start()
tracking.predict(frame, txt_path, i)
fps.stop(False)
print(f"FPS: {fps.fps}")
total_fps.append(fps.fps)
del reader
print(f"Average FPS for MOT16: {round(sum(total_fps) / len(total_fps))}")