-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathphysicsjs-full.js
11963 lines (9752 loc) · 344 KB
/
physicsjs-full.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* PhysicsJS v0.7.0 - 2014-12-08
* A modular, extendable, and easy-to-use physics engine for javascript
* http://wellcaffeinated.net/PhysicsJS
*
* Copyright (c) 2014 Jasper Palfree <[email protected]>
* Licensed MIT
*/
// ---
// inside: src/intro.js
(function (root, factory) {
if (typeof exports === 'object') {
// Node.
module.exports = factory.call(root);
} else if (typeof define === 'function' && define.amd) {
// AMD. Register as an anonymous module.
define(function(){ return factory.call(root) });
} else {
// Browser globals (root is window)
root.Physics = factory.call(root);
}
}(typeof window !== 'undefined' ? window : this, function () {
'use strict';
var window = this;
var document = window.document;
/** related to: Physics.world
* Physics
*
* The top-level namespace. All of PhysicsJS is contained in
* the `Physics` namespace.
*
* It may (and should) be invoked as a function to create a world instance. For all intensive purposes, [[Physics]] and [[Physics.world]] are the same thing.
*
* See [[new Physics.world]] for config options and function signature.
*
* Example:
*
* ```javascript
* Physics( cfg, function( world ) {
* // use world
* }); // -> world
* ```
**/
var Physics = function Physics(){
return Physics.world.apply(Physics, arguments);
};
/**
* Physics.util
*
* Namespace for utility functions.
**/
Physics.util = {};
/**
* == Special ==
*
* This section contains miscellaneous functionality.
**/
// ---
// inside: src/math/aabb.js
(function(){
/**
* Physics.aabb( minX, minY, maxX, maxY ) -> Object
* Physics.aabb( pt1, pt2 ) -> Object
* Physics.aabb( width, height[, pt] ) -> Object
* - minX (Number): The x coord of the "top left" point
* - minY (Number): The y coord of the "top left" point
* - maxX (Number): The x coord of the "bottom right" point
* - maxY (Number): The y coord of the "bottom right" point
* - pt1 (Vectorish): The first corner
* - pt2 (Vectorish): The opposite corner
* - width (Number): The width of the bounding box
* - height (Number): The height of the bounding box
* - pt (Vectorish): The center point of the bounding box
*
* Create an Axis Aligned Bounding Box.
*
* Signature:
*
* ```javascript
* {
* x: Number, // the x coord of the center point
* y: Number, // the y coord of the center point
* hw: Number, // the half-width
* hh: Number, // the half-height
* }
* ```
**/
Physics.aabb = function( minX, minY, maxX, maxY ){
var aabb = { x: 0, y: 0, hw: 0, hh: 0 };
if ( minX === undefined ){
return aabb;
}
if ( minX && minX.x !== undefined ){
// we have a point specified as first arg
maxX = minY.x;
maxY = minY.y;
minY = minX.y;
minX = minX.x;
}
if ( maxY === undefined && minX !== undefined && minY !== undefined ){
aabb.hw = minX * 0.5;
aabb.hh = minY * 0.5;
if ( maxX && maxX.x !== undefined ){
// we have a point specified as the third arg
// so we assume it's the center point
aabb.x = maxX.x;
aabb.y = maxX.y;
}
return aabb;
}
// here, we should have all the arguments as numbers
aabb.hw = Math.abs(maxX - minX) * 0.5;
aabb.hh = Math.abs(maxY - minY) * 0.5;
aabb.x = (maxX + minX) * 0.5;
aabb.y = (maxY + minY) * 0.5;
return aabb;
};
/**
* Physics.aabb.contains( aabb, pt ) -> Boolean
* - aabb (Object): The aabb
* - pt (Vectorish): The point
* + (Boolean): `true` if `pt` is inside `aabb`, `false` otherwise
*
* Check if a point is inside an aabb.
**/
Physics.aabb.contains = function contains( aabb, pt ){
return (pt.x > (aabb.x - aabb.hw)) &&
(pt.x < (aabb.x + aabb.hw)) &&
(pt.y > (aabb.y - aabb.hh)) &&
(pt.y < (aabb.y + aabb.hh));
};
/**
* Physics.aabb.clone( aabb ) -> Object
* - aabb (Object): The aabb to clone
* + (Object): The clone
*
* Clone an aabb.
**/
Physics.aabb.clone = function( aabb ){
return {
x: aabb.x,
y: aabb.y,
hw: aabb.hw,
hh: aabb.hh
};
};
/**
* Physics.aabb.union( aabb1, aabb2[, modify] ) -> Object
* - aabb1 (Object): The first aabb (returned if modify is `true`)
* - aabb2 (Object): The second aabb
* + (Object): The union of two aabbs. If modify is `true`, then the first aabb will be modified and returned.
*
* Get the union of two aabbs.
**/
Physics.aabb.union = function( aabb1, aabb2, modify ){
var ret = modify === true ? aabb1 : {}
,maxX = Math.max( aabb1.x + aabb1.hw, aabb2.x + aabb2.hw )
,maxY = Math.max( aabb1.y + aabb1.hh, aabb2.y + aabb2.hh )
,minX = Math.min( aabb1.x - aabb1.hw, aabb2.x - aabb2.hw )
,minY = Math.min( aabb1.y - aabb1.hh, aabb2.y - aabb2.hh )
;
ret.hw = Math.abs(maxX - minX) * 0.5;
ret.hh = Math.abs(maxY - minY) * 0.5;
ret.x = (maxX + minX) * 0.5;
ret.y = (maxY + minY) * 0.5;
return ret;
};
/**
* Physics.aabb.overlap( aabb1, aabb2 ) -> Boolean
* - aabb1 (Object): The first aabb
* - aabb2 (Object): The second aabb
* + (Boolean): `true` if they overlap, `false` otherwise
*
* Check if two AABBs overlap.
**/
Physics.aabb.overlap = function( aabb1, aabb2 ){
var min1 = aabb1.x - aabb1.hw
,min2 = aabb2.x - aabb2.hw
,max1 = aabb1.x + aabb1.hw
,max2 = aabb2.x + aabb2.hw
;
// first check x-axis
if ( (min2 <= max1 && max1 <= max2) || (min1 <= max2 && max2 <= max1) ){
// overlap in x-axis
// check y...
min1 = aabb1.y - aabb1.hh;
min2 = aabb2.y - aabb2.hh;
max1 = aabb1.y + aabb1.hh;
max2 = aabb2.y + aabb2.hh;
return (min2 <= max1 && max1 <= max2) || (min1 <= max2 && max2 <= max1);
}
// they don't overlap
return false;
};
}());
// ---
// inside: src/math/gjk.js
(function(){
// the algorithm doesn't always converge for curved shapes.
// need these constants to dictate how accurate we want to be.
var gjkAccuracy = 0.0001;
var gjkMaxIterations = 100;
// get the next search direction from two simplex points
var getNextSearchDir = function getNextSearchDir( ptA, ptB, dir ){
var ABdotB = ptB.normSq() - ptB.dot( ptA )
,ABdotA = ptB.dot( ptA ) - ptA.normSq()
;
// if the origin is farther than either of these points
// get the direction from one of those points to the origin
if ( ABdotB < 0 ){
return dir.clone( ptB ).negate();
} else if ( ABdotA > 0 ){
return dir.clone( ptA ).negate();
// otherwise, use the perpendicular direction from the simplex
} else {
// dir = AB = B - A
dir.clone( ptB ).vsub( ptA );
// if (left handed coordinate system)
// A cross AB < 0 then get perpendicular counterclockwise
return dir.perp( (ptA.cross( dir ) > 0) );
}
};
/** hide
* getClosestPoints( simplex ) -> Object
* - simplex (Array): The simplex
*
* Figure out the closest points on the original objects
* from the last two entries of the simplex
**/
var getClosestPoints = function getClosestPoints( simplex ){
// see http://www.codezealot.org/archives/153
// for algorithm details
// we know that the position of the last point
// is very close to the previous. (by nature of the distance test)
// this won't give great results for the closest
// points algorithm, so let's use the previous two
var len = simplex.length
,last = simplex[ len - 2 ]
,prev = simplex[ len - 3 ]
,scratch = Physics.scratchpad()
,A = scratch.vector().clone( last.pt )
// L = B - A
,L = scratch.vector().clone( prev.pt ).vsub( A )
,lambdaB
,lambdaA
;
if ( L.equals(Physics.vector.zero) ){
// oh.. it's a zero vector. So A and B are both the closest.
// just use one of them
return scratch.done({
a: last.a,
b: last.b
});
}
lambdaB = - L.dot( A ) / L.normSq();
lambdaA = 1 - lambdaB;
if ( lambdaA <= 0 ){
// woops.. that means the closest simplex point
// isn't on the line it's point B itself
return scratch.done({
a: prev.a,
b: prev.b
});
} else if ( lambdaB <= 0 ){
// vice versa
return scratch.done({
a: last.a,
b: last.b
});
}
// guess we'd better do the math now...
return scratch.done({
// a closest = lambdaA * Aa + lambdaB * Ba
a: A.clone( last.a ).mult( lambdaA ).vadd( L.clone( prev.a ).mult( lambdaB ) ).values(),
// b closest = lambdaA * Ab + lambdaB * Bb
b: A.clone( last.b ).mult( lambdaA ).vadd( L.clone( prev.b ).mult( lambdaB ) ).values()
});
};
/**
* Physics.gjk( support(axis)[, seed, checkOverlapOnly, debugFn] ) -> Object
* - support (Function): The support function. Must return an object containing
the witness points (`.a`, `.b`) and the support point (`.pt`).
Recommended to use simple objects.
Eg:
```javascript
return {
a: { x: 1, y:2 },
b: { x: 3, y: 4 },
pt: { x: 2, y: 2 }
};
```
* - axis (Physics.vector): The axis to search
* - seed (Physics.vector): The starting direction for the simplex (defaults to x-axis)
* - checkOverlapOnly (Boolean): only check whether there is an overlap, don't calculate the depth
* - debugFn (Function): For debugging. Called at every iteration with the current simplex.
*
* Implementation agnostic GJK function.
*
* Gilbert–Johnson–Keerthi object collison algorithm
* For general information about GJK see:
* - [www.codezealot.org/archives/88](http://www.codezealot.org/archives/88)
* - [mollyrocket.com/849](http://mollyrocket.com/849)
*
* The algorithm information returned:
* ```javascript
* {
* overlap: Boolean,
* simplex: [] // array containing simplex points as simple x/y objects
* }
* ```
**/
var gjk = function gjk( support, seed, checkOverlapOnly, debugFn ){
var overlap = false
,noOverlap = false // if we're sure we're not overlapping
,distance = false
,simplex = []
,simplexLen = 1
// setup a scratchpad of temporary cheap objects
,scratch = Physics.scratchpad()
// use seed as starting direction or use x axis
,dir = scratch.vector().clone(seed || Physics.vector.axis[ 0 ])
,last = scratch.vector()
,lastlast = scratch.vector()
// some temp vectors
,v1 = scratch.vector()
,v2 = scratch.vector()
,ab
,ac
,sign
,tmp
,iterations = 0
;
// get the first Minkowski Difference point
tmp = support( dir );
simplexLen = simplex.push( tmp );
last.clone( tmp.pt );
// negate d for the next point
dir.negate();
// start looping
while ( ++iterations ) {
// swap last and lastlast, to save on memory/speed
last.swap(lastlast);
// push a new point to the simplex because we haven't terminated yet
tmp = support( dir );
simplexLen = simplex.push( tmp );
last.clone( tmp.pt );
if ( debugFn ){
debugFn( simplex );
}
if ( last.equals(Physics.vector.zero) ){
// we happened to pick the origin as a support point... lucky.
overlap = true;
break;
}
// check if the last point we added actually passed the origin
if ( !noOverlap && last.dot( dir ) <= 0.0 ) {
// if the point added last was not past the origin in the direction of d
// then the Minkowski difference cannot possibly contain the origin since
// the last point added is on the edge of the Minkowski Difference
// if we just need the overlap...
if ( checkOverlapOnly ){
break;
}
noOverlap = true;
}
// if it's a line...
if ( simplexLen === 2 ){
// otherwise we need to determine if the origin is in
// the current simplex and act accordingly
dir = getNextSearchDir( last, lastlast, dir );
// continue...
// if it's a triangle... and we're looking for the distance
} else if ( noOverlap ){
// if we know there isn't any overlap and
// we're just trying to find the distance...
// make sure we're getting closer to the origin
dir.normalize();
tmp = lastlast.dot( dir );
if ( Math.abs(tmp - last.dot( dir )) < gjkAccuracy ){
distance = -tmp;
break;
}
// if we are still getting closer then only keep
// the points in the simplex that are closest to
// the origin (we already know that last is closer
// than the previous two)
// the norm is the same as distance(origin, a)
// use norm squared to avoid the sqrt operations
if (lastlast.normSq() < v1.clone(simplex[ 0 ].pt).normSq()) {
simplex.shift();
} else {
simplex.splice(1, 1);
}
dir = getNextSearchDir( v1.clone(simplex[ 1 ].pt), v2.clone(simplex[ 0 ].pt), dir );
// continue...
// if it's a triangle
} else {
// we need to trim the useless point...
ab = ab || scratch.vector();
ac = ac || scratch.vector();
// get the edges AB and AC
ab.clone( lastlast ).vsub( last );
ac.clone( simplex[ 0 ].pt ).vsub( last );
// here normally people think about this as getting outward facing
// normals and checking dot products. Since we're in 2D
// we can be clever...
sign = ab.cross( ac ) > 0;
if ( sign ^ (last.cross( ab ) > 0) ){
// ok... so there's an XOR here... don't freak out
// remember last = A = -AO
// if AB cross AC and AO cross AB have the same sign
// then the origin is along the outward facing normal of AB
// so if AB cross AC and A cross AB have _different_ (XOR) signs
// then this is also the case... so we proceed...
// point C is dead to us now...
simplex.shift();
// if we haven't deduced that we've enclosed the origin
// then we know which way to look...
// morph the ab vector into its outward facing normal
ab.perp( !sign );
// swap
dir.swap( ab );
// continue...
// if we get to this if, then it means we can continue to look along
// the other outward normal direction (ACperp)
// if we don't see the origin... then we must have it enclosed
} else if ( sign ^ (ac.cross( last ) > 0) ){
// then the origin is along the outward facing normal
// of AC; (ACperp)
// point B is dead to us now...
simplex.splice(1, 1);
ac.perp( sign );
// swap
dir.swap( ab );
// continue...
} else {
// we have enclosed the origin!
overlap = true;
// fewf... take a break
break;
}
}
// woah nelly... that's a lot of iterations.
// Stop it!
if (iterations > gjkMaxIterations){
scratch.done();
return {
simplex: simplex,
iterations: iterations,
distance: 0,
maxIterationsReached: true
};
}
}
// free workspace
scratch.done();
tmp = {
overlap: overlap,
simplex: simplex,
iterations: iterations
};
if ( distance !== false ){
tmp.distance = distance;
tmp.closest = getClosestPoints( simplex );
}
return tmp;
};
Physics.gjk = gjk;
})();
// ---
// inside: src/math/statistics.js
(function(){
Physics.statistics = {
/**
* Physics.statistics.pushRunningAvg( v, k, m, s ) -> Array
* - v (Number): is value to push
* - k (Number): is num elements
* - m (Number): is current mean
* - s (Number): is current s value
* + (Array): Returns a 2 element array containing the next mean, and s value
*
* Push a value to a running average calculation.
* see [http://www.johndcook.com/blog/standard_deviation]
*
* Note: variance can be calculated from the "s" value by multiplying it by `1/(k-1)`
**/
pushRunningAvg: function( v, k, m, s ){
var x = v - m;
// Mk = Mk-1+ (xk – Mk-1)/k
// Sk = Sk-1 + (xk – Mk-1)*(xk – Mk).
m += x / k;
s += x * (v - m);
return [m, s];
},
/**
* Physics.statistics.pushRunningVectorAvg( v, k, m[, s] )
* - v (Physics.vector): is vector to push
* - k (Number): is num elements
* - m (Physics.vector): is current mean
* - s (Physics.vector): is current s value
*
* Push a vector to a running vector average calculation.
* see [http://www.johndcook.com/blog/standard_deviation]
*
* Calculations are done in place. The `m` and `s` parameters are altered.
*
* Note: variance can be calculated from the "s" vector by multiplying it by `1/(k-1)`
*
* If s value is ommitted it won't be used.
**/
pushRunningVectorAvg: function( v, k, m, s ){
var invK = 1/k
,x = v.get(0) - m.get(0)
,y = v.get(1) - m.get(1)
;
// Mk = Mk-1+ (xk – Mk-1)/k
// Sk = Sk-1 + (xk – Mk-1)*(xk – Mk).
m.add( x * invK, y * invK );
if ( s ){
x *= v.get(0) - m.get(0);
y *= v.get(1) - m.get(1);
s.add( x, y );
}
}
};
})();
// ---
// inside: src/math/transform.js
(function(){
/**
* class Physics.transform
*
* Vector Transformations class for rotating and translating vectors
**/
/**
* new Physics.transform( [vect, angle, origin] )
* new Physics.transform( transform )
* - vect (Vectorish): Translation vector
* - transform (Physics.transform): Transform to copy
* - angle (Number): Angle (radians) to use for rotation
* - origin (Vectorish): Origin of the rotation
*
* Transform Constructor / Factory
**/
var Transform = function Transform( vect, angle, origin ) {
if (!(this instanceof Transform)){
return new Transform( vect, angle );
}
this.v = new Physics.vector();
this.o = new Physics.vector(); // origin of rotation
if ( vect instanceof Transform ){
this.clone( vect );
return;
}
if (vect){
this.setTranslation( vect );
}
this.setRotation( angle || 0, origin );
};
/**
* Physics.transform#setTranslation( vect ) -> this
* - vect (Vectorish): The translation vector
*
* Set the translation portion of the transform.
**/
Transform.prototype.setTranslation = function( vect ){
this.v.clone( vect );
return this;
};
/**
* Physics.transform#setRotation( angle[, origin ] ) -> this
* - angle (Number): Angle (radians) to use for rotation
* - origin (Vectorish): Origin of the rotation
*
* Set the rotation portion of the transform
**/
Transform.prototype.setRotation = function( angle, origin ){
this.cosA = Math.cos( angle );
this.sinA = Math.sin( angle );
if ( origin ){
this.o.clone( origin );
} else {
this.o.zero();
}
return this;
};
/**
* Physics.transform#clone( [transform] ) -> this|Physics.transform
* - transform (Physics.transform): Transform to copy
* + (this): For chaining
* + (Physics.transform): New copy of `this` if none is specified as an argument
*
* Clone another transform. Or clone self into new transform.
**/
Transform.prototype.clone = function( t ){
if ( t ){
this.setTranslation( t.v );
this.cosA = t.cosA;
this.sinA = t.sinA;
this.o.clone( t.o );
return this;
}
return new Transform( this );
};
Physics.transform = Transform;
})();
// ---
// inside: src/math/vector.js
(function(window){
// http://jsperf.com/vector-storage-test/2
// cached math functions
// TODO: might be faster not to do this???
var sqrt = Math.sqrt
,min = Math.min
,max = Math.max
,acos = Math.acos
,atan2 = Math.atan2
,TWOPI = Math.PI * 2
,typedArrays = !!window.Float64Array
;
/**
* class Physics.vector
*
* The vector class and factory function.
*
* Call `Physics.vector` with the same arguments as
* [[new Physics.vector]] to create an instance.
*
* The vector methods mostly modify the vector instance.
* This makes computations faster because creating vectors
* is avoided.
*
* Creating vectors is generally an expensive operation
* so try to avoid doing this in the simulation loop.
* Instead you can use [[Physics.scratchpad]] to get
* temporary vectors for use in performance critical
* code.
*
* _Note_: The coordinate system is left-handed, meaning that
* the clockwise angular direction is positive. This has implications
* for the cross-product rule.
**/
/** section: Special
* class Vectorish
*
* Any object with `.x` and `.y` properties.
*
* A `Vectorish` isn't really a class. In this documentation, when
* an argument is specified as a `Vectorish` it means either a true
* [[Physics.vector]] instance, or an object literal with `.x` and `.y`
* properties.
**/
/**
* new Physics.vector( x, y )
* new Physics.vector( vect )
* - x (Number): The x coordinate
* - y (Number): The y coordinate
* - vect (Vectorish): A vector-like object to clone
*
* Vector Constructor.
**/
var Vector = function Vector( x, y ) {
// enforce instantiation
if ( !(this instanceof Vector) ){
return new Vector( x, y );
}
// arrays to store values
// x = _[0]
// y = _[1]
// norm = _[3]
// normsq = _[4]
/** internal
* Physics.vector#_
*
* Private storage array for data.
*
* Do not access this directly. Private. Keep out.
**/
if (typedArrays){
this._ = new Float64Array(5);
} else {
this._ = [];
}
if (x && (x.x !== undefined || x._ && x._.length)){
this.clone( x );
} else {
this.recalc = true; //whether or not recalculate norms
this.set( x, y );
}
};
Object.defineProperties( Vector.prototype, {
/**
* Physics.vector#x
*
* Getter/setter property for the x coordinate.
**/
x: {
get: function(){
return +this._[0];
},
set: function( x ){
x = +x || 0;
this.recalc = ( x === this._[0] );
this._[0] = x;
}
},
/**
* Physics.vector#y
*
* Getter/setter property for the y coordinate.
**/
y: {
get: function(){
return +this._[1];
},
set: function( y ){
y = +y || 0;
this.recalc = ( y === this._[1] );
this._[1] = y;
}
}
});
//
// Methods
//
/**
* Physics.vector#set( x, y ) -> this
* - x (Number): x coordinate
* - y (Number): y coordinate
*
* Sets the x and y components of this vector.
**/
Vector.prototype.set = function( x, y ) {
this.recalc = true;
this._[0] = +x || 0;
this._[1] = +y || 0;
return this;
};
/** deprecated: 0.6.0..1.0.0
* Physics.vector#get( idx ) -> Number
* - idx (Number): The coordinate index (0 or 1)
*
* Get the x or y component by index.
**/
Vector.prototype.get = function( n ){
return this._[ n ];
};
/**
* Physics.vector#vadd( v ) -> this
* - v (Physics.vector): vector to add
*
* Add a [[Physics.vector]] to `this`.
**/
Vector.prototype.vadd = function( v ) {
this.recalc = true;
this._[0] += v._[0];
this._[1] += v._[1];
return this;
};
/**
* Physics.vector#vsub( v ) -> this
* - v (Physics.vector): vector to subtract
*
* Subtract a [[Physics.vector]] from `this`.
**/
Vector.prototype.vsub = function( v ) {
this.recalc = true;
this._[0] -= v._[0];
this._[1] -= v._[1];
return this;
};
/**
* Physics.vector#add( x, y ) -> this
* - x (Number): amount to add to the x coordinate
* - y (Number): amount to add to the y coordinate
*
* Add scalars [[Physics.vector]] to the coordinates.
**/
Vector.prototype.add = function( x, y ){
this.recalc = true;
this._[0] += +x || 0;
this._[1] += +y || 0;
return this;
};
/**
* Physics.vector#sub( x, y ) -> this
* - x (Number): amount to subtract from the x coordinate
* - y (Number): amount to subtract from the y coordinate
*
* Subtract scalars [[Physics.vector]] from the coordinates.
**/
Vector.prototype.sub = function( x, y ){
this.recalc = true;
this._[0] -= x;
this._[1] -= y === undefined? 0 : y;
return this;
};
/**
* Physics.vector#mult( m ) -> this
* - m (Number): amount to multiply this vector by
*
* Multiply this by a scalar quantity.
*
* Same as scaling the vector by an amount `m`.
**/
Vector.prototype.mult = function( m ) {
if ( !this.recalc ){
this._[4] *= m * m;
this._[3] *= m;
}
this._[0] *= m;
this._[1] *= m;
return this;
};
/**
* Physics.vector#dot( v ) -> Number
* - v (Physics.vector): The other vector
*
* Compute the dot product of this vector with `v`.
**/
Vector.prototype.dot = function( v ) {
return (this._[0] * v._[0]) + (this._[1] * v._[1]);