### Expected behavior Code: ``` from pytorch_forecasting.models import NBeats, BaseModel from pytorch_lightning import Trainer, LightningModule model = NBeats() trainer.fit(model, train, valid) ``` Result: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-102-a9a3146dfc98>](https://localhost:8080/#) in <cell line: 1>() ----> 1 trainer.fit(model, train,valid) 1 frames [/usr/local/lib/python3.10/dist-packages/pytorch_lightning/utilities/compile.py](https://localhost:8080/#) in _maybe_unwrap_optimized(model) 130 return model 131 _check_mixed_imports(model) --> 132 raise TypeError( 133 f"`model` must be a `LightningModule` or `torch._dynamo.OptimizedModule`, got `{type(model).__qualname__}`" 134 ) TypeError: `model` must be a `LightningModule` or `torch._dynamo.OptimizedModule`, got `NBeats` ``` I'm trying to use the naked networks without the rest of the stuff around pytorch_forecasting. I've read the source code I do believe this should work; but I must be doing something stupid. Is it possible to add an example or FAQ of how to use pytorch_forecasting without `from_dataset`?