-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path279_perfect_squares.js
49 lines (44 loc) · 1.36 KB
/
279_perfect_squares.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/**
* @param {number} n
* @return {number}
*/
var numSquares = function(n) {
// Solution 1. brutal force
// a while loop starting from 1, and replace the min until the calculation exceeds the number n (O(square root of n))
let ps = 1 // perfect square
let queue = [1]
let sum = 1 // starting from one
// prepare the perfect square queue
while (sum <= n) {
ps += 1
sum = ps * ps
if (sum > n) {
break
}
queue.push(sum)
}
//console.log(queue)
let min = n // minimum output: n x 1
substract(0, n)
function substract(depth, currentSum) {
if (depth+1 >= min) {
return
}
// faster to start from the last element
for(let i=queue.length-1; i>=0; i--) {
let result = currentSum - queue[i]
if (result > 0) {
substract(depth+1, result)
} else if (result == 0) {
if (depth < min) {
min = depth+1
//console.log([min, currentSum])
}
}
}
}
return min
// Solution 2. binary search?
// for number between 1 and 10,000 (perfect number between 1 and 100) (O(log n))
// NOTE: decided not to proceed with this path because we still need to calculate ps*ps for the queue any way.
};