Skip to content

Commit

Permalink
Construction of Series from dict containing NaN as key (pandas-dev#18496
Browse files Browse the repository at this point in the history
  • Loading branch information
toobaz authored and jreback committed Dec 1, 2017
1 parent f7df0ff commit d270bbb
Show file tree
Hide file tree
Showing 9 changed files with 96 additions and 65 deletions.
2 changes: 2 additions & 0 deletions doc/source/whatsnew/v0.22.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,7 @@ Other API Changes

- :func:`Series.astype` and :func:`Index.astype` with an incompatible dtype will now raise a ``TypeError`` rather than a ``ValueError`` (:issue:`18231`)
- ``Series`` construction with an ``object`` dtyped tz-aware datetime and ``dtype=object`` specified, will now return an ``object`` dtyped ``Series``, previously this would infer the datetime dtype (:issue:`18231`)
- A :class:`Series` of ``dtype=category`` constructed from an empty ``dict`` will now have categories of ``dtype=object`` rather than ``dtype=float64``, consistently with the case in which an empty list is passed (:issue:`18515`)
- ``NaT`` division with :class:`datetime.timedelta` will now return ``NaN`` instead of raising (:issue:`17876`)
- All-NaN levels in a ``MultiIndex`` are now assigned ``float`` rather than ``object`` dtype, promoting consistency with ``Index`` (:issue:`17929`).
- :class:`Timestamp` will no longer silently ignore unused or invalid ``tz`` or ``tzinfo`` keyword arguments (:issue:`17690`)
Expand Down Expand Up @@ -242,5 +243,6 @@ Other

- Improved error message when attempting to use a Python keyword as an identifier in a numexpr query (:issue:`18221`)
- Fixed a bug where creating a Series from an array that contains both tz-naive and tz-aware values will result in a Series whose dtype is tz-aware instead of object (:issue:`16406`)
- Fixed construction of a :class:`Series` from a ``dict`` containing ``NaN`` as key (:issue:`18480`)
- Adding a ``Period`` object to a ``datetime`` or ``Timestamp`` object will now correctly raise a ``TypeError`` (:issue:`17983`)
-
5 changes: 2 additions & 3 deletions pandas/core/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -874,9 +874,8 @@ def _map_values(self, mapper, na_action=None):
# convert to an Series for efficiency.
# we specify the keys here to handle the
# possibility that they are tuples
from pandas import Series, Index
index = Index(mapper, tupleize_cols=False)
mapper = Series(mapper, index=index)
from pandas import Series
mapper = Series(mapper)

if isinstance(mapper, ABCSeries):
# Since values were input this means we came from either
Expand Down
21 changes: 0 additions & 21 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -2822,27 +2822,6 @@ def get_indexer_for(self, target, **kwargs):
indexer, _ = self.get_indexer_non_unique(target, **kwargs)
return indexer

_index_shared_docs['_get_values_from_dict'] = """
Return the values of the input dictionary in the order the keys are
in the index. np.nan is returned for index values not in the
dictionary.
Parameters
----------
data : dict
The dictionary from which to extract the values
Returns
-------
np.array
"""

@Appender(_index_shared_docs['_get_values_from_dict'])
def _get_values_from_dict(self, data):
return lib.fast_multiget(data, self.values,
default=np.nan)

def _maybe_promote(self, other):
# A hack, but it works
from pandas.core.indexes.datetimes import DatetimeIndex
Expand Down
8 changes: 0 additions & 8 deletions pandas/core/indexes/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -700,14 +700,6 @@ def __rsub__(self, other):
def _add_delta(self, other):
return NotImplemented

@Appender(_index_shared_docs['_get_values_from_dict'])
def _get_values_from_dict(self, data):
if len(data):
return np.array([data.get(i, np.nan)
for i in self.asobject.values])

return np.array([np.nan])

def _add_delta_td(self, other):
# add a delta of a timedeltalike
# return the i8 result view
Expand Down
11 changes: 0 additions & 11 deletions pandas/core/indexes/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -1457,17 +1457,6 @@ def get_value_maybe_box(self, series, key):
key, tz=self.tz)
return _maybe_box(self, values, series, key)

@Appender(_index_shared_docs['_get_values_from_dict'])
def _get_values_from_dict(self, data):
if len(data):
# coerce back to datetime objects for lookup
data = com._dict_compat(data)
return lib.fast_multiget(data,
self.asobject.values,
default=np.nan)

return np.array([np.nan])

def get_loc(self, key, method=None, tolerance=None):
"""
Get integer location for requested label
Expand Down
55 changes: 42 additions & 13 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,6 @@
_default_index,
_asarray_tuplesafe,
_values_from_object,
_try_sort,
_maybe_match_name,
SettingWithCopyError,
_maybe_box_datetimelike,
Expand Down Expand Up @@ -198,18 +197,9 @@ def __init__(self, data=None, index=None, dtype=None, name=None,
data = data.reindex(index, copy=copy)
data = data._data
elif isinstance(data, dict):
if index is None:
if isinstance(data, OrderedDict):
index = Index(data)
else:
index = Index(_try_sort(data))

try:
data = index._get_values_from_dict(data)
except TypeError:
data = ([data.get(i, np.nan) for i in index]
if data else np.nan)

data, index = self._init_dict(data, index, dtype)
dtype = None
copy = False
elif isinstance(data, SingleBlockManager):
if index is None:
index = data.index
Expand Down Expand Up @@ -257,6 +247,45 @@ def __init__(self, data=None, index=None, dtype=None, name=None,
self.name = name
self._set_axis(0, index, fastpath=True)

def _init_dict(self, data, index=None, dtype=None):
"""
Derive the "_data" and "index" attributes of a new Series from a
dictionary input.
Parameters
----------
data : dict or dict-like
Data used to populate the new Series
index : Index or index-like, default None
index for the new Series: if None, use dict keys
dtype : dtype, default None
dtype for the new Series: if None, infer from data
Returns
-------
_data : BlockManager for the new Series
index : index for the new Series
"""
# Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')]
# raises KeyError), so we iterate the entire dict, and align
if data:
keys, values = zip(*compat.iteritems(data))
else:
keys, values = [], []

# Input is now list-like, so rely on "standard" construction:
s = Series(values, index=keys, dtype=dtype)

# Now we just make sure the order is respected, if any
if index is not None:
s = s.reindex(index, copy=False)
elif not isinstance(data, OrderedDict):
try:
s = s.sort_index()
except TypeError:
pass
return s._data, s.index

@classmethod
def from_array(cls, arr, index=None, name=None, dtype=None, copy=False,
fastpath=False):
Expand Down
1 change: 1 addition & 0 deletions pandas/tests/series/test_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -422,6 +422,7 @@ def test_map_dict_with_tuple_keys(self):
converted to a multi-index, preventing tuple values
from being mapped properly.
"""
# GH 18496
df = pd.DataFrame({'a': [(1, ), (2, ), (3, 4), (5, 6)]})
label_mappings = {(1, ): 'A', (2, ): 'B', (3, 4): 'A', (5, 6): 'B'}

Expand Down
3 changes: 2 additions & 1 deletion pandas/tests/series/test_combine_concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,7 +181,8 @@ def test_concat_empty_series_dtypes(self):
# categorical
assert pd.concat([Series(dtype='category'),
Series(dtype='category')]).dtype == 'category'
assert pd.concat([Series(dtype='category'),
# GH 18515
assert pd.concat([Series(np.array([]), dtype='category'),
Series(dtype='float64')]).dtype == 'float64'
assert pd.concat([Series(dtype='category'),
Series(dtype='object')]).dtype == 'object'
Expand Down
55 changes: 47 additions & 8 deletions pandas/tests/series/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import pytest

from datetime import datetime, timedelta
from collections import OrderedDict

from numpy import nan
import numpy as np
Expand Down Expand Up @@ -79,17 +80,42 @@ def test_constructor(self):
m = MultiIndex.from_arrays([[1, 2], [3, 4]])
pytest.raises(NotImplementedError, Series, m)

def test_constructor_empty(self):
@pytest.mark.parametrize('input_class', [list, dict, OrderedDict])
def test_constructor_empty(self, input_class):
empty = Series()
empty2 = Series([])
empty2 = Series(input_class())

# the are Index() and RangeIndex() which don't compare type equal
# these are Index() and RangeIndex() which don't compare type equal
# but are just .equals
assert_series_equal(empty, empty2, check_index_type=False)

empty = Series(index=lrange(10))
empty2 = Series(np.nan, index=lrange(10))
assert_series_equal(empty, empty2)
# With explicit dtype:
empty = Series(dtype='float64')
empty2 = Series(input_class(), dtype='float64')
assert_series_equal(empty, empty2, check_index_type=False)

# GH 18515 : with dtype=category:
empty = Series(dtype='category')
empty2 = Series(input_class(), dtype='category')
assert_series_equal(empty, empty2, check_index_type=False)

if input_class is not list:
# With index:
empty = Series(index=lrange(10))
empty2 = Series(input_class(), index=lrange(10))
assert_series_equal(empty, empty2)

# With index and dtype float64:
empty = Series(np.nan, index=lrange(10))
empty2 = Series(input_class(), index=lrange(10), dtype='float64')
assert_series_equal(empty, empty2)

@pytest.mark.parametrize('input_arg', [np.nan, float('nan')])
def test_constructor_nan(self, input_arg):
empty = Series(dtype='float64', index=lrange(10))
empty2 = Series(input_arg, index=lrange(10))

assert_series_equal(empty, empty2, check_index_type=False)

def test_constructor_series(self):
index1 = ['d', 'b', 'a', 'c']
Expand Down Expand Up @@ -625,6 +651,21 @@ def test_constructor_dict(self):
expected.iloc[1] = 1
assert_series_equal(result, expected)

@pytest.mark.parametrize("value", [2, np.nan, None, float('nan')])
def test_constructor_dict_nan_key(self, value):
# GH 18480
d = {1: 'a', value: 'b', float('nan'): 'c', 4: 'd'}
result = Series(d).sort_values()
expected = Series(['a', 'b', 'c', 'd'], index=[1, value, np.nan, 4])
assert_series_equal(result, expected)

# MultiIndex:
d = {(1, 1): 'a', (2, np.nan): 'b', (3, value): 'c'}
result = Series(d).sort_values()
expected = Series(['a', 'b', 'c'],
index=Index([(1, 1), (2, np.nan), (3, value)]))
assert_series_equal(result, expected)

def test_constructor_dict_datetime64_index(self):
# GH 9456

Expand Down Expand Up @@ -658,8 +699,6 @@ def test_constructor_tuple_of_tuples(self):
s = Series(data)
assert tuple(s) == data

@pytest.mark.xfail(reason='GH 18480 (Series initialization from dict with '
'NaN keys')
def test_constructor_dict_of_tuples(self):
data = {(1, 2): 3,
(None, 5): 6}
Expand Down

0 comments on commit d270bbb

Please sign in to comment.