-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstruct_pred.py
84 lines (67 loc) · 3.52 KB
/
struct_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from sklearn.metrics import roc_auc_score
def generate_db_from_eterna(eterna_outfile, sample, outdir, reactivity_file, mode="sample", start = 0, end = "full", mask_PBS = False, mask_DIS = False, primer_5 = 0, primer_3 = 0):
db_files = []
tmp_data = read_in_xml(reactivity_file, "")
reactivity = tmp_data["reactivity"]
sequence = tmp_data["sequence"]
if end == "full":
end = len(reactivity)
else:
if primer_3 > 0:
print("You both wanted to trim sequence from the 3' end and mask reactivities due to a primer binding site. Are you sure?")
if mask_PBS:
reactivity[184:199] = 1.0
if mask_DIS:
reactivity[256:261] = 1.0
if (start > 0) & (primer_5 > 0):
print("You both wanted to trim sequence from the 5' end and mask reactivities due to a primer binding site. Are you sure?")
reactivity[:primer_5] = -1.0
if primer_3 > 0:
reactivity[-primer_3:] = -1.0
reactivity = reactivity[start:end]
sequence = sequence[start:end]
mask = np.isnan(reactivity)
reactivity = reactivity[~mask]
if mode == "sample":
with open(eterna_outfile, "r") as infile:
for i, line in enumerate(infile):
structure = np.array(list(line.strip()))
rocauc = np.round(roc_auc_score(np.array(list(structure))[~mask] == ".", reactivity),3)
with open(f"{outdir}/{sample}_{i}.db", "w") as outfile:
outfile.write(f">{sample}_{i}_ROCAUC{rocauc}\n")
outfile.write(f"{sequence}\n")
outfile.write(f"{''.join(structure)}")
db_files.append(f"{outdir}/{sample}_{i}.db")
return db_files
elif mode == "predict":
with open(eterna_outfile, "r") as infile:
_, _, _, _, structure = infile.readlines()
structure = np.array(list(structure.strip()))
rocauc = np.round(roc_auc_score(np.array(list(structure))[~mask] == ".", reactivity),3)
with open(eterna_outfile.replace(".eterna", ".db"), "w") as outfile:
outfile.write(f">{sample}_{tmp_data['transcript_id']}_predict_ROCAUC{rocauc}\n")
outfile.write(f"{sequence}\n")
outfile.write(f"{''.join(structure)}")
db_files.append(eterna_outfile.replace(".eterna", ".db"))
return db_files
def generate_varna(db_file, reactivity_file, sample, varna_outprefix, start = 0, end = "full", primer_5 = 0, primer_3 = 0):
reactivities = read_in_xml(reactivity_file, "")["reactivity"]
reactivities = np.nan_to_num(reactivities, nan=-1.0)
if end == "full":
end = len(reactivities)
reactivities = reactivities[start:end]
reactivities[:primer_5] = -1.0
if primer_3 > 0:
reactivities[-primer_3:] = -1.0
#print(reactivities)
with open(db_file, "r") as infile:
title = infile.readline().strip()
sequence = infile.readline().strip().replace("T", "U")
structure = infile.readline().strip()
for algorithm in ["radiate", "line"]:
varna_outfile = f"{varna_outprefix}_{algorithm}.varna"
colormap = '-1.0:#888888;0.0:#0000FF;0.5:#FFFFFF;1.0:#FF0000'
command = f'java -cp VARNAv3-93.jar fr.orsay.lri.varna.applications.VARNAcmd -algorithm {algorithm} -sequenceDBN "{sequence}" -structureDBN "{structure}" -o {varna_outfile} -colorMap "{";".join(reactivities.astype(str))}" -colorMapStyle "{colormap}" -title "{title}" -flat True'
#print(command)
!{command}
return