forked from jeffheaton/t81_558_deep_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_web_server_1.py
82 lines (70 loc) · 2.86 KB
/
image_web_server_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# T81-558: Applications of Deep Neural Networks
# Module 13: Advanced/Other Topics
# Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)
# For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/).
# Deploy simple Keras tabular model with Flask only.
from flask import Flask, request, jsonify,send_from_directory
import uuid
import os
from tensorflow.keras.models import load_model
import numpy as np
import os
from flask import Flask, request, redirect, url_for
from werkzeug.utils import secure_filename
from tensorflow.keras.applications import MobileNet
from PIL import Image, ImageFile
from io import BytesIO
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.mobilenet import preprocess_input
from tensorflow.keras.applications.mobilenet import decode_predictions
UPLOAD_FOLDER = '/Users/jheaton/test/'
ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'])
IMAGE_WIDTH = 224
IMAGE_HEIGHT = 224
IMAGE_CHANNELS = 3
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
model = MobileNet(weights='imagenet',include_top=True)
@app.route('/', methods=['GET'])
def send_index():
return send_from_directory('./www', "index.html")
@app.route('/<path:path>', methods=['GET'])
def send_root(path):
return send_from_directory('./www', path)
@app.route('/api/image', methods=['POST'])
def upload_image():
# check if the post request has the file part
if 'image' not in request.files:
return jsonify({'error':'No posted image. Should be attribute named image.'})
file = request.files['image']
# if user does not select file, browser also
# submit a empty part without filename
if file.filename == '':
return jsonify({'error':'Empty filename submitted.'})
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
#file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
x = []
ImageFile.LOAD_TRUNCATED_IMAGES = False
img = Image.open(BytesIO(file.read()))
img.load()
img = img.resize((IMAGE_WIDTH,IMAGE_HEIGHT),Image.ANTIALIAS)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
x = x[:,:,:,0:3]
pred = model.predict(x)
lst = decode_predictions(pred, top=5)
items = []
for itm in lst[0]:
items.append({'name':itm[1],'prob':float(itm[2])})
response = {'pred':items}
print(response)
return jsonify(response)
else:
return jsonify({'error':'File has invalid extension'})
if __name__ == '__main__':
app.run(host= '0.0.0.0',debug=True)