diff --git a/README.md b/README.md new file mode 100644 index 00000000..d611ef12 --- /dev/null +++ b/README.md @@ -0,0 +1,95 @@ +_____ +# Proyecto Análisis CDC (centro de control y prevención de enfermedades, en lapandemia COVID-19) + +La COVID-19 afecta de distintas maneras en función de cada persona. La mayoría de las personas que se contagian presentan síntomas de intensidad leve o moderada, y se recuperan sin necesidad de hospitalización, sin embargo se tuvo una alta tasa de mortalidad en el país (EEUU). + +_____ +### 1 - Los 5 Estados con mayor ocupación hospitalaria por COVID-19 con pacientes confirmados durante los 6 primeros meses del 2020, como podemos apreciar NY es el estado más golpeado por la pandemia en Estados Unidos y alberga un tercio de los contagios del país y la mitad de las muertes contabilizada, sin embargo para este año solo se tuvo un 21.35% de sus camas usadas por casos Covid con un promedio de 35,925 internos: + +| Estado | Nombre de Estado | Camas usadas (%) | +|:--------|:-----------------|----------------------:| +| NY | Nueva York | 21.35 | +| NJ | Nueva Jersey​ | 20.24 | +| MA | Massachusetts | 17.77 | +| CT | Connecticut | 14.55 | +| LA | Luisiana​ | 13.78 | + +![src\img01.png](https://github.com/Jhlirion/DS-PI-ProyectoIndividual/blob/main/src/img01.png) + +______ +### 2 - Durante la cuarentena establecida en el país, Nueva York superó la barrera de los 10.000 muertos por Covid-19 este 13 de abril, asi mismo el este es el más golpeado por la pandemia en Estados Unidos, aqui podemos apreciar el crecimiento de los contagios que fueron exponencial en los primeros meses del inicio de la pandemia y los picos donde alcanzo su maximos casos que requerian internamiento. + +| Descripcción | Fecha | Camas usadas pacientes covid | +|:------------|:--------------------|----------------------------:| +| Pico Maximo | 2020-04-04 00:00:00 | 13107 | +| Pico Minimo | 2020-04-05 00:00:00 | 12363 | +| Pico Maximo | 2020-04-06 00:00:00 | 12711 | +| Pico Minimo | 2020-04-07 00:00:00 | 12611 | +| Pico Maximo | 2020-04-10 00:00:00 | 13369 | +| Pico Minimo | 2020-04-11 00:00:00 | 13361 | +| Pico Maximo | 2020-04-14 00:00:00 | 14126 | + + +![src\img02.png](https://github.com/Jhlirion/DS-PI-ProyectoIndividual/blob/main/src/img02.png) +_____ +### 3 - Los estados que ocuparon mayor camas UCI (Unidades de Cuidados Intensivos) durante el año 2020, el aumento de la cantidad de casos se ha convertido en un motivo de preocupación tal que todas las regiones de California, excepto dos, tuvieron órdenes de quedarse en casa provocadas por la capacidad en las unidades de UCI. + +Los estados con ocuparon mas camas UCI, 2020: +| state_name | state | total_camas | +|:----------------|:--------|--------------:| +| California | CA | 4417 | +| Texas​ | TX | 4097 | +| Florida | FL | 3523 | +| Nueva York | NY | 2448 | +| Pensilvania​ | PA | 2180 | + +![src\img03.png](https://github.com/Jhlirion/DS-PI-ProyectoIndividual/blob/main/src/img03.png) + +_____ +### 4 - Estos son los estados que ocuparon más camas para pacientes pediátricos con COVID durante el 2020, siendo California con una mayor cantidad de camas usadas por día. + +| state_name | state | total_camas_pedia | +|:----------------|:--------|--------------------:| +| California | CA | 1902 | +| Nueva York​ | NY | 1734 | +| Pensilvania​ | PA | 1104 | +| Illinois | IL | 1080 | +| Míchigan | MI | 918 | + +![src\img04.png](https://github.com/Jhlirion/DS-PI-ProyectoIndividual/blob/main/src/img04.png) + +_______ +### 5 - Los 05 estados que en promedios usaron más camas UCI asignados a personas adultas, que corresponden a casos confirmados de COVID-19, siendo Texas el que mayor uso de estos recursos consumieron. + +Los estados que ocuparon (%) mas camas UCI: +| state_name | state | adult_icu_bed_covid_utilization | +|:-----------------|:--------|----------------------------------:| +| Texas | TX | 0.229946 | +| Misisipi​ | MS | 0.221417 | +| Georgia | GA | 0.21672 | +| Idaho | ID | 0.214566 | +| Nuevo México​ | NM | 0.211469 | + +![src\img05.png](https://github.com/Jhlirion/DS-PI-ProyectoIndividual/blob/main/src/img05.png) + +### 6 - Para el 2021, se contaron con muchos descesos por la Covid-19, aqui se presenta un detalle de los 05 estados con mayores indices de muertes por la pandemia, Califormia fue uno de los estados más afectados. + +Estados con mayor deceso, 2021: +| state_name | state | deaths_covid | +|:---------------|:--------|---------------:| +| California | CA | 35108 | +| Texas​ | TX | 32889 | +| Florida | FL | 26004 | +| Nueva York​ | NY | 17620 | +| Arizona | AZ | 16250 | + +![src\img06m.png](https://github.com/Jhlirion/DS-PI-ProyectoIndividual/blob/main/src/img06m.png) + +### 7 - Se vino informando de la falta de personal durante todo el año, teniendo una falta en promedio de mas de 1,000 profesionales de la salud, teniendo como las cosecuencias no poder mantener estable los indicadores de nuevos paciente y muertes por COVID-19. + +![src\img07m.png](https://github.com/Jhlirion/DS-PI-ProyectoIndividual/blob/main/src/img07.png) + +### 8 - El mes de Mayo del 2020, fue uno de los peores meses para el país, los 50 estados de EE.UU. habían comenzado a reabrir al menos parcialmente las empresas comerciales, entre las advertencias de la comunidad científica por el riesgo de "nuevos picos" y un número clavado en la mente de muchos: 100.000 muertos, según el recuento de Johns Hopkins, y fue el mes con maroyes casos de muertes por covid-19. + + +![src\img08m.png](https://github.com/Jhlirion/DS-PI-ProyectoIndividual/blob/main/src/img08.png) diff --git a/__pycache__/analisis.cpython-310.pyc b/__pycache__/analisis.cpython-310.pyc new file mode 100644 index 00000000..3f34a94e Binary files /dev/null and b/__pycache__/analisis.cpython-310.pyc differ diff --git a/analisis.ipynb b/analisis.ipynb new file mode 100644 index 00000000..2a25d559 --- /dev/null +++ b/analisis.ipynb @@ -0,0 +1,9621 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Importacion de librerias" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import requests\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import plotly.offline as py\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import datetime as dt\n", + "import cufflinks as cf\n", + "from IPython.display import display, HTML\n", + "from sodapy import Socrata\n", + "import streamlit as st\n", + "import plotly.graph_objects as go\n", + "import plotly.express as px\n", + "\n", + "cf.set_config_file(sharing='public', theme='ggplot', offline=True)\n", + "\n", + "pd.options.mode.chained_assignment = None\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\", category=RuntimeWarning)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "________\n", + "# Campo de funciones" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Con está función llamamos un data set para normalizar los nombre de los estados, ya que se encuentrán en código" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def nom_est():\n", + " #nombre de los estados\n", + " nam = pd.read_html('https://es.wikipedia.org/wiki/Estado_de_los_Estados_Unidos')[1]\n", + " nam = nam[['Abrev.','Estado']]\n", + " nam.rename(columns={'Abrev.':'state', 'Estado':'state_name'}, inplace=True)\n", + " return nam" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cargamos la data y normalizamos y implementamos los nombre según su código" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def cargadata():\n", + " #descarga de datos y limpieza\n", + " df = pd.read_csv('D:\\Proyectos\\DS-PI-ProyectoIndividual\\data\\COVID-19_Reported_Patient_Impact_and_Hospital_Capacity_by_State_Timeseries.csv')\n", + " df = pd.merge(df, nom_est()[['state', 'state_name']], on=['state'], how='left')\n", + " df['date'] = pd.to_datetime(df['date'])\n", + " df = df.sort_values(['date'])\n", + " df['Year'] = pd.DatetimeIndex(df['date']).year\n", + " df.reset_index(drop=True, inplace=True)\n", + " \n", + " return df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "______\n", + "# importación de datos" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Admin\\AppData\\Local\\Temp\\ipykernel_17680\\3184116154.py:7: PerformanceWarning:\n", + "\n", + "DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`\n", + "\n" + ] + } + ], + "source": [ + "nam = nom_est()\n", + "df = cargadata()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "____\n", + "##### 1 - ¿Cuáles fueron los 5 Estados con mayor ocupación hospitalaria por COVID? Criterio de ocupación por cama común. Considere la cantidad de camas ocupadas con pacientes confirmados y tome como referencia los 6 primeros meses del 2020 - recuerde incluir la cifra de infectados en esos meses (acumulativo). ¿Influye el rango etario en este comportamiento?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "los rango rangos estarios se implementaron en el 30/04/2021" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "df01 = df.loc[:,['state', 'date', 'inpatient_beds', 'inpatient_beds_used_covid', 'percent_of_inpatients_with_covid']]\n", + "df01 = df01.loc[(df01['date'] >= '2020-01-01') & (df01['date'] <= '2020-06-30')]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 6694 entries, 0 to 6693\n", + "Data columns (total 5 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 state 6694 non-null object \n", + " 1 date 6694 non-null datetime64[ns]\n", + " 2 inpatient_beds 6689 non-null float64 \n", + " 3 inpatient_beds_used_covid 6610 non-null float64 \n", + " 4 percent_of_inpatients_with_covid 6343 non-null float64 \n", + "dtypes: datetime64[ns](1), float64(3), object(1)\n", + "memory usage: 313.8+ KB\n" + ] + } + ], + "source": [ + "df01.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "state 0\n", + "date 0\n", + "inpatient_beds 5\n", + "inpatient_beds_used_covid 84\n", + "percent_of_inpatients_with_covid 351\n", + "dtype: int64" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df01.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "df01 = df01[df01['inpatient_beds'].notna()] \n", + "df01 = df01.fillna(0) #remplazo nan" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Obtenemos los datos a usar, realizamos el check de los datos y eliminamos los nulos 'inpatien_beds' y remplazamos los NAN, por la cantidad de nulos que teniamos\n", + "______" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statedateinpatient_bedsinpatient_beds_used_covidpercent_of_inpatients_with_covidPercentege_bed_used
0NC2020-01-0172.00.00.00.0
1HI2020-01-010.00.00.0NaN
2PR2020-01-01146.00.00.00.0
\n", + "
" + ], + "text/plain": [ + " state date inpatient_beds inpatient_beds_used_covid \\\n", + "0 NC 2020-01-01 72.0 0.0 \n", + "1 HI 2020-01-01 0.0 0.0 \n", + "2 PR 2020-01-01 146.0 0.0 \n", + "\n", + " percent_of_inpatients_with_covid Percentege_bed_used \n", + "0 0.0 0.0 \n", + "1 0.0 NaN \n", + "2 0.0 0.0 " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df01['Percentege_bed_used'] = df01['inpatient_beds_used_covid'] / df01['inpatient_beds'] #obtuve porcentaje de camas usadas\n", + "df01.head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "df01 = df01.fillna(0) #remplazo nan" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "tot_inf = df01.groupby('state')['percent_of_inpatients_with_covid'].mean()\n", + "tot_inf = tot_inf.reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "# Realice un agrupamiento por la media de ocupacion hospitalaria en los estados\n", + "df01 = df01.groupby('state')['Percentege_bed_used'].mean()\n", + "df01 = df01.reset_index()\n", + "df01['Percentege_bed_used'] = df01['Percentege_bed_used'].apply(lambda x: x * 100) #con la función lambda lo pasamos a formato porcentaje " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "df01 = pd.merge(df01, tot_inf[['state', 'percent_of_inpatients_with_covid']], on=['state'], how='left')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "col = ['state', 'Percentege_bed_used']\n", + "top05 = df01.nlargest(5, 'Percentege_bed_used')[col] #con esta funcion obtengo los 5 estados con media mas alta\n", + "top05 = pd.merge(top05, nam[['state', 'state_name']], on=['state'], how='left') #normalizo el nombre con el codigo\n", + "first_column = top05.pop('state_name') #obtengo la columna a mover\n", + "top05.insert(0, 'state_name', first_column) #se coloca la columa a primera posicion\n", + "top05.set_index('state', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "df01 = df01.sort_values('Percentege_bed_used', ascending=False) #ordenamos los valores para graficar uniformenete" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "#top05['percent_of_inpatients_with_covid'] = top05['percent_of_inpatients_with_covid'].round(2)\n", + "top05['Percentege_bed_used'] = top05['Percentege_bed_used'].round(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABh0AAAImCAYAAABHBEsLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACc8UlEQVR4nOzdd3xV9eH/8fe5KzfjZg+ySNh7yBIcoFVwoQgORFxFxd3W1vq1rVZtbbVW+2trcVCtCwQVB2JBUYs4QBAVlD0TQgIZZO87zu+P4BVMgKAJJ+P1fDzu45593yeEVvLO53wM0zRNAQAAAAAAAAAA/Eg2qwMAAAAAAAAAAICOgdIBAAAAAAAAAAC0CEoHAAAAAAAAAADQIigdAAAAAAAAAABAi6B0AAAAAAAAAAAALYLSAQAAAAAAAAAAtAhKBwAAAOA4mzt3riZMmNAi17rvvvt0xRVXtMi1IF1zzTW6++67rY7RLvC9BwAAgKZQOgAAAKDNy8zMVGhoqCIiIpSUlKRrrrlGlZWVVscKOtYfVE+fPl1Lly5txUTA0RmGoe3bt1sdAwAAAB0MpQMAAADahUWLFqmyslJffvml1qxZowceeOCYzvf5fK2UDDh+/H6/1REAAACAI6J0AAAAQLuSmpqqc845R+vXr5ckvfXWWxowYICio6N12mmnadOmTcFjMzMz9Ze//EWDBw9WeHi4fD6fPvnkE5100kmKjo5Wenq6nnvuOUlSXV2d7rjjDnXt2lVJSUm68cYbVVNTI0n68MMPlZaWpkcffVSJiYlKTk7Ws88+K0maPXu25s6dq4cfflgRERE6//zzJUkPPfSQevToIY/Ho/79++uNN94I5nruued0yimnBNc3b96s8ePHKzY2Vn369NErr7xy2PvftWuXxo0bJ4/Ho/Hjx6uoqOiQ/Z999lnw/oYMGaIPP/zwsNfKycnRlClTlJCQoLi4ON16662SpB07dugnP/mJ4uLiFB8fr+nTp6u0tPSQr+tf//rX4Nf12muvVX5+vs455xx5PB6deeaZKikpCR5/ySWXqEuXLoqKitLYsWO1YcOG4L7Fixerf//+8ng8Sk1N1SOPPNJk1u8/yicrK0uGYQTLpOeee07du3eXx+NRt27dNHfu3Gbdy1dffaVhw4bJ4/Fo6tSpqq2tDe4rKSnRxIkTlZCQoJiYGE2cOFF79uwJ7j/cZzaV/eKLL9bUqVPl8Xg0bNgwrVu3Lrh/06ZNOu200xQdHa0BAwborbfeCu675pprdNNNN+ncc89VeHi4li1b1uj6ZWVluvbaa5WcnKzU1FTdfffdwXJi+/btGjdunKKiohQfH6+pU6dKksaOHStJGjJkiCIiIvTyyy8f9X6P9r13pL+LAAAA6DwoHQAAANCu5OTkaPHixTrhhBO0detWTZs2TX//+99VWFioc889V+eff77q6+uDx8+bN0///e9/VVpaqtzcXJ1zzjm67bbbVFhYqLVr12ro0KGSpLvuuktbt27V2rVrtX37duXm5uoPf/hD8Dr79u1TWVmZcnNz9cwzz+iWW25RSUmJZs6cqenTp+vOO+9UZWWlFi1aJEnq0aOHPv74Y5WVlenee+/VFVdcob179za6n6qqKo0fP16XX365CgoKNH/+fN18883auHFjk/d/+eWXa/jw4SoqKtI999yj559/PrgvNzdX5513nu6++24VFxfrkUce0UUXXaTCwsJG1/H7/Zo4caIyMjKUlZWl3NxcXXbZZZIk0zT1m9/8Rnl5edq0aZNycnJ03333HXL+a6+9pvfee09bt27VokWLdM455+jPf/6zCgsLFQgE9M9//jN47DnnnKNt27apoKBAw4YN0/Tp04P7rr32Wj311FOqqKjQ+vXr9ZOf/ORwf/SHVVVVpZ/97GdasmSJKioqtGLFiuCf65Hupb6+XhdeeKGuvPJKFRcX65JLLtFrr70WvG4gENBPf/pTZWdna/fu3QoNDQ0WM0f6zKYsXLhQl1xyiYqLi3X55ZfrwgsvlNfrldfr1fnnn68JEyaooKBAjz32mKZPn64tW7YEz33ppZf0u9/9ThUVFYeUVd+65ppr5HA4tH37dn311VdaunSpnn76aUnSPffcowkTJqikpER79uzRbbfdJkn66KOPJEnr1q1TZWWlpk6desT7lY78vdecv4sAAADoJEwAAACgjcvIyDDDw8PNqKgos2vXruZNN91kVldXm3/4wx/MSy65JHic3+83U1JSzGXLlgXPe+aZZ4L7//znP5sXXnhho+sHAgEzLCzM3L59e3DbihUrzMzMTNM0TXPZsmWm2+02vV5vcH9CQoK5cuVK0zRN8+qrrzZ/97vfHfEehgwZYr755pumaZrms88+a5588smmaZrm/PnzzVNOOeWQY2fOnGned999ja6RnZ1t2u12s7KyMrht2rRp5vTp003TNM2HHnrIvOKKKw45Z8KECeZzzz3X6ForVqww4+PjD7mnw3njjTfMoUOHBtczMjLMOXPmBNenTJli3njjjcH1f/7zn+akSZOavFZJSYkpySwtLTVN0zTT09PNJ5980iwrKztihnvvvTd4n6Zpmrt27TIlmV6v16ysrDSjoqLMBQsWmNXV1c2+l+XLl5vJyclmIBAI7h8zZsxh/yy/+uorMzo62jRN85g+89577zVPPPHE4Lrf7ze7dOlifvTRR+ZHH31kJiUlmX6/P7j/sssuM++9917TNBu+t6688srDXnvfvn2my+U6JMNLL71knnbaaaZpmuaVV15pXn/99WZOTk6jcyWZ27ZtO+y1D77fo33vHe3vIgAAADoPRjoAAACgXXjzzTdVWlqq7OxsPf744woNDVVeXp4yMjKCx9hsNqWnpys3Nze4LT09Pbick5OjHj16NLp2YWGhqqurNXz4cEVHRys6Olpnn332ISME4uLi5HA4guthYWFHnMz6hRde0NChQ4PXW79+faPH0UhSdna2Vq1aFTwuOjpac+fO1b59+xodm5eXp5iYGIWHhwe3HXz/2dnZevXVVw+51ieffNLkCIucnBxlZGQcck/fys/P12WXXabU1FRFRkbqiiuuaJQ9KSkpuBwaGtpo/duvjd/v11133aUePXooMjJSmZmZkhS83muvvabFixcrIyND48aN08qVK5v8eh5JeHi4Xn75ZT355JNKTk7Weeedp82bNx/1XvLy8pSamirDMILXOvjrWV1drRtuuEEZGRmKjIzU2LFjVVpaKr/ff8TPbMrB34c2m01paWnKy8tTXl6e0tPTZbN990+zjIyMw34Pf192dra8Xq+Sk5ODf+Y33HCDCgoKJEkPP/ywTNPUqFGjNGDAAP3nP/857LWOdL9H+95rzt9FAAAAdA6UDgAAAGi3UlJSlJ2dHVw3TVM5OTlKTU0Nbjv4B8rp6enasWNHo+vEx8crNDRUGzZsUGlpqUpLS1VWVnbEUuFgB3+G1PCD4Ouvv17/+te/tH//fpWWlmrgwIEyTbPRuenp6Ro3blzwc0tLS1VZWaknnnii0bHJyckqKSlRVVVVcNvu3bsPudaVV155yLWqqqp01113Nfm5u3fvbnKC7d/+9rcyDEPffPONysvLNWfOnCazN8dLL72khQsX6v3331dZWZmysrIkKXi9kSNHauHChSooKNCFF16oSy+9tMnrhIeHq7q6Orj+/VLmrLPO0nvvvae9e/eqb9++uv766496L8nJycrNzT3k3g7+ej766KPasmWLVq1apfLy8uAjib49/nCf2ZScnJzgciAQ0J49e5SSkqKUlBTl5OQoEAgckuFw38Pfl56erpCQEBUVFQX/zMvLy4PzZnTp0kX//ve/lZeXp6eeeko333yztm/f3uS1jnS/R/vea87fRQAAAHQOlA4AAABoty699FL997//1QcffCCv16tHH31UISEhOumkk5o8fvr06Xr//ff1yiuvyOfzaf/+/Vq7dq1sNpuuv/563X777cHfEM/NzdW7777brBxJSUnauXNncL2qqkqGYSghIUGS9OyzzwYnvv6+iRMnauvWrXrxxReDz/j//PPPm5yENyMjQyNGjNC9996r+vp6ffLJJ8E5JCTpiiuu0KJFi/Tuu+/K7/ertrZWH3744SGTAX9r1KhRSk5O1l133aWqqirV1tbq008/lSRVVFQoIiJCUVFRys3N1V//+tdmfR2aUlFRoZCQEMXFxam6ulq//e1vg/vq6+s1d+5clZWVyel0KjIy8pDf+D/Y0KFD9dFHH2n37t0qKyvTgw8+GNyXn5+vhQsXqqqqSiEhIYqIiAhe50j3MmbMGDkcDv3zn/+U1+vV66+/rtWrVx+SPTQ0VNHR0SouLtb999/frM9syhdffKHXX39dPp9Pf//73xUSEqLRo0frxBNPVFhYmB5++GF5vV59+OGHWrRoUXB+jaNJTk7WhAkT9Ktf/Url5eUKBALasWOHli9fLkl69dVXg3/+MTExMgwjmPP737dHut+jfe8d699FAAAAdFyUDgAAAGi3+vTpozlz5ui2225TfHy8Fi1apEWLFsnlcjV5fNeuXbV48WI9+uijio2N1dChQ7Vu3TpJ0l/+8hf17NlTo0ePVmRkpM4888xDJvM9kmuvvVYbN25UdHS0LrzwQvXv31+/+tWvNGbMGCUlJembb77RySef3OS5Ho9HS5cu1fz585WSkqIuXbro//7v/1RXV9fk8S+99JJWrVql2NhY3X///brqqquC+9LT07Vw4UL9+c9/VkJCgtLT0/XXv/71kN+i/5bdbteiRYu0fft2de3aVWlpaXr55ZclSffee6++/PJLRUVF6bzzztOUKVOa9XVoylVXXaWMjAylpqaqf//+Gj169CH7X3zxRWVmZioyMlJPPvmk5s6d2+R1xo8fr6lTp2rw4MEaPny4Jk6cGNwXCAT0t7/9TSkpKYqNjdXy5cuDI0WOdC8ul0uvv/66nnvuOcXGxurll18+ZP8vfvEL1dTUKD4+XqNHj9bZZ5/drM9syqRJk/Tyyy8rJiZGL774ol5//XU5nU65XC4tWrRIS5YsUXx8vG6++Wa98MIL6tu3b7O/xi+88ILq6+vVv39/xcTE6OKLLw4+Uuvzzz/XiSeeqIiICF1wwQX6xz/+oe7du0uS7rvvPl199dWKjo7WK6+8csT7lY78vXesfxcBAADQcRnmDx0nDQAAAOAH+c9//qM5c+bof//7n9VRcBzcd9992r59u+bMmWN1FAAAAKDVMdIBAAAAOM42bNigbt26WR0DAAAAAFqcw+oAAAAAQGdy4YUXatu2bXr11VetjgIAAAAALY7HKwEAAAAAAAAAgBbB45UAAAAAAAAAAECLoHQAAAAAAAAAAAAtokPN6RAfH6/MzEyrYwAAAAAAAAAA0GFlZWWpqKioyX0dqnTIzMzUmjVrrI4BAAAAAAAAAECHNWLEiMPu4/FKAAAAAAAAAACgRVA6AAAAAAAAAACAFkHpAAAAAAAAAAAAWgSlAwAAAAAAAAAAaBGUDgAAAAAAAAAAoEVQOgAAAAAAAAAAgBZB6QAAAAAAAAAAAFoEpQMAAAAAAAAAAGgRlA4AAAAAAAAAAKBFUDoAAAAAAAAAAIAWQekAAAAAAAAAAABaBKUDAAAAAAAAAABoEZQOAAAAAAAAAACgRVA6AAAAAAAAAACAFkHpAAAAAAAAAAAAWgSlAwAAAAAAAAAAaBGUDgAAAAAAAAAAoEVQOgAAAAAAAAAAgBZB6QAAAAAAAAAAAFoEpQMkSdX1PqsjAAAAAAAAAADaOUoHaOHaXJ3x6HJty6+wOgoAAAAAAAAAoB1zWB0ArWvB6sKjHrO3zKfKWr8mzfpU153UR11jI454/MWjEloqHgAAAAAAAACgA2GkA5QcFaZbxvWT2+HQU59s1vbCcqsjAQAAAAAAAADaIUoHSJLiI9y6ZVw/RYeF6OlPt2h9XonVkQAAAAAAAAAA7QylA4KiQl26+dS+So4K0wurtmlNdpHVkQAAAAAAAAAA7QilAw4RHuLUjaf2VY/4SM3/Yqc+3r7P6kgAAAAAAAAAgHaC0gGNhDjsuvak3hqYEqOFX+/W0k25Mk3T6lgAAAAAAAAAgDaO0gFNcthtunJUT43oGq+lm3K18OvdClA8AAAAAAAAAACOwGF1ALRddpuhS4d3U5jLro+256vG69Olw7pbHQsAAAAAAAAA0EZROuCIbIah8wd1VZjLoXc25qrW69ek4XFyO+1WRwMAAAAAAAAAtDE8XglHZRiGzuybqguHZGjD3lL99NnPVVnnszoWAAAAAAAAAKCNoXRAs53SI0mXj+iu1VnFuvzfn6m4qt7qSAAAAAAAAACANoTSAcdkWNd4PXXFcG3ZV6GpT63UvrJaqyMBAAAAAAAAANoISgccszP7J+n5GaO0t6xWFz2xQllFVVZHAgAAAAAAAAC0AZQO+EFGd4/TvOtHq8br18VPrtTGvHKrIwEAAAAAAAAALEbpgB9sUFqUXrlhjJx2Q5fNXqkvsoutjgQAAAAAAAAAsBClA36UnokRevXGMYqLCNH0p1dp+dZCqyMBAAAAAAAAACxC6YAfLS0mTK/eOEbd4yN03fOf6+2v86yOBAAAAAAAAACwAKUDWkR8RIjmzRytoenRum3eV5q3erfVkQAAAAAAAAAAxxmlA1pMVKhTL8w4UeN6J+g3r3+jp5bvsDoSAAAAAAAAAOA4onRAiwp12TX7yhGaODhZDy7ZrL+8s1mmaVodCwAAAAAAAABwHDisDoCOx+Ww6R+XnaCoUKee+HCHymq8+uOkgbLbDKujAQAAAAAAAABaEaUDWoXdZuiBCwcqKtSpxz/cofIar/526VC5HAyuAQAAAAAAAICOitIBrcYwDN15dl9FhTr14JLNqqzz6YnpwxXqslsdDQAAAAAAAADQCvi1c7S6G8b10ENTBumjrYW6+tnV8geY4wEAAAAAAAAAOiJGOqBFlL7z2BH3ny2pprdH92+RXn3xWZ2dVHXUa0affVsLpQMAAAAAAAAAHA+MdMBxM6lLhbqH1evp3TFisAMAAAAAAAAAdDytWjrk5OTo9NNPV//+/TVgwAD94x//kCQVFxdr/Pjx6tWrl8aPH6+SkpImz3/++efVq1cv9erVS88//3xrRsVxYDOkGV1Ltb3KpeX7w6yOAwAAAAAAAABoYa1aOjgcDj366KPauHGjPvvsM82aNUsbN27UQw89pDPOOEPbtm3TGWecoYceeqjRucXFxbr//vu1atUqrV69Wvfff/9hywm0H2cnVirV7dXT2dEyGe0AAAAAAAAAAB1Kq5YOycnJGjZsmCTJ4/GoX79+ys3N1cKFC3X11VdLkq6++mq9+eabjc599913NX78eMXGxiomJkbjx4/XO++805pxcRw4bNJPu5ZqQ4Vbn5WEWh0HAAAAAAAAANCCjtucDllZWfrqq6904oknKj8/X8nJyZKkLl26KD8/v9Hxubm5Sk9PD66npaUpNze30XGzZ8/WiBEjNGLECBUWFrbeDaDFXNClQgkun57OjrY6CgAAAAAAAACgBR2X0qGyslIXXXSR/v73vysyMvKQfYZhyDCMH3ztmTNnas2aNVqzZo0SEhJ+bFQcBy6bdFV6mb4oC9VXZSFWxwEAAAAAAAAAtJBWLx28Xq8uuugiTZ8+XVOmTJEkJSUlae/evZKkvXv3KjExsdF5qampysnJCa7v2bNHqamprR0Xx8nFKeWKcfr1dHaM1VEAAAAAAAAAAC2kVUsH0zR17bXXql+/fvrlL38Z3H7BBRfo+eeflyQ9//zzmjRpUqNzzzrrLC1dulQlJSUqKSnR0qVLddZZZ7VmXBxHoXZTl6eV6dPiMG2qcFkdBwAAAAAAAADQAlq1dPj000/14osv6n//+5+GDh2qoUOHavHixbrrrrv03nvvqVevXnr//fd11113SZLWrFmj6667TpIUGxure+65RyNHjtTIkSP1+9//XrGxsa0ZF8fZ1JRyRdgDeoa5HQAAAAAAAACgQ3C05sVPOeUUmabZ5L4PPvig0bYRI0bo6aefDq7PmDFDM2bMaLV8sFakM6CpqWX6z+5o7axyqnu41+pIAAAAAAAAAIAf4bhMJA0czvS0MoXYTP1nd7TVUQAAAAAAAAAAPxKlAywV6wroopQKLcmP0J6aVh14AwAAAAAAAABoZZQOsNxV6aWyGdJzjHYAAAAAAAAAgHaN0gGWSwrxa1KXCi3c51F+nd3qOAAAAAAAAACAH4jSAW3CT7uWKmBKL+ZEWR0FAAAAAAAAAPADUTqgTUgN9emcpEotyItUST3flgAAAAAAAADQHvHTXbQZM7qWqi5gaO4eRjsAAAAAAAAAQHtE6YA2o3u4V2fEV2l+bqQqfIbVcQAAAAAAAAAAx4jSAW3KdRmlqvTb9XIuox0AAAAAAAAAoL2hdECb0tdTr5NjqzV3T5Sq631WxwEAAAAAAAAAHANKB7Q512WUqMRr17zVOVZHAQAAAAAAAAAcA0oHtDknRNVpeFSNZn+0Q3U+v9VxAAAAAAAAAADNROmANum6jFLll9fptS9yrY4CAAAAAAAAAGgmSge0SaNjajQkLUpPLN8unz9gdRwAAAAAAAAAQDNQOqBNMgzpltN7Kqe4Rm+ty7M6DgAAAAAAAACgGSgd0Gad2S9JfZI8evzDHQoETKvjAAAAAAAAAACOgtIBbZbNZujm03toe0Gl3t2wz+o4AAAAAAAAAICjoHRAmzZxcIoy48L0r2XbZZqMdgAAAAAAAACAtozSAW2a3WboptN6aENeuT7cWmh1HAAAAAAAAADAEVA6oM2bfEKaUqLcmvU/RjsAAAAAAAAAQFtG6YA2z+WwaebY7lqTXaJVu4qtjgMAAAAAAAAAOAxKB7QLl43qqvgIl2Yt2251FAAAAAAAAADAYVA6oF1wO+269pTu+nhbkdbllFodBwAAAAAAAADQBEoHtBtXjO6qSLdD/2K0AwAAAAAAAAC0SZQOaDc8bqd+enI3vbcxX5v3lVsdBwAAAAAAAADwPZQOaFd+enKmwl12Pb5sh9VRAAAAAAAAAADfQ+mAdiU6zKUrRmfo7a/zlFVUZXUcAAAAAAAAAMBBKB3Q7lx7ajc57DY98SGjHQAAAAAAAACgLaF0QLuT6HHrspHpev2rPcorrbE6DgAAAAAAAADgAEoHtEs3jOsh05Rmf7TT6igAAAAAAAAAgAMoHdAupUaHavIJqZq3ercKK+qsjgMAAAAAAAAAEKUD2rGbTushrz+gZz7ZZXUUAAAAAAAAAIAoHdCOdU+I0LmDkjXns2yVVXutjgMAAAAAAAAAnR6lA9q1W07vqco6n55bkWV1FAAAAAAAAADo9Cgd0K71S47Umf0S9eyKXaqq81kdBwAAAAAAAAA6NUoHtHu3nN5TpdVezV2VbXUUAAAAAAAAAOjUKB3Q7p3QNUYn94zTvz/epVqv3+o4AAAAAAAAANBpUTqgQ7jl9J4qrKjTK2tyrI4CAAAAAAAAAJ0WpQM6hDHd4zSsa7SeWr5TXn/A6jgAAAAAAAAA0ClROqBDMAxDt/6kp3JLa/TGV7lWxwEAAAAAAACATonSAR3G6X0S1T85Uk98uEP+gGl1HAAAAAAAAADodCgd0GEYhqFbTu+pXUVVWvzNXqvjAAAAAAAAAECnQ+mADuXsgV3UPSFcs5Ztl2ky2gEAAAAAAAAAjieH1QGAY/HUtvlHPaZ3b6fe+dSt+1a+qpSEo08qfUOvy1oiGgAAAAAAAAB0eox0QIfTr7tXdrupb7Y5rY4CAAAAAAAAAJ1Kq450mDFjht5++20lJiZq/fr1kqSpU6dqy5YtkqTS0lJFR0dr7dq1jc7NzMyUx+OR3W6Xw+HQmjVrWjMqOhC3S+rd1aeNO50688Q62e1WJwIAAAAAAACAzqFVS4drrrlGt956q6666qrgtpdffjm4/Ktf/UpRUVGHPX/ZsmWKj49vzYjooAb18mrTLqe25zjUJ9NndRwAAAAAAAAA6BRa9fFKY8eOVWxsbJP7TNPUK6+8omnTprVmBHRS3VL9Cg8N6JttTFsCAAAAAAAAAMeLZXM6fPzxx0pKSlKvXr2a3G8YhiZMmKDhw4dr9uzZxzkd2jubTRrQw6cdOQ5V1xpWxwEAAAAAAACATsGyXwOfN2/eEUc5fPLJJ0pNTVVBQYHGjx+vvn37auzYsY2Omz17drCUKCwsbLW8aH8G9fJq9XqXNu5waMQAr9VxAAAAAAAAAKDDs2Skg8/n0+uvv66pU6ce9pjU1FRJUmJioiZPnqzVq1c3edzMmTO1Zs0arVmzRgkJCa2SF+1TYmxASbF+fbPdaXUUAAAAAAAAAOgULCkd3n//ffXt21dpaWlN7q+qqlJFRUVweenSpRo4cODxjIgOYmAvr/YV2VVUYtmTxAAAAAAAAACg02jVn8ROmzZNY8aM0ZYtW5SWlqZnnnlGkjR//vxGj1bKy8vTueeeK0nKz8/XKaecoiFDhmjUqFE677zzdPbZZ7dmVHRQA3r4ZBimvtnOhNIAAAAAAAAA0Npa9Sex8+bNa3L7c88912hbSkqKFi9eLEnq3r271q1b15rR0EmEh5rqkebX+u1OjRteLxsDHgAAAAAAAACg1fAjWHR4g3p5VVltU1ae3eooAAAAAAAAANChUTqgw+uZ7pPbZWo9E0oDAAAAAAAAQKuidECH53BI/bp7tSXLobp6q9MAAAAAAAAAQMdF6YBOYWBPr3x+Q1uymFAaAAAAAAAAAFoLpQM6hdTEgGIiA/pmG49YAgAAAAAAAIDWQumATsEwpEE9vdq9z6HSCsPqOAAAAAAAAADQIVE6oNMY2NMrSUwoDQAAAAAAAACthNIBnUaUx1RGsk/rtztlmlanAQAAAAAAAICOh9IBncrAnl6VlNuUW8C3PgAAAAAAAAC0NH7yik6lT6ZPTofJhNIAAAAAAAAA0AooHdCphLik3hk+bdrllM9ndRoAAAAAAAAA6FgoHdDpDOrlVV29oW27HVZHAQAAAAAAAIAOhdIBnU5Gsl+e8IC+2c4jlgAAAAAAAACgJVE6oNOx2aSBPbzauceuqhrD6jgAAAAAAAAA0GFQOqBTGtjLJ9M0tGE7j1gCAAAAAAAAgJZC6YBOKT46oOR4P49YAgAAAAAAAIAWROmATmtQL68Kiu3amFdudRQAAAAAAAAA6BAoHdBp9evulc1m6vUv91gdBQAAAAAAAAA6BEoHdFphbqlnuk9vrs2Tzx+wOg4AAAAAAAAAtHuUDujUBvXyqaiyTh9vK7I6CgAAAAAAAAC0e5QO6NR6pPkUE+bUAh6xBAAAAAAAAAA/GqUDOjW7XZo0NFXvbcxXWbXX6jgAAAAAAAAA0K5ROqDTmzIsVfW+gP77zV6rowAAAAAAAABAu0bpgE5vUGqUeiVG6DUesQQAAAAAAAAAPwqlAzo9wzA0ZViavsguUVZRldVxAAAAAAAAAKDdonQAJE0+IVU2Q3qd0Q4AAAAAAAAA8INROgCSukS5dXLPeL32Za4CAdPqOAAAAAAAAADQLlE6AAdcNCxNuaU1Wp1VbHUUAAAAAAAAAGiXKB2AA84a0EXhLrte+4JHLAEAAAAAAADAD0HpABwQ6rLr3EHJWvzNXtXU+62OAwAAAAAAAADtDqUDcJCLhqepqt6vdzfsszoKAAAAAAAAALQ7lA7AQUZlxio1OlSvfckjlgAAAAAAAADgWFE6AAex2QxdNCxVn24v0r6yWqvjAAAAAAAAAEC7QukAfM+UYWkKmNIbX+VaHQUAAAAAAAAA2hVKB+B7MuPDNTwjRq9/uUemaVodBwAAAAAAAADaDUoHoAkXDUvTtoJKfZNbZnUUAAAAAAAAAGg3KB2AJpw3OFkuh02vf8kjlgAAAAAAAACguSgdgCZEhTo1vn+SFq7NVb0vYHUcAAAAAAAAAGgXKB2Aw7hoWKpKqr36cEuB1VEAAAAAAAAAoF2gdAAOY2yvBMVHhOi1L/dYHQUAAAAAAAAA2gVKB+AwHHabLhyaov9tLlBJVb3VcQAAAAAAAACgzaN0AI5gyrA0ef2mFn2dZ3UUAAAAAAAAAGjzKB2AI+ifEql+yZF67QsesQQAAAAAAAAAR0PpABzFRcNStW5PmbYXVFgdBQAAAAAAAADaNEoH4CguGJoiu83Qa1/mWh0FAAAAAAAAANo0SgfgKBI9bo3tFa83v8qVP2BaHQcAAAAAAAAA2qxWLR1mzJihxMREDRw4MLjtvvvuU2pqqoYOHaqhQ4dq8eLFTZ77zjvvqE+fPurZs6ceeuih1owJHNVFw9O0t6xWK3fstzoKAAAAAAAAALRZrVo6XHPNNXrnnXcabb/99tu1du1arV27Vueee26j/X6/X7fccouWLFmijRs3at68edq4cWNrRgWO6Mx+SfK4HXrtSyaUBgAAAAAAAIDDadXSYezYsYqNjT3m81avXq2ePXuqe/fucrlcuuyyy7Rw4cJWSAg0j9tp18TBKXpn/T5V1vmsjgMAAAAAAAAAbZIlczr861//0uDBgzVjxgyVlJQ02p+bm6v09PTgelpamnJzm57Ed/bs2RoxYoRGjBihwsLCVssMXDw8VTVev5Z8s9fqKAAAAAAAAADQJh330uGmm27Sjh07tHbtWiUnJ+tXv/rVj7rezJkztWbNGq1Zs0YJCQktlBJobFjXGGXGhen1L5suwAAAAAAAAACgszvupUNSUpLsdrtsNpuuv/56rV69utExqampysnJCa7v2bNHqampxzMm0IhhGJoyLE0rd+7XnpJqq+MAAAAAAAAAQJtz3EuHvXu/ezTNG2+8oYEDBzY6ZuTIkdq2bZt27dql+vp6zZ8/XxdccMHxjAk0afIJDeXXm18x2gEAAAAAAAAAvq9VS4dp06ZpzJgx2rJli9LS0vTMM8/ozjvv1KBBgzR48GAtW7ZM/+///T9JUl5ens4991xJksPh0L/+9S+dddZZ6tevny699FINGDCgNaMCzZIeG6YTu8XqtS9zZZqm1XEAAAAAAAAAoE1xtObF582b12jbtdde2+SxKSkpWrx4cXD93HPPDZYQQFty0fA03bnga325u1TDM2KsjgMAAAAAAAAAbcZxf7wS0N6dM7CL3E6bXv9yj9VRAAAAAAAAAKBNoXQAjpHH7dTZA7po0bo81Xr9VscBAAAAAAAAgDaD0gH4AaYMS1N5rU//21xgdRQAAAAAAAAAaDMoHYAf4OSe8eoS6dbcVdny+gNWxwEAAAAAAACANqFVJ5IG2qvKBS8f9ZjLPU79bXutzn/gbf0hs079w49cPkRcPLWl4gEAAAAAAABAm8RIB+AHmpHs1d971KjIZ2japlA9muNSDVM8AAAAAAAAAOjEKB2AH+HMGL/eGlCtC+N9ejbfpSkbw7S63G51LAAAAAAAAACwBKUD8CNFOqT7M+v0TO8amZJmbA3VfVkhKvdZnQwAAAAAAAAAji9KB6CFnBjp1xv9q/XTpHq9XuTQpA1h+qCEUQ8AAAAAAAAAOg9KB6AFhdqlX6XXa16/GsU6TP18R6h+ucOtIq9hdTQAAAAAAAAAaHWUDkArGBAe0Px+Nfp5ap0+LLXrgvVheuXzHJmmaXU0AAAAAAAAAGg1lA5AK3HapOuTvXptQLV6hQZ052tf64pnVmn3/mqrowEAAAAAAABAq6B0AFpZN7epZ/vU6IELB2pdTpkm/H25nv54p/wBRj0AAAAAAAAA6FgoHYDjwGZIV4zO0Hu/HKtTesbrgf9u0pTHP9WmveVWRwMAAAAAAACAFkPpABxHyVGh+vdVI/TYtBO0p6RG5z/2iR55d4tqvX6rowEAAAAAAADAj0bpABxnhmHo/CEpev+X43TB0BT9a9l2nffPj/V5VrHV0QAAAAAAAADgR6F0ACwSE+7S3y4dqudnjFKtN6BLnlype95cr4par9XRAAAAAAAAAOAHoXQALDaud4KW3j5WPz05U3NWZWvC//tI/9ucb3UsAAAAAAAAADhmlA5AGxAe4tC95w/QazedJI/boRnPrdHP53+l/ZV1VkcDAAAAAAAAgGajdADakGFdY/T2bafqF2f20uJv9urMvy3XG1/tkWmaVkcDAAAAAAAAgKNyWB0AwKFcDpt+cWZvnTsoWf/32te6/eV1mv3RLvVJilBGXLgy4sKUEReuzLgwxYa7ZBiG1ZEBAAAAAAAAQBKlA2Cp9Z/UHmGvU/cNGqYlkXu0cl+hVm4p1sKaPB085iHMYVdyWJiSw0OVHB6qkUOigqVEoidENhuFBAAAAAAAAIDjh9IBaMPshqGJmemamJkuSfL6A8qvqdHeqhrlVVVrX3WN8qpqtLO8Qiv3FerV7d9VEm6nTRmx346M+HZ0RMN6SnSo7BQSAAAAAAAAAFoYpQPQjjjtNqVFhCstIrzRPn8goJgBUnZxlbL2Vyu7qOF9V1GVlm8tVJ0vcNB1DKXHfFdGZMSFKTMuXKkxoYoLdyk6zEUpAQAAAAAAAOCYUToAHYTdZlPXOLe6xoXp1F6H7gsETOVX1CqrqFrZ+xvKiN3FVcoqqtbqXcWqqvcfcrzNkGLDQxQf4VJchEvxESGKCw9RXIRLCREN73ERDfvjI0LkdtqP450CAAAAAAAAaKuOWjoUFxcfcX9sbGyLhQHQOrb8b64kKfrAa4hTUlLDyzSl0npDeTU2FdXaVFpvU2m9oVJvncrqDe0vtGlHrqGyeptq/E2Pfgh32RXvCVFc+IGC4qBCIi7CpbjwECV4Gt6jQp3MNQEAAAAAAAB0UEctHYYPHy7DMGSapnbv3q2YmBiZpqnS0lJ17dpVu3btOh45AbQSw5BiQkzFhPgl+Y94bK1fKqu3KWrIOdpfWa/9VXUqqqxXUWWd9h94z95frS93l6i4ql4Bs/E1HDZDF56Qqr9ePFiGQfkAAAAAAAAAdCRHLR2+LRWuv/56TZ48Weeee64kacmSJXrzzTdbNRyAtsVtl9yhAfXrGtPk/vKl2cFlv2mq1OtXcb1P++t9Kq73qdjr06aKWi34Yo/SSr2akZFwxM+LnJDRovkBAAAAAAAAtK5mz+nw2Wef6d///ndw/ZxzztGdd97ZKqEAtH92w1Ccy6E4l0MHTzFhmqZq/QH9c0e+BkWGamRMhGUZAQAAAAAAALQsW3MPTElJ0QMPPKCsrCxlZWXpT3/6k1JSUlozG4AOyDAM3d8vVV3DXPr1+hwV1HmtjgQAAAAAAACghTS7dJg3b54KCws1efJkTZkyRYWFhZo3b15rZgPQQUU47PrbwK6q9gf06/U58jY1+QMAAAAAAACAdqfZj1eKjY3VP/7xD1VVVSk8PLw1MwHoBHpGuHVv31T9ZuMe/WPHPt3RK9nqSAAAAAAAAAB+pGaPdFixYoX69++vfv36SZLWrVunm2++udWCAej4zusSrWlpsXohZ7+WFpRZHQcAAAAAAADAj9Ts0uH222/Xu+++q7i4OEnSkCFD9NFHH7VaMACdwx09u2hQZKh+vylXu6rqrI4DAAAAAAAA4EdodukgSenp6Yes2+32Fg0DoPNx2mx6dGC6QmyGfrl+t6p9fqsjAQAAAAAAAPiBml06pKena8WKFTIMQ16vV4888kjwUUsA8GN0cbv0lwHp2llVp/u35Mk0mVgaAAAAAAAAaI+aXTo8+eSTmjVrlnJzc5Wamqq1a9dq1qxZrZkNQCcyOjZCt3RP1JL8Mr2cW2x1HAAAAAAAAAA/gKO5B8bHx2vu3LmtmQVAJ3ddRoK+LqvRw9v2qZ8nVKdaHQgAAAAAAADAMWn2SIc777xT5eXl8nq9OuOMM5SQkKA5c+a0ZjYAnYzNMPTn/mlKDHHojvW7tb+SiaUBAAAAAACA9qTZpcPSpUsVGRmpt99+W5mZmdq+fbv++te/tmY2AJ1QpNOuvw3qqhKvX794ea38AeZ3AAAAAAAAANqLZpcOPp9PkvTf//5Xl1xyiaKiolotFIDOrb8nVL/tnayPtxXpH+9vtToOAAAAAAAAgGZq9pwOEydOVN++fRUaGqonnnhChYWFcrvdrZkNQCc2JSVWG8Jt+uf/tmto12j9pG+S1ZEAAAAAAAAAHEWzRzo89NBDWrFihdasWSOn06nw8HAtXLiwNbMB6OT+eOFA9UuO1O0vr1NOcbXVcQAAAAAAAAAcRbNHOrzwwgtNbr/qqqtaLAwAHMzttOvJK4Zp4mOf6Ka5X2jBjSfJ7bRbHQsAAAAAAADAYTS7dPj888+Dy7W1tfrggw80bNgwSgcArSojLlx/u3Sorn9hje5ftEEPThlsdSQAAAAAAAAAh9Hs0uGxxx47ZL20tFSXXXZZiwcCgO8b3z9JN5/WQ49/uEMndI3RpSPSrY4EAAAAAAAAoAnNntPh+8LDw7Vr164jHjNjxgwlJiZq4MCBwW2//vWv1bdvXw0ePFiTJ09WaWlpk+dmZmZq0KBBGjp0qEaMGPFDYwLoIH45vrdO6hGne95crw15ZVbHAQAAAAAAANCEZpcO559/vi644AJdcMEFmjhxovr06aPJkycf8ZxrrrlG77zzziHbxo8fr/Xr1+vrr79W79699eCDDx72/GXLlmnt2rVas2ZNc2MC6KAcdpv+Oe0ERYc5dfPcL1VW47U6EgAAAAAAAIDvafbjle64447vTnI4lJGRobS0tCOeM3bsWGVlZR2ybcKECcHl0aNHa8GCBc2NAKCTi48I0ePTh2nqU5/pV6+s0+wrh8tmM6yOBQAAAAAAAOCAZo90GDduXPB18sknNyocxowZc8wf/p///EfnnHNOk/sMw9CECRM0fPhwzZ49+7DXmD17tkaMGKERI0aosLDwmDMAaF+GZ8Tqd+f10/ub8vXURzutjgMAAAAAAADgIM0e6XA0tbW1x3T8n/70JzkcDk2fPr3J/Z988olSU1NVUFCg8ePHq2/fvho7dmyj42bOnKmZM2dKEnM/AJ3ENSdl6ovsEv313c0akh6lk3rEWx0JAAAAAAAAgH7ERNLfZxjNf8TJc889p7fffltz58497HmpqamSpMTERE2ePFmrV69ukZwA2j/DMPSXiware0KEfjbvK+0rO7bSEwAAAAAAAEDraLHSobneeecdPfzww3rrrbcUFhbW5DFVVVWqqKgILi9dulQDBw48njEBtHHhIQ49ecUwVdf7dctLX8rrD1gdCQAAAAAAAOj0Wqx0ME2z0bZp06ZpzJgx2rJli9LS0vTMM8/o1ltvVUVFhcaPH6+hQ4fqxhtvlCTl5eXp3HPPlSTl5+frlFNO0ZAhQzRq1Cidd955Ovvss1sqKoAOomeiR3+5aLC+yC7Rg4s3Wx0HAAAAAAAA6PRabE6HF198sdG2efPmNdp27bXXNnl+SkqKFi9eLEnq3r271q1b11LRAHRg5w9J0Ze7S/SfT3dpWEa0Jg5OsToSAAAAAAAA0GkdtXTweDxHnK+hvLxcknj8EQDL/Oacfvp6T5n+b8HX6tslUj0TI6yOBAAAAAAAAHRKRy0dvp1b4Z577lFycrKuvPJKmaapuXPnau/eva0eEACOxuWwadblw3TePz/WTXO+0Ju3nKzwkBYbyAUAAAAAAACgmZo9p8Nbb72lm2++WR6PR5GRkbrpppu0cOHC1swGAM3WJcqtx6adoB2FlfrN6980Oc8MAAAAAAAAgNbV7NIhPDxcc+fOld/vVyAQ0Ny5cxUeHt6a2QDgmJzUM16/mtBHb63L0wsrs62OAwAAAAAAAHQ6zS4dXnrpJb3yyitKSkpSUlKSXn31Vb300kutmQ0AjtlN43rozH6JeuC/G7Vie5HVcQAAAAAAAIBOpdkPPc/MzORxSgDahLVr1x5x/zX97NqQY9PlT6/SCV1CNKWfRwMTXTIMo8njhw4d2vIhAQAAAAAAgE6o2SMdtm7dqjPOOEMDBw6UJH399dd64IEHWi0YAPxQES6bHpmQqKuGRGpXqVf3LCvS/71fqFV7ahRgrgcAAAAAAACg1TS7dLj++uv14IMPyul0SpIGDx6s+fPnt1owAPgxwl02Tenn0ezzu+jGEdEqqw3owU+K9bMlBfrfrir5ApQPAAAAAAAAQEtr9uOVqqurNWrUqENPdjT7dACwhMtu6Oye4RrfPUwrcmr02qZK/XNVqV76pkIX9o3Qmd3DrI4IAAAAAAAAdBjNbg3i4+O1Y8eO4DPRFyxYoOTk5FYLBgAtyW4zdGpGmE7pGqov99bptU0VevrLMr28vkLXl23TVWMyFB3msjomAAAAAAAA0K41u3SYNWuWZs6cqc2bNys1NVXdunXT3LlzWzMbALQ4wzA0PMWt4SlubSqs02ubKvW397bqyeU7dPmorrru1O7qEuW2OiYAAAAAAADQLjW7dOjevbvef/99VVVVKRAIyOPxtGYuAGh1/RJCdHdCiNxduuup5Tv17IosPb8yS1NOSNMN47qre0KE1REBAAAAAACAdqXZE0nv379fP/vZz3TqqafqtNNO089//nPt37+/NbMBwHHRt0uk/t/UofrwjtM0bVRXvbk2V2f8bblunvuFvtlTZnU8AAAAAAAAoN1odulw2WWXKSEhQa+99poWLFighIQETZ06tTWzAcBxlR4bpj9MGqhP7/qJbj6thz7eVqTz//WJrnh6lVZsL5JpmlZHBAAAAAAAANq0ZpcOe/fu1T333KNu3bqpW7duuvvuu5Wfn9+a2QDAEvERIfr1WX214q6f6Dfn9NWW/Apd/vQqXTjrU72zfq8CAcoHAAAAAAAAoCnNLh0mTJig+fPnKxAIKBAI6JVXXtFZZ53VmtkAwFIet1M3jOuhj+88XX+ePEilNV7dOOdLnfn/luuVNTmq9wWsjggAAAAAAAC0KUedSNrj8cgwDJmmqb///e+68sorJUl+v18RERF65JFHWj0kAFjJ7bTr8hO7aurIdC3+Zq+e+HCH7lzwtf7fe1t13andNa53giLdDnncTrmdNhmGYXVkAAAAAAAAwBJHLR0qKiqadaENGzZowIABPzoQALRVdpuh84ekaOLgZH20rUiPL9uuP769UX886BiHzZDnQAHR8O5QpNsZXI88ZN93x3jcTooLAAAAAAAAtHtHLR2a68orr9SXX37ZUpcDAEtVVr55xP3DU6Rnpksb90pZ+w1V1BmqrJPKa6XKOp8qa+tUUSdV1km7Kg1V1kqV9U5V1vl0tPmonXbj0EIixKmoUKeuH9tdwzNiWu4mAQAAAAAAgBbWYqWDebSfogFAB9Q/WeqfbEo6+v8GRkRMVCBgqrLep4panypqvfp4X6Gq6/yqqfc3vNf5VV3nCy7X1PlVVFenb/aWafXu/Xrwp4PkdtmP+Dnj4hNb6O4AAAAAAACAY9NipQOPAgGAo7PZDEW6nYp0OyWFKt9R26zztudV6o8vbdIbK3I17bSurRsSAAAAAAAA+IFsVgcAABxdz5QInTY4QUu/yNfugmqr4wAAAAAAAABNarHSweVytdSlAABNuOTUNIW7HXr+/SwFeKQdAAAAAAAA2qBmlw6maWrOnDn6wx/+IEnavXu3Vq9eHdz/2WeftXw6AEBQRKhDl52Wru15VfromyKr4wAAAAAAAACNNLt0uPnmm7Vy5UrNmzdPkuTxeHTLLbe0WjAAQGMn949T3zSPXvkoR+VVXqvjAAAAAAAAAIdodumwatUqzZo1S263W5IUExOj+vr6VgsGAGjMMAxdPT5DtfUBzV+eY3UcAAAAAAAA4BDNLh2cTqf8fr8Mw5AkFRYWymZjHmoAON5S4kJ17sgu+nTjfm3aXW51HAAAAAAAACCo2a3Bz372M02ePFkFBQX63e9+p1NOOUW//e1vWzMbAOAwzh+drISoED3/frZ8/oDVcQAAAAAAAABJkqO5B06fPl3Dhw/XBx98INM09eabb6pfv36tmQ0AcBghTruuPKOr/vb6Ni35fJ/OH51idSQAAAAAAACg+aVDcXGxEhMTNW3atOA2r9crp9PZKsEAAEc2pHu0RvSK0cLP8nRi31glRrutjgQAAAAAAIBOrtmPVxo2bJgSEhLUu3dv9erVSwkJCcrMzNSwYcP0xRdftGZGAMBhTP9JV9kNQy9+sFumaVodBwAAAAAAAJ1cs0uH8ePHa/HixSoqKtL+/fu1ZMkSTZw4UY8//rhuvvnm1swIADiMWI9LU05J1de7yrRmW4nVcQAAAAAAANDJNbt0+Oyzz3TWWWcF1ydMmKCVK1dq9OjRqqura5VwAICjO/OEJHVNDNOc/+1WTb3f6jgAAAAAAADoxJpdOiQnJ+svf/mLsrOzlZ2drYcfflhJSUny+/2y2Zp9GQBAC7PbDF0zPkNllV69/mmu1XEAAAAAAADQiTW7LXjppZe0Z88eXXjhhZo8ebJycnL00ksvye/365VXXmnNjACAo+iRHKHThiTovS/ztT63zOo4AAAAAAAA6KQczT0wPj5ejz32mKqqqhQeHn7Ivp49e7Z4MADAsbnk1DR9sa1Ev3tzvV6/6STZbYbVkQAAAAAAANDJNHukw4oVK9S/f3/169dPkrRu3TomkAaANiTc7dBlp6VrXU6p5q3ebXUcAAAAAAAAdELNLh1uv/12vfvuu4qLi5MkDRkyRB999FGrBQMAHLuT+sVpTPc4PfzOZhVW1FkdBwAAAAAAAJ3MMc0AnZ6efsi63W5v0TAAgB/HMAw9MHmgar0B/XnxJqvjAAAAAAAAoJNpdumQnp6uFStWyDAMeb1ePfLII8FHLQEA2o4eCRG6YVx3vfFVrlZsL7I6DgAAAAAAADqRZpcOTz75pGbNmqXc3FylpqZq7dq1evzxx1szGwDgB7rl9J7qGhumu99crzqf3+o4AAAAAAAA6CSaXTps2bJFc+fOVX5+vgoKCjRnzhxt2sSjOwCgLXI77frDpAHaWVSl2ct3Wh0HAAAAAAAAnUSzS4fbbrutWdsAAG3DaX0Sdd6gZD22bLuyiqqsjgMAAAAAAIBOwHG0A1auXKkVK1aosLBQf/vb34Lby8vL5ffzyA4AaMvumdhfy7cW6vdvbdDzPx0pwzCsjgQAAAAAAIAO7KgjHerr61VZWSmfz6eKiorgKzIyUgsWLDgeGQEAP1CXKLd+NaG3PtpaqMXf7LM6DgAAAAAAADq4o450GDdunMaNG6drrrlGGRkZx3TxGTNm6O2331ZiYqLWr18vSSouLtbUqVOVlZWlzMxMvfLKK4qJiWl07vPPP68HHnhAknT33Xfr6quvPqbPBgA0uHJ0hhZ8sUf3L9qgsb3j5XE7rY4EAAAAAACADqrZczrU1dVp5syZmjBhgn7yk58EX0dyzTXX6J133jlk20MPPaQzzjhD27Zt0xlnnKGHHnqo0XnFxcW6//77tWrVKq1evVr333+/SkpKmhsVAHAQh92mP00epMLKOj26dKvVcQAAAAAAANCBHXWkw7cuueQS3Xjjjbruuutkt9ubdc7YsWOVlZV1yLaFCxfqww8/lCRdffXVOu200/SXv/zlkGPeffddjR8/XrGxsZKk8ePH65133tG0adOaGxcAcJCh6dG64sQMvbAySxcPT9PA1CirIwEAAAAAAKADanbp4HA4dNNNN/3oD8zPz1dycrIkqUuXLsrPz290TG5urtLT04PraWlpys3N/dGfDQCd2R1n9dGS9fv0uze+0es3nyy7jUmlAQAAAAAA0LKa/Xil888/X48//rj27t2r4uLi4OvHMAxDhvHjfug1e/ZsjRgxQiNGjFBhYeGPuhYAdGRRoU7dM7Gf1u0p00ursq2OAwAAAAAAgA6o2aXD888/r7/+9a866aSTNHz4cA0fPlwjRow45g9MSkrS3r17JUl79+5VYmJio2NSU1OVk5MTXN+zZ49SU1ObvN7MmTO1Zs0arVmzRgkJCcecBwA6kwuGpOjknnF6+J0tKqiotToOAAAAAAAAOphmlw67du1q9Nq5c+cxf+AFF1yg559/XlJDkTFp0qRGx5x11llaunSpSkpKVFJSoqVLl+qss8465s8CABzKMAz9cdJA1fkCeuDtTVbHAQAAAAAAQAfT7NKhurpaDzzwgGbOnClJ2rZtm95+++0jnjNt2jSNGTNGW7ZsUVpamp555hndddddeu+999SrVy+9//77uuuuuyRJa9as0XXXXSdJio2N1T333KORI0dq5MiR+v3vfx+cVBoA8ON0T4jQjaf10Fvr8vTJtiKr4wAAAAAAAKADafZE0j/96U81fPhwrVixQlLDI5AuueQSTZw48bDnzJs3r8ntH3zwQaNtI0aM0NNPPx1cnzFjhmbMmNHceACAY3DzaT20cG2u7lm4Xkt+fqrcTrvVkQAAAAAAANABNHukw44dO3TnnXfK6XRKksLCwmSaZqsFAwC0HrfTrj9OGqhdRVV6cvkOq+MAAAAAAACgg2h26eByuVRTUyPDMCQ1lBAhISGtFgwA0LrG9k7QxMHJevzDHdpVVGV1HAAAAAAAAHQAzS4d7r//fp199tnKycnR9OnTdcYZZ+jhhx9uzWwAgFZ2z8T+CrHb9PuF6xm9BgAAAAAAgB+t2XM6jB8/XsOGDdNnn30m0zT1j3/8Q/Hx8a2ZDQDQypIi3brjrD66960NWvT1Xl0wJMXqSAAAAAAAAGjHmj3S4Y033pDD4dB5552niRMnyuFw6M0332zFaACA4+GK0RkalBqlP769UeW1XqvjAAAAAAAAoB07pscrRUVFBdejo6N1//33t0ooAMDxY7cZ+tPkgSqqrNOj726xOg4AAAAAAADasWY/XikQCDTa5vP5WjQMAMAag9OiddXoDL3wWbbcLrviw0PkcTvkcTsVGXrg/cC6x+2Q22m3OjIAAAAAAADaoGaXDiNGjNAvf/lL3XLLLZKkWbNmafjw4a0WDADQchasLjzqMT3j45QSWajZy3fqaFNKO2yGosOcijxQQgTLiZDvSgqP2xHcHxn63Xqk26kIt0N2m9EyNwcAAAAAAIA2o9mlw2OPPaY//vGPmjp1qgzD0Pjx4zVr1qzWzAYAOI5CnQ7dfsZABUxTdT6/ar0NrxqvX7Ve34H3b7f5lBzjUnmtVxW1PlXUerW3rEYVtT6V13pV6208Ou5ghiEledzqGhumrnFhDe8HLceFu2QYlBIAAAAAAADtTbNKB7/fr4kTJ2rZsmWtnQcAYDGbYSjU6VCo88j/F3HxqIRG20rfeUyS5A1IlT6bKnw2VfoPvB9Yr/DZVeGzaW+tQ3tKHFqe51Rh/aGfFWYPKM3tVWqoTz37DVTX2DClx4YpIy5cqdGhcjmaPSURAAAAAAAAjqNmlQ52u102m01lZWWHTCYNAEBTnDYpxhVQjOvIIx6+Ves3lFvrUG6NUzm1Du2pcSq31qHsaqdWrMxWne+769gMKTkqtNHoiG9f0WFORkkAAAAAAABYpNmPV4qIiNCgQYM0fvx4hYeHB7f/85//bJVgAIDOw2031SPcqx7h3kb7IifcqsLKOmXvr9bu4gOv/VXaXVytDzYXqKiy7pDjPW7HISVEbLhL0WFORYU6FRnqVHSoS1EH1sNddgoKAAAAAACAFtTs0mHKlCmaMmVKa2YBAKARm81QUqRbSZFujeoWK0l6att89Tuwv94rlVbYGl7lhkoqbCqtqNWqnFIt3WjIHzh8qWAzTLlDTLlDpIyoWEWFOhUd2lBIRIU6FRXmCi5/W1x8+3I77cfh7gEAAAAAANqXZpcOV199tWpqarR792716dOnNTMBANBsLqeUGBtQYmzjRzmZZkMpUVtnqLbeUG2doZrg8qHbw+0O7a+s187CKpVW16uizifTPPznhjhswSIiwROiX5zZWyMzY1vxTgEAAAAAANq+ZpcOixYt0h133KH6+nrt2rVLa9eu1e9//3u99dZbrZkPAIAfzDCkEJcU4jIVpSM0CJJu6HXiIev+gKl9r7yiMp+hcr+hcp+hMr+hcp9U7jcObK9TeZ2hDSU2TXuqSL9Jr9PURN8RPyfi4qk/+r4AAAAAAADaqmaXDvfdd59Wr16t0047TZI0dOhQ7dy5s7VyAQBgKbvNUJRDinKY0lEKi3Kf9H873frjbrc2V3v1m651ctmOT04AAAAAAIC2pNk/EnE6nYqKijr0ZBs/UQEAINIh/atXra7rUq9Xi5yasSVUhfVMUA0AAAAAADqfZrcGAwYM0EsvvSS/369t27bptttu00knndSa2QAAaDfshvSLtHo92r1GW2psmropVF9XUs4DAAAAAIDOpdk/DXnssce0YcMGhYSE6PLLL1dUVJT+/ve/t2I0AADan7Ni/ZrTt0YuQ7p6S6jeKGr2kwwBAAAAAADavaP+JKS2tlZPPvmktm/frkGDBmnlypVyOPgBCgAAh9MnLKD5/at1xw637slya1N1vX6dVi8nAx8AAAAAAEAHd9Qff1x99dVas2aNBg0apCVLluiOO+44HrkAAGjXoh3Sk71rdXVSvV4qcOn6raHa72WeBwAAAAAA0LEddcjCxo0b9c0330iSrr32Wo0aNarVQwEA0BE4DOnX6fXqFxbQvVkhmropVP/eU6ZBaVFWRwMAAAAAAGgVRx3p4HQ6g8s8VgkAgGM3Mc6nF/vWSJIufnKF3vhqj8WJAAAAAAAAWsdRW4R169YpMjJSkmSapmpqahQZGSnTNGUYhsrLy1s9JAAA7V3/8IBe7lejO8vTdfvL67Qht1x3ndNXDjsTPQAAAAAAgI7jqKWD3+8/HjkAAOjw4pym5lx3ov703016+pNd2rSvXP+aNkwx4S6rowEAAAAAALQIfr0SAIDjyGm36b4LBuivFw/W51klOv9fn2hjHqMGAQAAAABAx0DpAACABS4Zka5Xbhgjn9/URU+s0Ntf51kdCQAAAAAA4EejdAAAwCJD06P11m0nq39KpG596Sv95Z3N8gdMq2MBAAAAAAD8YJQOAABYKNHj1rzrR+vyE7vqiQ93aMZzn6us2mt1LAAAAAAAgB+E0gEAAIu5HDb9efIg/WnyQK3YUaRJsz7R1vwKq2MBAAAAAAAcM0oHAADaiOknZmje9aNVVe/X5Fmf6t0N+6yOBAAAAAAAcEwoHQAAaENGZMZq0a2nqGeSRze8+IX+9t5WBZjnAQAAAAAAtBOUDgAAtDFdotx6eeZoXTI8Tf/8YJtmvviFKmqZ5wEAAAAAALR9lA4AALRBbqddD188WH+YNEAfbinQhbM+1Y7CSqtjAQAAAAAAHBGlAwAAbZRhGLpqTKbmXHeiSqq9mvSvT/XQks3KKa62OhoAAAAAAECTHFYHAACgs1v/Se0R90coXI+MHql/b9iq2ct36KnlOzQsIU7nZKRqZGKc7LbGv0Mw8BR3a8UFAAAAAAA4LEoHAADagcRQt343YrCKamq1NCdP7+7O0wNrvla8O0RndU3R+PQUxYdSNAAAAAAAAGtROgAA0I7Eh7p1ee/umtozU6sL9mtJ9h7N3bpL87Zl6cSkeJ2Tkaqh8bFWxwQAAAAAAJ0UpQMAAO2Q3WbTmC4JGtMlQXurqvXO7jy9l5OnlfsKlRwWqmsCGbp4eJriIkKsjgoAAAAAADoRSgcAANq55PAw/bRfT13Ru7tW7CvQkuxcPbhksx5dulXnDOqi6SdmaGRmjAzDsDoqAAAAAADo4CgdAADoIJx2m8aldtG41C5y9fLqpVW79dqXe7RwbZ56J0Vo+okZmjwsVZFup9VRAQAAAABAB2WzOgAAAGh5vZM8uu+CAVr12zP08EWDFeq06963NujEP32g/1vwtb7eU2p1RAAAAAAA0AEx0gEAgA4szOXQpSPTdenIdH2zp0xzV2Vr4do8vbwmR4PTojT9xK46f0iKwlz8JwEAAAAAAPjxGOkAAEAnMSgtSg9dNFirfneG/jBpgGq9fv3fa9/oxD99oHsXrtfW/AqrIwIAAAAAgHaOX2sEAKCTiXQ7ddWYTF05OkNfZJdozmfZmrc6R8+vzNaozFhdPCJNGbFhigl3KTrMqehQl1wOfk8BAAAAAAAcHaUDAACdxKb35zTaFi7phnjpspMNvbfXpcV7/LpzQXGj40LtpiKdAUU6TXmc5oH3gLr3GaSYMOeBgsLVsBzWUFZEhDhkGMZxuDMAAAAAANBWWFI6bNmyRVOnTg2u79y5U3/4wx/0i1/8Irjtww8/1KRJk9StWzdJ0pQpU/T73//+eEcFAKBTiHKZujijTlO61im70q7SekPlXkMVXpvKvd8uGyr32lThNbS3xqYKr0OL9mw77DWddkNRoYcWETFhLkWHN7x3iXTrpB5xSox0H8c7BQAAAAAArcmS0qFPnz5au3atJMnv9ys1NVWTJ09udNypp56qt99++zinAwCg87IZUjePv9nH9zr9cpXWeFVaXa+Saq9Kquq19/N9KvX6VOb1q9TrV5nPr9LSWu0orApu85lm8Bp9I9waG+/RqXEeDYwMlb2J0RGREzJa5P4AAAAAAEDrsvzxSh988IF69OihjAx+mAAAQHvjsNsUHxGi+IiQ4Lby3LojnmOapqr9AeXU1OvT/ZX6eH+Fnsku1OysQkU57Do5LkKnxnl0UmyEYlyW/6cKAAAAAAA4Bpb/S37+/PmaNm1ak/tWrlypIUOGKCUlRY888ogGDBjQ6JjZs2dr9uzZkqTCwsJWzQoAAH48wzAU7rCrrydUfT2hujYzQeVev1YWV+qj/RX6ZH+FFueXyZA0ODJUp8Z5dHZutPonR8pmY44IAAAAAADaMktLh/r6er311lt68MEHG+0bNmyYsrOzFRERocWLF+vCCy/Utm2Nnxs9c+ZMzZw5U5I0YsSIVs8MAABaXqTTrrOSonRWUpQCpqmNFTX6+MAoiFm7CvSvxwqU4AnR6X0SdHqfRJ3cK16RbqfVsQEAAAAAwPdYWjosWbJEw4YNU1JSUqN9kZGRweVzzz1XN998s4qKihQfH388IwIAgOPMZhgaGBmmgZFhuqlbovbX+/RlcoiWbSnQO+v36ZU1e+SwGRqRGaPT+yTqJ30T1TMxQkYTc0EAAAAAAIDjy9LSYd68eYd9tNK+ffuUlJQkwzC0evVqBQIBxcXFHeeEAADAanEuhy4anqaLhqfJ5w/oq5xSLdtcoP9tLtCDSzbrwSWblRodqtP7NoyCGNMjTmHMBQEAAAAAgCUs+xd5VVWV3nvvPT311FPBbU8++aQk6cYbb9SCBQv0xBNPyOFwKDQ0VPPnz+c3GAEA6OQcdptGZsZqZGas7jy7r/aW1ejDLYVatrlAr3+Zqzmf7ZbLYdPo7nH6SZ8End43URlx4VbHBgAAAACg07CsdAgPD9f+/fsP2XbjjTcGl2+99VbdeuutxzsWAABoR5KjQjVtVFdNG9VVdT6/1mSV6H+bC7RsS4HuW7RR9y3aqNToUKXGhKpLpFtJkSFKinQrMdKtJE/DclKkW6Euu9W3AgAAAABAh8CzBwAAQLu0du3aRtvCJZ2fJp2fFq29FRH6cm+tNhfVq7iyUp8Xlml/TUD1frPReWFOQ7GhdmUkRinJc6CUiPy2lAhRosetxMgQhTgoJwAAAAAAOBJKBwAA0CElexw6zxOh83p/t800TVV7TRXX+A+8Agct+1VT79eqXcUqqKiVt4lyIibMGRwd8f1RE4mRbiV6QpTgCZHTbjuOdwoAAAAAQNtB6QAAADoNwzAU7jIU7rIpPcrZaP/QoUMlNZQTJdVe5ZfXKr+8VgXldQ3LFbXKL69TQXmttuyrUGFlnfyBxuVEXLhLCQcVEcFXcL1h5ITbycgJAAAAAEDHQukAAADwPYZhKDbcpdhwl9I9/5NSmz7OH5CKq6SCSqmwwlBhpVRYaaiwskZFlbUqrCzTlr2G9ldJvoDR6PxIt+PQYuKg0RLfFhOJnhBFhDhkGI3PBwAAAACgraF0AAAA+IHsNinB0/BS8rcjHhqPfAiYUkm1VFgpFVUaKvcOU2FFw4iJgoo6FVTU6YvdJcovr1O9L9Do/FCnPTi3xAldo/Xrs/rIwSOcAAAAAABtEKUDAABAK7MZUlx4w0tJpiIi0hsds7yooGHOiTq/Siu9Kq3yqrSqXmXBZa9KKur11Ec7tb6oTNed0022o4x+GBef2Ep3BAAAAABA0ygdAAAA2gjDMBTudijc7VBqfGiTxyxcmafXP81VWIhd03/SlccuAQAAAADaFEoHAACAduSC0cmqqvXp3S/yFeZ2aMrJh5lwAgAAAAAAC1A6AAAAtCOGYWjaaemqqfNr4co8hbvtOmt4F6tjAQAAAAAgidIBAACg3TEMQz+dkKnqOr9eWpajUJddYwclWB0LAAAAAADZrA4AAACAY2ezGbrxvO4amBmp/yzN0pqtxVZHAgAAAACA0gEAAKC9cjps+tkFPdUjOVxP/Hen1meVWR0JAAAAANDJUToAAAC0YyEuu345pbeSY936x5vbtT2v0upIAAAAAIBOjNIBAACgnQt3O/Tri/soJsKpR1/bqt2F1VZHAgAAAAB0UpQOAAAAHUBUuFN3XtJHIU6bHnl1i/JLaq2OBAAAAADohCgdAAAAOoj4qBDdeUkfBUzp4Ve3aG9ZjdWRAAAAAACdDKUDAABAB5ISF6pfXdRblbU+XfnMahVX1VsdCQAAAADQiVA6AAAAdDDduoTr9sm9lFNcrav/s1oVtV6rIwEAAAAAOglKBwAAgA6ob3qknrhimDbtLdd1z69RrddvdSQAAAAAQCdA6QAAANBB/aRvkh69dIhWZxXrlrlfyusPWB0JAAAAANDBUToAAAB0YJOGpuqPkwbqg80FuuPVdQoETKsjAQAAAAA6MIfVAQAAANC6rhidofJarx5+Z4s8bof+OGmgDMOwOhYAAAAAoAOidAAAAOgEbj6tp8pqvHpq+U5FhTr167P6Wh0JAAAAANABUToAAAB0Ened3VflNT7NWrZDkW6nbhjXw+pIAAAAAIAOhtIBAACgkzAMQw9cOFAVtV49uGSzIkOdmjaqq9WxAAAAAAAdCKUDAABAJ2K3GfrbpUNVWefTb9/4Rh63QxMHp1gdCwAAAADQQdisDgAAAIDjy+Ww6YnpwzUyI1a3v7xWH24psDoSAAAAAKCDoHQAAADohEJddj19zQj1TvLoxjlf6POsYqsjAQAAAAA6AEoHAACATirS7dTzM0YpJSpUM579XOtzy6yOBAAAAABo5ygdAAAAOrH4iBC9eN2J8rgduvo/q7WjsNLqSAAAAACAdozSAQAAoJNLjQ7VnOtOlCRd+fQq5ZbWWJwIAAAAANBeUToAAABA3RMi9MK1o1RR59OVT69SUWWd1ZEAAAAAAO0QpQMAAAAkSQNSovTsNSOVV1ajC2d9qtkf7aB8AAAAAAAcE4fVAQAAAHD8LFhdeNRjfjq6t5Zs2KM/L96svyzZogEp0ToxM0G9EqNkM4xGx188KqE1ogIAAAAA2iFKBwAAAByiR0Kkbj2tv/aV12h1VoHW7N6vr3NLFB3q0qjMBI3KiFd0WIjVMQEAAAAAbRClAwAAAJrUJTJUFwzO0LkD0rV+b4lWZxVq6aZcvbcpV32SonRiZoL6J0dbHRMAAAAA0IZQOgAAAOCIHHabhqbFaWhanPZX1enzrEKtzi7U86u2KyLEoZ0lXTV1RLq6J0RYHRUAAAAAYDFKBwAAADRbXHiIzh6QpvH9UrUlv0yrswr19Me79NTynRrVLVaXjUzXuYOS5XbarY4KAAAAALAApQMAAACOmd1mqH9ytPonR2tsX48WfLlHL3+eo1++sk73vrVBk09I1dSR6RqQEmV1VAAAAADAcUTpAAAAgB8lMdKtm0/rqRvH9tCqXcV6+fPdmv95jl5Yma1BqVGaOjJdk4amyON2Wh0VAAAAANDKKB0AAADQImw2Q2N6xGlMjzjdV12vN7/K1fzPc3T3m+v1p/9u0nmDk3XZyHQNz4iRYRhWxwUAAAAAtAJKBwAAALS46DCXrjm5m64+KVNf7ynT/M9z9NbaXC34Yo96JkbospHpmnxCquIiQqyOCgAAAABoQZQOAAAAaDWGYWhIerSGpEfr7vP66b9f79X8z3frgf9u0l/e2awz+yVp0tBUndYngcmnAQAAAKADoHQAAABAiyt957Emt0+QNKG7tD3JqTf2RmrJFq+WrN+nCLtf4xOqdE5SpYZH18r+vacvRZ99W+uHBgAAAAD8aJQOAAAAOO56hnv16577dXv3/VpdGqrF+RF6tzBCb+yLVILLp7MSK3VuUqX6RdSL6R8AAAAAoP2wrHTIzMyUx+OR3W6Xw+HQmjVrDtlvmqZ+/vOfa/HixQoLC9Nzzz2nYcOGWZQWAAAArcFhk06KrdFJsTWq9Rfpo/1hWpwfofm5UZqzJ1oZofU6J6lSU4uq1C0+3Oq4AAAAAICjsHSkw7JlyxQfH9/kviVLlmjbtm3atm2bVq1apZtuukmrVq06zgkBAABwvLjtpiYkVmlCYpXKvTa9XxiuJQUReiorRk8+8qGGpEXpgqGpOn9wshIj3VbHBQAAAAA0oc0+XmnhwoW66qqrZBiGRo8erdLSUu3du1fJyclWRwMAAEAri3QGNCWlQlNSKpRfa9dHsWdr4bpc/fHtjfrTfzfqpB7xumBois4e2EWRbqfVcQEAAAAAB9is+mDDMDRhwgQNHz5cs2fPbrQ/NzdX6enpwfW0tDTl5uYez4gAAABoA5Lcfl0/trvevu1Uvf/Lsbr19J7KKanWnQu+1ogH3tdNc77QO+v3qtbrtzoqAAAAAHR6lo10+OSTT5SamqqCggKNHz9effv21dixY4/5OrNnzw6WFoWFhS0dEwAAAG1Iz0SPfjmhj24f31trc0q1cG2e3v46T0vW75PH7dA5A7to0tBUje4eJ7uNGagBAAAA4HizrHRITU2VJCUmJmry5MlavXr1IaVDamqqcnJygut79uwJnnOwmTNnaubMmZKkESNGtHJqAAAAtAWGYeiErjE6oWuM7j6vn1bu3K83v8rT4m/26ZU1e5ToCdH5Q1I0aWiKBqVGyTAoIAAAAADgeLDk8UpVVVWqqKgILi9dulQDBw485JgLLrhAL7zwgkzT1GeffaaoqCjmcwAAAEAjDrtNp/ZK0KOXDtGau8/U49OHaWh6tF5cma0L/vWpfvLocv313c36PKtYPn/A6rgAAAAA0KFZMtIhPz9fkydPliT5fD5dfvnlOvvss/Xkk09Kkm688Uade+65Wrx4sXr27KmwsDA9++yzVkQFAABAG/bUtvmNN7ql4WOk/sOkrVlObdjh0+MfVmrWsh0KcZnqluJT9zS/uqf55Ak3Dzn1hl6XHafkAAAAANAxWVI6dO/eXevWrWu0/cYbbwwuG4ahWbNmHc9YAAAA6EBCQ6Qhfbwa0ser2jopK8+hnXvs2rnHoc1ZTklSQoxf3dP86pHmU1oSE1EDAAAAwI9l2ZwOAAAAwPHiDpH6dvOpbzefTLNORSU27ThQQHy+walV37jkcpr6qtcajeudoHG9E5QeG2Z1bAAAAABodygdAAAA0KkYhpQQG1BCbECjB3tVVy/t3mvXjj0Obdpbrvc25kuSeiSEa1zvRI3rk6ATu8XK7bRbnBwAAAAA2j5KBwAAAHRqIS6pV4ZfvTL8mtnzdO0sqtLyLYX6cGuh5qzK1n8+3SW306bR3eN0Wu8EjeuTqMy4MBmGYXV0AAAAAGhzKB0AAACAAwzDUI+ECPVIiNCMU7qppt6vz3bt1/Ithfpoa6HuW7RRWrRRXWPDdFqfhscwjekRpzAX/1kNAAAAABKlAwAAAHBYoS67Tu+TqNP7JEqSdu+v1vKtBVq+tVCvrtmjF1Zmy2W3aVS3WI3rnaBeSRFy2m1y2Aw57DY57YYctgPvwe2NtzntNtltjJwAAAAA0P5ROgAAAABHUbngZUlSrKTJkiaHS/WDpC8r7fqkzK5P9uTrT9uLftRnGIbktNkOlBLfFRFO+6HbHHZDadFhGpEZo+EZMRqQEiWXw/bjbxIAAAAAWgClAwAAAPADuGzS6Ei/Rkf6dUe6tK/e0N56Qz5T8psN7z5T8pqS76B1nynZhw6X12/K5w/IFzDl85vyBQLam+2VzzTlDwQOvJvymYED7w3bvfWmvtpZqnc27DuQw6Ze0ZHqFxOl/rHR6hsTpUiXU5I08BS3lV8iAAAAAJ0QpQMAAADQArq4THVxmc06NmJMZpPb139S2+zP219bp03FpdpUUqZNJWV6Y+duLdiRLUlKiwhT/5honemO1/CMGHWPD2fiawAAAADHBaUDAAAA0A7FuUN0SkqSTklJkiTV+v3aVlreUEIUl2rFvgItXZAnSYoNd2lY14bHMY3IjNGg1Ci5nXYr4wMAAADooCgdAAAAgA7AbbdrUFyMBsXFSJICpqnQ3j59kV2iNdkl+iK7RO9vypckOe2GBqZGaURGjIZnxGp4RowSPCFWxgcAAADQQVA6AAAAAB2QzTDUK8mjXkkeXTaqqyRpf2WdvjhQQHyRXaLnV2Tr3x/vkiRlxIU1jIQ4UEL0SoyQzcYjmQAAAAAcG0oHAAAAoJOIiwjRhAFdNGFAF0lSnc+v9bllDaMhskq0fEuhXv8yV5IU6XYoMdItu2HIZjNkt+m75QPvDpshu82QzTj4XYdsO/jYb8899FibokKdSvCEKNETEnyPCXNRegAAAADtEKUDAAAA0Ilsen/OIethkk6VdGqKZCZLe2ts2lDq0OYyhyq81QoEpEBA8ptSwDTkNyWvKQVMKaCGba7IeAUCpnwBU4GAKb9pyltZr4Ap+U2z4VjTlM80FdB32/ymeeB6jSfgdhhSrMuheJdD8S6n4l0OpfWLU8KBYiLB4w6WFMxPAQAAALQdlA4AAAAAJEmGIaWEBZQSVq/xKfXNPq/fmZMabStfmt3s86t9fhXV+7571flUWO/V/nqfCut8KqjzamNFjYqXlSjQuJ+Qx+04aJSE+5BREwdviwp1ys7oCQAAAKBVUToAAAAAsFSYw66uDru6hh15MuuwM9JVXF2vgvI6FVbWqfDAe0F57YH3Oq3bU6qC8jrVeP1NXsMT4lBkqLPh5T6w7HYqMtShSLdTUYfZFxXqVLjLwSOfAAAAgKOgdAAAAADQLjjsNiV63Er0uIPb1q5dK8VIkl0ND4sKk2maqvWZKqkNqKTGr5Jav0pqAqqsD6jKG1BVfUBV3npVVtYqvySgqnpTVd6Aqr1NDKM4iM2QPAcVFN+VFAfWD5QVToftwHwXtuC8F9/OafHduq3h3d4wv0Vwu/3AscaBY+xGk9dw2GxyOWyt+NUGAAAAfhhKBwAAAAAdimEYCnUaCnXalOJp/j95/AFT1V5TGT37qrzWq/Iar8prvSqr8aqwbK0qaqWKWr/Kaw1V1EnlNVJhhaGKWqm8VqrxHt9REJlxYRqUFq0haVEanBatgamRCnPxTzwAAABYi/8iBQAAAABJdpshT4ihrnFhjfZVVn551PO9fqmyruHdH5B8gYYJt32BhvWGbUbDxNwByRlyivwBU75AQP6AKX/A1NdlpQ2TcQcUnJQ7EDAPTOZ9YKLugKl6b0A5RdX6dGeRFq3Lk3RgTo7YUHXrEq7uXcKV2SVMXRPCdGaXLi3+tQIAAAAOh9IBAAAAAFqA0y7FNO4rvue7RzhFRMQ12htSdOyPTCqt8iprX5V27qtS1r4qrdtZqk82FElqKFL6J0dqUFpUcEREr8QIOew8mgkAAACtg9IBAAAAANqx6HCnhvaI1tAe0ZIk0zS1v7xeu/KrtGtflUr2e7VobZ5eWrVbkuR22jQgJUqD06I0JC1ag9Ki1C0unEmyAQAA0CIoHQAAAACgAzEMQ/FRIYqPCtHI3rEaF5+oQMBU1v4qfb2nTOv2lOrrPWWat3q3nv00S5LkcTs0KLVhJMTgtIZCIjU6VIZBEQEAAIBjQ+kAAAAAAB2czWaoe0KEuidE6MITUiVJPn9A2woq9fWBEuLrPWV65pOd8vobHgEVF+5S/5RIRYU65XLYFOKwK8RhC76+3eb6dpvTJpfdftC+745p2NdwTIj9u3VGVwAAAHQ8lA4AAAAA0MksWF0YXLYrVCekhuqE1C7y+gPaW1atnJIq5ZRUaWdhtep9AXn9DZNdewMB+fwB+QLmEa7efE67IZfdplCXXfERIUrwhCgp0q1ET4gSv12ODFGix60ET4jcTnuLfC4AAABaD6UDAAAAAECS5LTb1DU2Ql1jI454nGma8gdM+QLmgUIioDMGxqjeF1Cdz3/gPaD9q96UN2CoLmCo/nuvuoBNXlOqC9hU4zdUXG9X4T67tmQ7tL/eLr8aj4KIdPjVJS5KiZ7vyoiDy4mkA9spJwAAAKxD6QAAAAAAOCaGYchhN+SwK/gD/m7x4Y2OK91e84OuHzClUq9NBXUOFdXbVVjvUFGdXYX1dpVGp6igok67dlapoKI2+Diog3ncjuCIiW/fEw68It1ORbgdCnc55HE7FB7iUESIQy6H7QdlBQAAwKEoHQAAAAAAbYrNkGJdAcW66hvtiz57RHA5EDBVWuPVrPVvqrLaOPCyqbKmXpXVNcqusGlDfsN2f+DI80fYbaZcLlMhTsnlNJURGa+IkIZSwuN2BJcjvn0dKCw8TWx32ikwAABA50XpAAAAAABol2w2Q7HhLiXGBpQYe/jjTFOqrZeqamyqq5fqvYbqvUZwuc5rqN4r1dUbB/ZJDptNRZX1yt5frYo6n6rqfKqu9zcrV6jTri5RbnWJdCs5yq0uUd++hyr5wHJsuEuGwUTaAACg46F0AAAAAAB0aIYhhYZIoSGBZp9zQ6/RjbaVvfqyqv1SZcBoePcbqvIbqgqo4d1vqNIvlfsNFXhrta/Aps/2GCrwGvKZhxYMLsNUostUSkp8sJhIiQo9qKBwKz48RDYbxQQAAGhfKB0AAAAAAGgGuyF5HJJH384j0Xg+iaYETKnYZ2hffcMrv96mfK+h/HpDhZK+2l2qfWW1qvcfWoo47YYSPQ0lRHJ0wyiJg0dPJEa6FXlgfgrKCQAA0FZQOgAAAAAA0IpshhTvNBXvNDUwXJK+e0xTxMVjJDXMT1FcXa99ZbXaW1arfWU1yiurPbBeo2/2lGrphlrV+ZoerRFx0NwTEW6HPG6nPCEHrzuCx3jczuD2SLdDESHfTq5t55FPAADgR6N0AAAAAADAYjabofiIEMVHhEi7QpSsKJ0QISlCUmrDMaZpqsLrU1FNrYpq61RSV6cqr081Pr+qfT5V+Xyq9vpUU+3XvvI67fRVqdrbsK/Wf/T5KAzjQHkRcqCYcH83QbbbaVeoyya3w65Ql11uZ8Mr1GmX22k78H5gm+u7baFOu0IOvDvtBqUGAACdAKUDAAAAAADtgGEYinQ5FelyqnuU55jO7XdSiCrrfKqo9aqyzqfKWp82fLZU1T7ju5e/4b3q2/UKQ3klhmp8huoDUq3fUH3AUJ1fMnXs5YHNaJhkO9RlV4jj0HLC7WzYFuKwyWk35HLY5LTb5HLY5Drw7rQfvO3QY5o6tmHZkMtul9NhyGW3yemwKdzlkJ3HUQEA0GooHQAAAAAA6ODsNkNRoU5FhTqD28K3+37QtUxT8ppSnb+hgGgoIgzVBaSkoeNV6/Wr1htQTb1ftT6/Sr8pUk0goDq/qdpAQLUBU7X+gGr9AdXVmqqpqldZIKC6gClvwFR9ICCvaao+YMp34L0+YDZzBo2jC3XaNTwjRiMzYzWqW6xO6Bott9PeQlcHAACUDgAAAAAAoNkMQ3IZkstmyuOUDp5Qu1+P+EbHl5e1zOf6Aqa8ZkMxETI2VV5/QPW+gLz+gOp8AW3cvEVev9lwXODA8X5Tvm+XAw3L+yp92lhYpk+3F8mU5LBJPWNdGpDgUv+EEPWNdyncZdPQoUNbJjgAAJ0MpQMAAAAAAGjzHDZDDhkKtUuRnpBG+32FrmO6XmV9QJuL6rWhoE4bC+v15uZKvbapUjZDyox2alzOBo3KjNXIbrENc20AAIBmoXQAAAAAAACdToTLphEpbo1IcUuS6nwBbdnv1cbCOm0oqNe81bv17KdZkqQeCeEa1S32wCtOqdGhFiYHAKBto3QAAAAAAACdXojDpsFJIRqc1DCqof/AwVqfV6bVu4q1elex3v56r+atzpEkpUaHBkuIkZmx6pEQLsNgcmoAACRKBwAAAAAAgEZcDpuGdY3RsK4xunFcD/kDprbsq9DqXfv1eVaJPt5WpDe+ypUkxYW7ggXEqG6x6pccKbuNEgIA0DlROgAAAAAAAByF3Waof0qk+qdE6pqTu8k0TWXtr9bqXfu1alexPs8q1pL1+yRJnhCHBqdHqVeiR72SIhreEyMUE35s804AANAeUToAAAAAAAA0U2Xlm8HlBLd0Xr+GlyTtLZO+zDG0Zrdfm/cV6pU1Raqu/27EQ2y4qR7xB14JUo94U4Mzz1ZcuIvHMwEAOgxKBwAAAAAAgBaQHCWdF2XqvIGmJMk0pX3l0o4iQzsKjYb3Ium/622qqPu2ZHhfMWFO9Ur0qGdShHolRgRHSCR6QigjAADtDqUDAAAAAABAKzCMhiIiOcrUKT3M4HbTlAorpR2FhvZUDNa2gkptz6/U4m/2qrTaGzwu0u1Qr6SGRzP1TIwILidHuSkjAABtFqUDAAAAAADAcWQYUqJHSvSYiojoFtxumqaKKuu1raBC2wsqtS2/UtsKKvT+pnzN/zwneFxEiEM9EhtGRfRPjtTIzFj1S/bIYbdZcTsAAByC0gEAAAAAAKANMAxDCZ4QJXhC5I0KKKNXmM5UoiSpotqrvOJa5e2vUe7+GuXtr9X7m/O14Is9kqQQp009UyLUKyVCvdMi1CM5Qm6XPXjtcfGJltwTAKDzoXQAAAAAAABo4zxhTvUJc6pPmueQ7cUV9dqWW6GtuZXalluphZ/lyTQlmyGlJ4apd2qEeqd61NcVqaRIt0XpAQCdCaUDAAAAAABAOxXrcenEvnE6sW+cJKmmzq/texsKiG25FVr+dZHe+7JAsxbtUHpsqEZmxGp4ZoxGZsaqZ0KEbDbmhgAAtCxLSoecnBxdddVVys/Pl2EYmjlzpn7+858fcsyHH36oSZMmqVu3hmcbTpkyRb///e+tiAsAAAAAANAuhIbYNSgzSoMyoyRJPn9AOYU18pdKa7KK9dG2Ir3+Va4kKSrUqREZMcESYlBqlNxO+xGuDgDA0VlSOjgcDj366KMaNmyYKioqNHz4cI0fP179+/c/5LhTTz1Vb7/9thURAQAAAAAA2j2H3aZuXcI1bmCirj2lm0zT1O7ian2eVaIvsov1eVaJPthcIEly2W0alBalEZkxDSMiMmIUE+6y+A4AAO2NJaVDcnKykpOTJUkej0f9+vVTbm5uo9IBAAAAAAAALccwDGXEhSsjLlwXD0+TJBVX1euL7BKtyS7WmqwSPftJlp5avlOS1DMxQiMzY9QtPlxhLociQhz6/+3dd1wUZ/4H8M/M7tKLUiyICCIo0u1Y8hMSSzzF3lIuRhNPIz+jp0k0ySWaGI3RnJzl4mm8xPjzIGossYC914tdNIgFFLFgQUXq7s7vD9wNCywsu7OQ6Of9evHa3dlhvlOfZ2a+O8/jaKuEo42i5NVW96qEo40SCjbXRET03Kv1Ph3S09Nx8uRJtG/fvtx3hw8fRnh4OLy8vDB37lwEBweXG2fJkiVYsmQJACA7O9vq80tERERERERE9KxYc0x3L0VEgLsHAtw9MChCi8wHT3D13mNcvfcY609mIb9YY9L07FQiHG2UpRIRpZIT+uEKfZLCcBwl6jnboqGrHZQK0XoLTUREVlWrSYfc3FwMHDgQ8fHxcHFxMfiuVatWyMjIgJOTE7Zs2YJ+/fohLS2t3DRGjx6N0aNHAwDatGlTI/NNRERERERERPSsUilE+Hk4w8/DGQAgSRKKNFoUFmtQqHtVa1Co1qJQrUHR0/cFag38PG2RW6hGXpHm6asaOfnFuJGTj7xCNXIL1XhSpIFGKxmNrxQFNHZzgI+bA5q4614d9e/Z7wQR0e9brSUdiouLMXDgQLz66qsYMGBAue9LJyF69eqFd955B3fv3oWHh0dNziYRERERERER0XNNEATYKhWwVVZ9s39QO88Kh+ckL9C/lySgSCvgiUZAvkbEE42IPI2AJ2oRd4qUuJ6vRGb+Y2RmqXD8shK5GsO4njZq+DWqhya6pIS7o/59HQf2QUFEVNtqJekgSRJGjRqFoKAg/PWvf61wnFu3bqF+/foQBAHHjh2DVquFu7t7Dc8pERERERERERHJSRAAW4UEW4UEQFvpuJIEPFSLuJ6vQma+Epn5KlwvUOGWBOxLy8bt44UG47vYKdHE3RE+7g7wdXdAE7eS903cHVDf2Q4i+5wgIrK6Wkk6HDx4ECtWrEBoaCgiIiIAADNnzsS1a9cAAGPGjMGaNWvwzTffQKlUwt7eHomJiRAEVgxERERERERERM8LQQDqqLSooypEqMtvCYY6PYcBAPKLNLh2Pw8Z9548fc1Dxv08pNx4iK3nbkFdqhknW6WIxm4OaOLmoG++6bdXezjY1HrXp0REz4RaKU07d+4MSTLedh8AxMXFIS4urobmiIiIiIiIiIiI/mjsbRRo3sAZzRs4419pifBuAHgD6ARAqwUe5grIeSziwSPx6Wshzt55iP2XRRQVG/641cFOizrOElydtajjXPL+tRb/g8Z1HdCwjh1U7NyaiMgkTOESEREREREREdEzRxSBui4S6rpo4NdIY/CdJAH5hQJyHpckJR4+FvXvb2YrkHpVCa0kIOnAUQCAQhTQ0NUOjev+9mRE46dPSjSu6wAPJxu20EFE9BSTDkRERERERERE9FwRBMDBToKDnQQvz/L9Smi1wOMnArq4voTr9/Nw/UEert/Pw7X7ediVegfZjw37krBXKUoSEXUdSiUj7OHuZANnOxWc7ZRwtlPB0UbB5AQRPfOYdCAiIiIiIiIiIipFFAFXZwlR/u6I8nc3+C53zY/I1wBZRQIyC0XcKBKRWSggs7AQmRkPceSiiCfaihMLIiQ4KQAnhQQnhQTnp+/r+vkYJCdKXpVwqWCYo42SHWIT0e8akw5ERERERERERETVYK8A/O0l+NtrAJRvuumhBsgsFPFQLeCxRkCuBk9fBTzWALml3t8pFnD1Wg4eFxTjcYHaoPPriggC4GSjLJeMcLJTwcn26Xvbp392SrjYKeFkq4LT0+G67x341AURWQmTDkRERERERERERDIRBKCOEqijLN9skzFOg2IBAJIkoaBYi8cFxTh+6AnyitV4olbrX5+U+ZxXrMaTXDVycgqQp85FnlqD/GI1CrVVxxYFwNFWCeenyYmSJIWq5LMuOWGQqFDBxb7k6QsXexVcniY9bJTsYJuIDDHpQERERERERERE9DsgCALsbRSwt1GgsZP501FrtchXa0oSE0+TE/lqDdz8BeQWqpFboEZuoRqPC9S4cTUVeWoBebkCbucIuKoWkKcRkKcWkK+p+kkIW1GCk0qCo1KCk7Lk1atxE7jYqeBqXzZRYfjZ2U4JlYJJC6JnDZMOREREREREREREzxClKMLZRoSzjcpgeEiEXblxL+w4aXQ6Ggko0AB5agFPSv3lFotPXwXk6oY9fc0pEnDneg4e5RfjUYEamiqai3KwUeiTEa72KjjbqaBSCFAqRKhEAQpRfPpZgFIUoRRLvit5FaBSiFCIApTib+9VunENXktPU4CdSoFm9ZzgaMvbo0Ry41FFRERERERERERE5SgEwFEJOColeKLy5EFpQS/1BVDSXNSTIg0e5Rcja9c1PFZrSv6KNXis1v72Wa3BI7UWj3KKcFOTj2KtBLUkQa2VoJFQ8l7/h6fDJZjegFXFRAFoVs8JoY3qILyxK8K86yCooTNslQoLp0z0fGPSgYiIiIiIiIiIiGQnCMJvnVo7lX/KwlJOL/mgWKuFRiuhWCNBrdHi9Nlz0GglqLWAVip51UgSNE9f1VpAo5WQr5Zw9UExLt0vwo6ULPx0IhMAoBSBJq4qBLjbwL9uyWvvLq2hZDNQRCZj0oGIiIiIiIiIiIj+cERRgK1o+FSCm73pTyl08LYHUPJExt08DdLulyQh0u4VY19GHpIvlTzdMXXnNgR7uSDMuw7CvF0R5u0KX3dHiGLVfV4QPY+YdCAiIiIiIiIiIqLnliAI8HRUwtNRiY6NSxIRWknCzcdqXLpfjByFK85kPsR/jmXg3wdLGnVytlM+TUDUQbi3K0K968DL1Q6CwEQEEZMORERERERERERERKWIgoBGLio0clEhIiIYAKDWaJF2JxdnMnNwOvMhzmTmYOm+K1A/7Szbw8lG/zRE+NNXdyfb2lwMolrBpAMRERERERERERFRFZQKEUENXRDU0AVD25YMKyjW4Ndbj0sSEddLEhG7U+9AetrvdqM69ghp5IIQL1cEP32t5yJ//xZEvydMOhARERERERERERFVQ27uev37ZnVL/gaElnzOKwLO3xRw7qaAlKwnuHAzD9tSbkFCSdNLHk4SghpICKovIaihhJYNJHi5As7O/Wp+QYisgEkHIiIiIiIiIiIiIpk42ABtmkho00TSD3tSCKTeFnD+loALT/8OXRagkUoSES52EkIaHUFII1cEe7kgpJEr/NhZNf1BMelAREREREREREREZEWOtkArHwmtfH5LRBSqgYt3BFy4KeDCbeDiHTW+P5SOInVJZ9UONgq0bFiSgGjpVdI0U0B9J6gUYm0tBpFJmHQgIiIiIiIiIiIiqmG2SiDUS0KoV0kiwsmpM4o1Wly6k4uUrEc4d+MhUrIeYtUv15FXpAEA2ChEtGjojGAvFwR7uSKkkStaNHCGnUpRm4tCZIBJByIiIiIiIiIiIqLfAVWpzqoHtfYGAGi1EtLvPcG5rEdIufEQ57IeYsvZW0g4dh0AoBAFNHFzgK1KAaUoQBQFKEUBClGAQhCgVPz2XiGWfBYF3TgiFCKgEMXf/qf0/5f6LIoC3B1t0DeiEZMcVCkmHYiIiIiIiIiIiIh+h/bevVPyRgBcGynRsZE7OsIdkiTh3qMipN/JQ8btJ7h5vwAarQStVoJGK6FA0kKjlqCVdMOgf28nKKCRSsZTa0rGyS3QlHyv/ytJdmglCVKZefoyKRW9Q30Q5lUXgmC8z4lB7Tytt2Lod41JByIiIiIiIiIiIqI/EEEQ4OFqCw9XW7QJqFut//0fj3rlhq05lm10fK0kQXqaiEi/l4ufz2ZgxdFLaOrhjL5hPmhUx7Ha80/PNvY6QkREREREREREREQVEoWSZphUChEB9VwwMSYEAyN8cftRPuJ3pWD1iat4XFBc27NJvyN80oGIiIiIiIiIiIiITCIKAqKa1kOEtxu2/5qFA5dv43TmfbzUwgudm9WHUuTv3J93TDoQERERERERERERUbXY2ygRG+aDDn6e2Hj2Gjadu44jV++gT6gPWjasU9uzR7WISQciIiIiIiIiIiIiMks9Z3uM6tgcqbdzsOHMNXx3JA0B9VwQ1sQezRs41/bsUS3gsy5EREREREREREREZJHm9etg0osh6Bvmg8wHT9Br/n58suEcHjwpqu1ZoxrGJx2IiIiIiIiIiIiIyGIKUUSXZg3QqrE7Lt+/j5VHr2HDqSxMeCkAr3VoApWCv4F/HnArExEREREREREREZFsHG1V+KxvCJLe7YIwb1dM33geL/9jP/ZezK7tWaMawKQDEREREREREREREckusL4zfhjZDkv/3AZqjRZv/PsYRn7/X1zJzq3tWSMrYtKBiIiIiIiIiIiIiKxCEAR0a1kfWye+gA97tcB/r95H93n7MGPTeTzML67t2SMrYNKBiIiIiIiIiIiIiKzKVqnA6Bf8sWtyVwxu441lB68ieu4erDyaAY1Wqu3ZIxkx6UBERERERERERERENcLT2RazBoRhY1xnNKvnhI/WncOf5u/Hoct3a3vWSCZMOhARERERERERERFRjQpp5IofR3fAP19thdxCNV5ZehRjVhzHtXt5tT1rZCFlbc8AERERERERERERET1/BEFAr9CGiGlRD8sOXMWi3Zew6+93MLB1I7g72kIhClCKApQKEUpRgEIUoFIIUIi/fVYqBChFsdR3JZ9Lhlf8WaUQ9dOu52JX26vhmcOkAxERERERERERERFZXU7yAqPfvQqgW2sF5l9xw7pf1CjWCtBAsOr82ChEXPziZavGeB4x6UBEREREREREREREta6erQYzgrIxIygbACBJgFoCNJIAjQSoK3h16Pw6NFoJxRotNFoJaq2EtRk7oNUCWgnQaAFJC2glAVptyWetBEhaARKAf6UlmjRvfwkYZsUlf7Yw6UBEREREREREREREvzuCAKgEQAXp6RCp3Dh1PJ3KDftvocbKc0aVYUfSREREREREREREREQkCyYdiIiIiIiIiIiIiIhIFkw6EBERERERERERERGRLJh0ICIiIiIiIiIiIiIiWTDpQEREREREREREREREsmDSgYiIiIiIiIiIiIiIZMGkAxERERERERERERERyYJJByIiIiIiIiIiIiIikgWTDkREREREREREREREJItaSzokJyejefPmaNasGb788sty3xcWFmLo0KFo1qwZ2rdvj/T09JqfSSIiIiIiIiIiIiIiMlmtJB00Gg3GjRuHpKQknD9/HgkJCTh//rzBOMuWLUPdunVx6dIlTJw4ER988EFtzCoREREREREREREREZmoVpIOx44dQ7NmzdC0aVPY2Nhg2LBh2LBhg8E4GzZswBtvvAEAGDRoEHbu3AlJkmpjdomIiIiIiIiIiIiIyAS1knS4ceMGGjdurP/s7e2NGzduGB1HqVTC1dUV9+7dq9H5JCIiIiIiIiIiIiIi0wlSLTw+sGbNGiQnJ+Pbb78FAKxYsQJHjx7FwoUL9eOEhIQgOTkZ3t7eAAB/f38cPXoUHh4eBtNasmQJlixZAgD49ddf0aJFixpaimdLdnY2PD09GYdxGIdxGIdxnqllYRzGYRzGYZw/RpxnaVkYh3EYh3EYh3FqOgbj/P7jPIvS09Nx9+7dir+UasGhQ4ek7t276z/PnDlTmjlzpsE43bt3lw4dOiRJkiQVFxdL7u7uklarrdH5fJ60bt2acRiHcRiHcRinxmIwDuMwDuMwDuPUdAzGYRzGYRzGYZzaiPMsLQvjkKlqpXmltm3bIi0tDVevXkVRURESExMRGxtrME5sbCyWL18OoOTJiJiYGAiCUBuzS0REREREREREREREJlDWSlClEgsXLkSPHj2g0WgwcuRIBAcH45NPPkGbNm0QGxuLUaNG4fXXX0ezZs3g5uaGxMTE2phVIiIiIiIiIiIiIiIyUa0kHQCgV69e6NWrl8Gwzz77TP/ezs4Oq1evrunZem6NHj2acRiHcRiHcRinxmIwDuMwDuMwDuPUdAzGYRzGYRzGYZzaiPMsLQvjkKlqpSNpIiIiIiIiIiIiIiJ69tRKnw5ERERERERERERERPTsYdLhOSQIAiZNmqT/PHfuXEybNg3bt29HVFQUdA+/aDQaREZG4tChQ7LHAoBp06Zh7ty5Fk37tdde039Wq9Xw9PRE7969Dcbr168fOnToYHYcnVu3bmHYsGHw9/dH69atER0dDQcHB0RERMDNzQ1+fn6IiIjASy+9ZFEcJycno99NmDABjRo1glartSiGQqFAREQEgoODER4ejq+//tpgmseOHcMLL7yA5s2bIzIyEm+99Rby8vKqFaOq7fP999/D09MTkZGRCAgIQI8ePcze18pum169euHixYtISUlBTEwMmjdvjoCAAHz++eew9OEu3brT/aWnp2PPnj3l9jtLrV+/HoIg4NdffwUALFq0yCBuSEgIBEHAhQsXzI5h7Pjcu3cvoqKiDMZVq9WoX78+srKyzIqlW28hISEYPHiwfn/S7RdTpkwxezkqi9WnTx/k5OQAANLT0xESEmLx9G/fvo1XXnkFTZs2RevWrREVFYV169bpv5frOAVMO47i4uLMnn5lZcGePXvg6upqsN/t2LHDrGWorB4QBAGXLl3Sfx8fHw9BEPDLL7+YtUzGygPdtO3s7PDw4UOzpq1T1Xa5ffs2evfujfDwcLRs2bJcc5Lm0NUNcu3HpUVHR2Pr1q0Gw+Lj4zF27FjcvXsXKpUKixcvNnv6EydORHx8vP5zjx498NZbb+k/T5o0CX//+99lKw+qe+7h6+uLu3fvmh2v9LYRBAELFizQfxcXF4fvv//e7GkDQGZmJvr27YuAgAD4+/vj3XffRVFRUYV1z4gRI7BmzZpqx7h3757+OG/QoAEaNWqk/1zZ+jRHRfvwtGnT4OjoiIiICLRs2RL29vb6+OYsj84XX3yB4OBghIWFISIiAkePHkVxcTGmTJmCgIAAtGrVClFRUUhKSjI7RlX7W+l1GRERoa+TqstYPWqszjNXZfubrk5o0aIFJk+ebHYMU8sEOcq6ivaBrl27onnz5ggLC0OLFi0QFxdn1fVW+jj9+OOP0bNnTxQWFlY7hrHj1N/fH35+frh//z4A4MGDB/Dz80N6errZy1P6emTLli0IDAxEdHQ0vvnmG/3wo0ePIiwsDMXFxWbHKRsLkK+uBky7Xly/fj3CwsIQFBSE0NBQrF+/3qKYZc/hrVFvVxRDV262bNkSf/7zny3eLqZey5Uu386fP29WLGPnIS+//LIs686UZRFFEWfOnNGPExISYtYxVNGxk5GRgdTUVHTt2hUREREICgqyuCmXqurmH374ASEhIQgNDUVkZGS177uYUk6LoojU1FSD/5swYQJmz54t27KUrkcDAgIwYMAAWfezzz//HEFBQbLd0zFlvdnY2ODs2bP6YXPmzMFf/vIXs+IBVZc5S5cuRevWrfHgwQOzYwCG57v29vaIjIxEUFAQ2rVrZ/G5LlD5cfrdd9/pyxkbGxuEhoYiIiLComuGsnVP6etqS+9V0m+YdHgO2draYu3ateUusLt164YmTZpg2bJlAIAFCxagTZs26Nixo+yx5ODo6Ihz584hPz8fALB9+3Y0atTIYJycnBwcP34cDx8+xJUrV8yOJUkS+vfvj65du+Ly5cs4fvw44uPjsXXrVpw6dQqxsbGYM2cOTp06ZdZNOVNotVqsW7cOjRs3xt69ey2alr29PU6dOoWUlBRs374dSUlJmD59OoCSm2WDBw/G7NmzkZqaipMnT6Jnz554/PhxtWKYsn2GDh2KkydPIi0tDVOmTMGAAQOqfRO9om0za9Ys3L59G7GxsZgyZQpSU1Nx+vRpHDp0CP/85z+rNf2ydOtO9+fr62vR9IxJSEhA586dkZCQAAAYN26cQdzY2Fi8+uqrCAoKMjuGseOzS5cuyMzMREZGhn7Yjh07EBwcDC8vL7Ni6dbbuXPnYGNjo7+BuX37dgQGBmL16tUWJ4QqiuXm5oZFixbJMl2gZH/r168fXnjhBVy5cgXHjx9HYmIiMjMzAch7nAKmHUeWqKwsAEr2hdL7nTkn4FXVA6GhoUhMTNR/Xr16NYKDg6u/MKi8PABKjqu2bdti7dq1Zk1fp6rt8sknn6Bbt244ffo0zp8/jy+//NKieNY2fPhwg20AAImJiRg+fDhWr16NDh066Msic3Tq1EmfVNZqtbh79y5SUlL03x86dAgdO3aUrTyw5rlHVerVq4d//OMfKCoqkmV6kiRhwIAB6NevH9LS0nDx4kXk5ubio48+kmX6Ou7u7vrjfMyYMZg4caL+c02tz+nTp+PUqVPYsmUL/P399fEHDRpk1vQOHz6MTZs24cSJEzhz5gx27NiBxo0b429/+xtu3ryJc+fO4cSJE1i/fn21z3FKq2r9lF6Xp06dQp06dcyKY6welbPOq2p/09UJJ0+exKZNm3Dw4EGz4phaJljK2D4AACtXrsSZM2dw5swZ2Nraom/fvmbHMfU4nTFjBg4ePIh169bB1ta22nGMHaeXL1/G2LFj9TdfpkyZgtGjR8tyjrpz506MHz8eSUlJSExMxJw5c5CdnQ2tVou4uDj885//hEqlsjhOaXLV1UDV9fXp06cxefJkbNiwARcuXMDPP/+MyZMnG9x8Nmf+S5/DW0NFMXTl5tmzZ5GZmYlVq1ZZFMPUa7nS5VvLli3NimXsPGTq1KnmzXwZpiyLt7c3vvjiC1niAYbHTpMmTTB+/Hj9MXvhwgX87//+r0XTr6zuSUpKQnx8PLZt24azZ8/iyJEjcHV1rdb0TSmnu3btarDdtFot1qxZg2HDhsm2LMBv9WhaWhqGDh2KmJgYZGdnVysGUPF+tnnzZvzrX/+S7Z6OKevts88+wzvvvANJknDjxg0sXrzYomuFysqcFStWYMGCBdi6dSvq1q1rdoyy/P39cfLkSVy4cAGJiYmIj4/Hd999Z9E0KztO33zzTX054+Xlhd27d+PUqVO/+2ssYtLhuaRUKjF69GjMmzev3Hfz5s3DrFmzkJKSgoULF1Y7S12dWHLo1asXNm/eDKCksB0+fLjB92vXrkWfPn0wbNiwchVMdezevRsqlQpjxozRDwsPD0eXLl3MnmZ17dmzB8HBwRg7dqysJ7H16tXDkiVLsHDhQkiShEWLFuGNN94w+KX7oEGDUL9+/WpPu6rtU1p0dDRGjx6NJUuWVCuGsW1z8eJFdOrUCd27dwcAODg4YOHChX+Iiik3NxcHDhzAsmXLKtxv9+3bh1WrVlmcQDF2fIqiiCFDhhjE1t2AlEOXLl30v2xPSEjAu+++Cx8fHxw+fFiW6ZcWFRWFGzduyDa9Xbt2wcbGxmB/a9Kkif7CwRrHaXWOI0uULQvkUlU90K9fP2zYsAEAcPnyZbi6usLDw8OsWJWV1ZcvX0Zubi5mzJghy7apbLvcvHkT3t7e+s9hYWEWx7OmQYMGYfPmzfob5enp6cjKykKXLl2QkJCAr7/+Gjdu3NAn16qrY8eO+uM7JSUFISEhcHZ2xoMHD1BYWIgLFy6gVatWspUH1j73qIynpydefPFFLF++XJbp7dq1C3Z2dnjzzTcBlPyqfd68efj3v/9d7ScQzVWb69MSN2/ehIeHh/7mroeHB+rUqYOlS5diwYIF+uH169fHkCFDzI5TG+undD1amqV1nqn7m+4X1ebGMqVMcHNzM3s5dCraB8r+eMLGxgZfffUVrl27htOnT5sVx5T19vXXXyMpKQkbN26Evb29BUtVsYkTJ+LIkSOIj4/HgQMHLHoSRWffvn14++23sWnTJvj7+6N+/fqYPHky3n//fSxevBhhYWHo3LmzDHP/G7nraqDy+nru3Ln48MMP4efnBwDw8/PD1KlTMWfOHLNiVXUOL4eqYigUCrRr106W89+aOgc1dh6iSxLKoapl6d27N1JSUsr9ct8cZY8doPy5YWhoqEUxKqt7Zs2ahblz5+rLO1tbW7z99tvVmr4p5fS8efPw448/6v9n3759aNKkCZo0aSLbspQ1dOhQdO/eHf/5z3+qFQOo/HxXLqast7/+9a9o2LAhfvjhB0ycOBHTpk0zOyFQWXmwatUqfPnll9i2bZvZ11amaNq0Kf7+979j/vz5Fk+rpsocqjlMOjynxo0bh5UrV5Z7bLVhw4aYMGECoqKi8PHHH8tywm8slhx0yYSCggKcOXMG7du3N/heV1ANHz7cohPXc+fOoXXr1pbOrkV0y9K/f39s3rzZ4kdmS2vatCk0Gg3u3Lkj67JWtX3KatWqlf6xQFMZm9+UlJRyw/39/ZGbm4tHjx5VK0Zp+fn5+kf7+vfvb/Z0KrNhwwb07NkTgYGBcHd3x/Hjx/Xf5eTkYMSIEVi+fDlcXFwsjmXs+Cz9S5DCwkJs2bIFAwcOtDieWq1GUlISQkNDUVBQgB07dqBPnz4WH6MV0Wg02LlzJ2JjY2WbZkpKClq1amX0e2scp9U9jixRuiwAgP379xs8Nn/58mWzpltZPeDi4oLGjRvj3LlzSExMxNChQ82e/8rKr8TERAwbNgxdunRBamqq/ukHc1W2XcaNG4dRo0YhOjoaX3zxhdnNktUUNzc3tGvXTt/ETGJiIoYMGYLMzEzcvHkT7dq1w5AhQwwuLKvDy8sLSqUS165dw6FDhxAVFYX27dvj8OHD+OWXXxAaGgqtVitreVDZPjdv3jyD/Vru7fPBBx9g7ty50Gg0Fk+rorrMxcUFPj4+uHTpUrlj9Oeff7Y4ZkWseS5nLd27d8f169cRGBiId955B3v37sWlS5fg4+MjS/1Zmqn7W3R0tMWxStejpclR51W1v+k8ePAAaWlpeOGFF8yKY0qZYGNjY/Zy6FS0D1REoVAgPDy82uegOlWtt4MHD2Lx4sVISkqqtBlVS6hUKsyZM0fftIelTx8UFhaiX79+WL9+PVq0aKEfPmbMGJw/fx5z5szBV199ZelslyN3XQ1UXl9XtO3atGlj8Mvk6qjsHF4uVcUoKCjA0aNH0bNnT4tjVXUO+uOPPxrUQbpfKFeXsfMQQRAsXgadqpZFFEW8//77mDlzpkVxjB07EydORExMDF5++WXMmzfP4ibdAON1jxzX86aU0+Hh4RBFUZ+wteRHatU5zzDnngFQM/uZqfVbfHw8PvroI2RnZ+P11183O56x8iAjIwNxcXHYtm0bGjRoINfiGWXuNimrJq97S9/XiYiIwCeffGK1WM8zJh2eUy4uLvjzn/9cYTZy3Lhx0Gg0GDFihNVjWSosLAzp6elISEgo12b27du3kZaWhs6dOyMwMBAqlQrnzp2TfR5qQlFREbZs2YJ+/frBxcUF7du3L9ce4e9RZdunInL+utpaSjevVLodfzklJCToH0sdNmyYwc23MWPG4PXXX0enTp1kiWXs+GzTpg1yc3ORmpqKpKQktG/f3qIkpK5Sb9OmDXx8fDBq1Chs2rQJ0dHRsLe3x8CBA7F+/XpZbtLpYjVo0AC3b99Gt27dLJ6mMePGjUN4eDjatm1rteO0useRnMo2r6T7tVZ1VVUP6E4w169fb7Vknu64EkURAwcOxOrVqy2aXmXbpUePHrhy5Qrefvtt/Prrr4iMjDTrMfCaVDrRqLto/PHHH/W/AC9bFlVXx44dcejQIf0FWFRUlP5zp06dZC8PKtvnyjZ3Y26zccY0bdoU7du3N+tXeNVV9hiVM8lampzncsYu7uW86AdK2uo9fvw4lixZAk9PTwwdOhR79uyRNYaOqfvb7t27zY5RUT1aenhN1Hn79+9HeHg4GjVqhB49elh0I6OqMkEOFe0DxtqdtuY5aLNmzSBJErZv3261GEBJkyoNGzaU5XpHpVKhY8eO+mZ3dURRxF/+8he8/PLLcHd3tzhOWXLX1UDNnkdVdg5v7RiXL19GREQE6tevj4YNG8rylGVV665s80qWPMVT0XmInEzZD1555RUcOXIEV69eNTuOsWPnzTffxIULFzB48GDs2bMHHTp0MKtvl9KseZ8FMK2c1m03tVqN9evXY/DgwWbFqs6yWFJeW3s/A0xbb15eXoiJicHYsWMtimWsPPD09ISPj4/FzayZSq46tCbL67LNZn/22WdWjfe8YtLhOTZhwgQsW7YMT548MRguiqLsF37GYskhNjYWkydPLldhrFq1St+Rmq+vr77wMkdwcLBVfqliqq1btyInJwehoaHw9fXFgQMHZD2JvXLlChQKBerVqyf7shrbPhU5efJktfsoMDa/LVu2LDf8ypUrcHJykv0XjnK6f/8+du3ahbfeegu+vr6YM2cOVq1aBUmSsHz5cmRkZOBvf/ubrDGNHZ+6kzI5TshKV+oLFiyAjY0NEhISsGPHDvj6+qJ169a4d+8edu3aZVGc0rEyMjL0TYbJJTg4GCdOnNB/XrRoEXbu3Ins7GyrHqfVOY4sUboskFtl9UDv3r2xYsUKi3+BbKw8OHv2LNLS0tCtWzf4+voiMTFRlm1T2XZxc3PDK6+8ghUrVqBt27bYt2+fxfGsqW/fvti5cydOnDiBvLw8tG7dGgkJCfj+++/h6+uL2NhYnDlzBmlpaWZNX9fG7dmzZxESEoIOHTrg8OHD+rbbrVEeWPPcoyoffvghZs+ebfFFWEV12aNHj3Dt2jU0a9bMomlXl1zr093dvVxnhvfv37fKo/8KhQJdu3bF9OnTsXDhQmzcuBHXrl2z6IlHY6y9v1VUj5YeLkedV9X+1qVLF5w+fRopKSlYtmwZTp06ZXasqsoEuZTdB3766ady42g0Gpw9e9bsfrKqWm/169fHli1bMGHCBIsST5U5deoUtm/fjiNHjmDevHm4efOmRdMTRRGrVq3CsWPHyv3yWxRFiKL8txGsVVcDxuvrirbd8ePHzepbqrJzeLlUFkPXp4OuTyu5nnyrqXPQis5D5FbVsiiVSkyaNMmiJqYrO3a8vLwwcuRIbNiwAUqlUpYEYUV1j1zX86aU08OGDcOqVauwY8cOhIWFmdUkc2XLUhFz7hno1MR+Zmr9ZmlZWll54ODggC1btmDx4sVYuXKlHItVKUu2SVk1VeZQzWDS4Tnm5uaGIUOGlMvC/9FijRw5Ep9++mm5x8wTEhKQnJyM9PR0pKen6zt8NUdMTAwKCwsN+hs4c+YM9u/fb9G8myohIQHffvutflmuXr2K7du3y9Kec3Z2NsaMGYO4uDgIgoC4uDgsX74cR48e1Y+zdu1asx9vNrZ9ytq7dy+WLFlS7fYmjW2b5s2b48CBA/pOoPLz8zF+/Hi8//771V+IGrRmzRq8/vrryMjIQHp6Oq5fvw4/Pz/s378fH374IVauXAmlUilrTGPH5/Dhw/F///d/2LVrl0UdLFbk0aNH2L9/P65du6bfrxctWiRrMs3BwQHz58/H119/DbVaLcs0Y2JiUFBQgG+++UY/THccWvM4NfU4skTZskBuldUDDg4OmD17tsWd4xorD8aPH49p06bpt01WVhaysrIMOks3h7HtsmvXLv12f/z4MS5fvgwfHx+LYlmbk5MToqOjMXLkSAwfPlzfEeqNGzf0623q1KlmH6MdO3bEpk2b4ObmBoVCATc3N+Tk5ODw4cOIiIiwSnlQk+c5ZbVo0QItW7bExo0bLZrOiy++iLy8PPzwww8ASm6OTpo0CSNGjICDg4Mcs2oyudank5MTGjZsqE8q3b9/H8nJybK3DZ+ammqQJDt16hSaN2+OUaNG4d1339W36ZydnS3Lr6lrc38D5KnzTN3f/Pz8MGXKFItuzFVWJsiVdKhoHyjb1nhxcTGmTp2Kxo0bm/3LcFPWW2BgINauXYvXXnvNomRNRSRJwtixYxEfHw8fHx+89957svTp4ODggM2bN2PlypU1sl8nJCRYpa4GjNfXkydPxqxZs5Ceng6gpI33mTNnYtKkSdWOYewc/vr16xbPf3VieHh44Msvv8SsWbNkiVkT56BA+fMQazBlWUaMGIEdO3ZY9IRqRcdOcnKyvtnVW7du4d69e+U6szZHRXXP1KlT8d577+HWrVsASlpN+Pbbb6s9bVPKaX9/f3h4eGDKlCkWbzdT6tGffvoJ27ZtMztWTexnNVG/AVWXB/Xq1UNycjI+/PBDq7aSkZ6ejsmTJ1vcObpOTZU5VDOYdHjOTZo0CXfv3q2VWGq1Wt+xmyW8vb0xfvx4g2Hp6enIyMhAhw4d9MP8/Pzg6upqcDPdVIIgYN26ddixYwf8/f0RHByMqVOnWqV9vLy8PHh7e+v/Zs6cieTkZPzpT3/Sj+Po6IjOnTubfTND9yh+cHAwXnrpJXTv3h2ffvopgJIOFRMTEzF58mQ0b94cQUFB2Lp1K5ydnc2KVdH20dG1AxoYGIiZM2fip59+qnaGvLJts2HDBsyYMQPNmzdHaGgo2rZti7i4OLOWoyo7d+402G7mdoKakJBQrnmZgQMH4rvvvkNeXh4GDBhg0PagXImvisqCoKAgODo6IiYmBo6OjrLE0Vm3bh1iYmIMyoC+ffti48aNFj9qXFpkZCTCwsJkS2YIgoD169dj79698PPzQ7t27fDGG29g+vTpsh+npVV2HFmisrIAKN+nw5o1ayyKV1mdM2zYsEr7yzCFsfJgz5495Y6r/v37W9zJo7Htcvz4cbRp0wZhYWGIiorCW2+9hbZt21oUq7TU1FSD8kaOG6ZASaLx9OnT+j4VKiqLzD2WQkNDcffuXYN6OTQ0FK6urti9e7fVyoOaPM8p66OPPjK7820d3T69evVqBAQEIDAwEHZ2dha3OW0uudbnDz/8gM8//xwRERGIiYnBp59+anbzbcbk5ubijTfeQMuWLREWFobz589j2rRpmDFjBjw9PdGyZUuEhISgd+/esj0BWdH6KduHiO7mpjVYWudVZ38bM2YM9u3bZ/byVFYmyPXUi7F9AABeffVVhIWFISQkBE+ePMGGDRvMjmPqemvbti2+++47xMbGmt1HUkWWLl0KHx8ffdNa77zzDi5cuGC0D4vqcHNzQ3JyMmbMmGG1PmN0EhMTrVJXA8br64iICMyePRt9+vRBixYt0KdPH3z11VeIiIiodgxj9easWbNkq7cri1Fav379kJeXJ8t1ginXcrq/Q4cOWRSr9HmINZhyPm1jY4Px48fr+zczV9ljZ9u2bQgJCUF4eDh69OiBOXPmyHYvoWzd06tXL8TFxeGll15CcHAwWrVqZdYTfqaW08OHD8evv/6KAQMGWLYgqLweDQgI0P8gztPT0+wY1t7PaqJ+A0wrD/z8/PDzzz9j5MiROHbsmGyxL1++jMjISAQFBWHIkCEYP3483nzzTVmmba3rXqodgvRHaESdnkn9+/fH22+/XeNtlBMRERERERERERGRdfBJB6oVoaGhEEUR3bt3r+1ZISIiIiIiIiIiIiKZ8EkHIiIiIiIiIiIiIiKSBZ90ICIiIiIiIiIiIiIiWTDpQEREREREREREREREsmDSgYiIiIiIiIiIiIiIZMGkAxERERERWV18fDzy8vJkG4+IiIiIiH6f2JE0ERERERFZna+vL3755Rd4eHjIMh4REREREf0+8UkHIiIiIiKS1ZMnT/CnP/0J4eHhCAkJwfTp05GVlYXo6GhER0cDAMaOHYs2bdogODgYn376KQBg/vz55cbbtm0boqKi0KpVKwwePBi5ubm1tlxERERERFQ1PulARERERESy+umnn5CcnIylS5cCAB4+fIjw8HCDJxju378PNzc3aDQavPjii5g/fz7CwsIMnnS4e/cuBgwYgKSkJDg6OmL27NkoLCzEJ598UpuLR0REREREleCTDkREREREJKvQ0FBs374dH3zwAfbv3w9XV9dy46xatQqtWrVCZGQkUlJScP78+XLjHDlyBOfPn0enTp0QERGB5cuXIyMjoyYWgYiIiIiIzKSs7RkgIiIiIqJnS2BgIE6cOIEtW7bg448/xosvvmjw/dWrVzF37lz897//Rd26dTFixAgUFBSUm44kSejWrRsSEhJqataJiIiIiMhCfNKBiIiIiIhklZWVBQcHB7z22mt47733cOLECTg7O+Px48cAgEePHsHR0RGurq64ffs2kpKS9P9berwOHTrg4MGDuHTpEoCSviIuXrxY8wtEREREREQm45MOREREREQkq7Nnz+K9996DKIpQqVT45ptvcPjwYfTs2RNeXl7YvXs3IiMj0aJFCzRu3BidOnXS/+/o0aMNxvv+++8xfPhwFBYWAgBmzJiBwMDA2lo0IiIiIiKqAjuSJiIiIiIiIiIiIiIiWbB5JSIiIiIiIiIiIiIikgWTDkREREREREREREREJAsmHYiIiIiIiIiIiIiISBZMOhARERERERERERERkSyYdCAiIiIiIiIiIiIiIlkw6UBERERERERERERERLJg0oGIiIiIiIiIiIiIiGTBpAMREREREREREREREcni/wHIqrYQcWzxLgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Los 5 estados con mayor ocupación hospitalaria por COVID: \n", + " state_name Percentege_bed_used\n", + "state \n", + "NY Nueva York[19]​ 21.347304\n", + "NJ Nueva Jersey[17]​ 20.240464\n", + "MA Massachusetts 17.767949\n", + "CT Connecticut 14.550693\n", + "LA Luisiana[10]​ 13.784827\n" + ] + } + ], + "source": [ + "plt.figure(figsize=(27,9), facecolor='white')\n", + "ax = sns.barplot(data=df01, x=\"state\", y=\"Percentege_bed_used\", palette='pastel')\n", + "plt.plot(df01.state,df01['Percentege_bed_used'])\n", + "plt.title('Porcentaje de camas usadas por estado')\n", + "plt.show()\n", + "print('Los 5 estados con mayor ocupación hospitalaria por COVID: \\n' , top05.to_markdown() )" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "hovertemplate": "state=%{x}
Percentege_bed_used=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 21.347303996490695, + 20.240464327398293, + 17.767948787848596, + 14.550692628817218, + 13.784827451949077, + 13.618756004952937, + 13.5149784778886, + 11.977678533173004, + 11.418992690644377, + 11.348897155499223 + ], + "coloraxis": "coloraxis", + "pattern": { + "shape": "" + } + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "NY", + "NJ", + "MA", + "CT", + "LA", + "DC", + "MD", + "CO", + "FL", + "AZ" + ], + "xaxis": "x", + "y": [ + 21.347303996490695, + 20.240464327398293, + 17.767948787848596, + 14.550692628817218, + 13.784827451949077, + 13.618756004952937, + 13.5149784778886, + 11.977678533173004, + 11.418992690644377, + 11.348897155499223 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "Percentege_bed_used" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Porcentaje de camas usadas por estado " + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "state" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Percentege_bed_used" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Los 5 estados con mayor ocupación hospitalaria por COVID: \n", + " | state | state_name | Percentege_bed_used |\n", + "|:--------|:-----------------|----------------------:|\n", + "| NY | Nueva York[19]​ | 21.35 |\n", + "| NJ | Nueva Jersey[17]​ | 20.24 |\n", + "| MA | Massachusetts | 17.77 |\n", + "| CT | Connecticut | 14.55 |\n", + "| LA | Luisiana[10]​ | 13.78 |\n" + ] + } + ], + "source": [ + "fig = px.bar(df01.head(10), x='state', y='Percentege_bed_used', color='Percentege_bed_used', title='Porcentaje de camas usadas por estado ')\n", + "fig.show()\n", + "print('Los 5 estados con mayor ocupación hospitalaria por COVID: \\n' , top05.to_markdown())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_____\n", + "##### 2 - Analice la ocupación de camas (Común) por COVID en el Estado de Nueva York durante la cuarentena establecida e indique:\n", + "- Intervalos de crecimiento y decrecimiento\n", + "- Puntos críticos (mínimos y máximos)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# Obtenemos la data con los campos requeridos y seleccionamos el rango de fechas a analisar\n", + "df02 = df.loc[:,['state', 'date', 'inpatient_beds', 'inpatient_beds_used_covid']]\n", + "df02 = df02.loc[(df02['date'] >= '2020-03-22') & (df02['date'] <= '2020-06-13')]\n", + "df02 = df02[df02['state']== 'NY']\n", + "df_fin = df02.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.signal import find_peaks #con esta libreria obtenemos los picos \n", + "peaks, _ =find_peaks(df02.inpatient_beds_used_covid, prominence=1)\n", + "df02['minima'] = df02['inpatient_beds_used_covid']*-1 #convierto a negativo para obtener los picos minimos\n", + "peaks1, _ =find_peaks(df02.minima, prominence=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# Agrupo por fecha los pacientes que usan ccamas por COVID\n", + "df02 = df02.groupby('date')['inpatient_beds_used_covid'].sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "pi01 = [] \n", + "for i in df02[peaks].index.strftime('%Y-%m-%d'): #Agrego a una lista las fechas con los picos maximos\n", + " pi01.append(i)\n", + " \n", + "pi02 = []\n", + "for i in df02[peaks1].index.strftime('%Y-%m-%d'): #Agrego a una lista las fechas con los los picos minimos\n", + " pi02.append(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "#convirtiendo los datos de picos en Dataframe\n", + "pi01 = pd.DataFrame(pi01)\n", + "pi01.rename(columns={0:'date'}, inplace=True)\n", + "pi01['Desc'] = 'Pico Maximo'\n", + "\n", + "pi02 = pd.DataFrame(pi02)\n", + "pi02.rename(columns={0:'date'}, inplace=True)\n", + "pi02['Desc'] = 'Pico Minimo'\n", + "\n", + "pi01 = pi01.reset_index()\n", + "pi02 = pi02.reset_index()\n", + "#Concatenamos en un dataframe los picos\n", + "picos = pd.concat([pi01, pi02])\n", + "picos = picos.sort_values('index', ascending=True)\n", + "picos['date'] = pd.to_datetime(picos['date'])\n", + "picos = pd.merge(picos, df_fin[['date', 'inpatient_beds_used_covid']], on=['date'], how='left')\n", + "picos = picos.drop(['index'], axis=1)\n", + "first_column = picos.pop('Desc') \n", + "picos.insert(0, 'Desc', first_column) \n", + "picos= picos.dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8cAAAHwCAYAAACL7x1mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADJfUlEQVR4nOzdd1iUxxbA4d/SewdRiqjYKSpg7z12jb1hiSaaqInGkmiixhRbYuI1xmjsPfbee1fsXVBBBEVBitLLd//Y615RbAiswnmfxwf2KzNnl4Xk7MycUSmKoiCEEEIIIYQQQhRgOtoOQAghhBBCCCGE0DZJjoUQQgghhBBCFHiSHAshhBBCCCGEKPAkORZCCCGEEEIIUeBJciyEEEIIIYQQosCT5FgIIYQQQgghRIEnybEQQuQD5cuXZ//+/S8c//zzz/n+++9zrJ9x48bRvXv3HGtPiKdUKhVBQUHaDiOTBQsWULNmzRxpq1evXowZMyZH2srv5LUSQmiLJMdCCJEPXL58mbp162Y6Nnv2bAwNDfnhhx+0E5R4pZMnT9KsWTOsrKywsbGhcuXKzJ8/X3M+JiaGAQMG4OjoiImJCZ6enprzSUlJWFlZsXfv3hfa/eqrr2jfvj0Abm5u7N69G1Anerq6upiZmWFmZkaxYsXo3bs3N27cyINn+27q1q2LkZGRJnYzMzNatmz52vueff4fMpVKhaenJxkZGZpjY8aMoVevXtoL6jn//PMPZcuWJTk5WXMsKioKBwcHtm/frsXIhBDizUlyLIQQ+VT//v357bfftB1GgZeWlvbCsWPHjlG/fn3q1KlDUFAQUVFR/PXXX2zbtg2AlJQUGjZsSEhICMeOHSM2NpYpU6YwatQofvvtN4yMjOjUqROLFi3K1G56ejrLly/H398/y1iqVavGkydPiI2NZffu3RgbG+Pj48OlS5dy/onnsBkzZvDkyRPNv02bNmk7pDwVHh7OihUrtB3GS33yySc4OTll+jDuyy+/pFmzZjRt2vSN20lPT8+N8IQQ4o1IciyEEC9x9epV6tati5WVFeXLl2fjxo2ac4mJiQwbNoyiRYtiaWlJzZo1SUxMZP/+/Tg7O2dq59nRq3HjxtG+fXs6deqEubk5lSpV4vz585prJ06cSIkSJTA3N6dcuXKsW7cuU1tz5syhbNmymvNnzpx5oY/k5GS+/PJLihQpQpEiRfjyyy81ozlP4/v1119xcHCgcOHCmUYrn3f79m3q1KmDubk5jRo1IjIyMtP548ePU716daysrPD29s5yavdToaGhtGvXDnt7e2xtbfniiy8AuHnzJvXr18fW1hY7Ozu6detGTExMptdvypQpeHl5YWpqSt++fYmIiOCjjz7C3Nychg0bEh0drbm+Q4cOODo6YmlpSe3atbl8+bLm3NatWylXrhzm5uY4OTkxderULGNdsGABNWrU4IsvvsDS0pIyZcqwZ88ezfnw8HBatWqFjY0N7u7uzJkzR3Pu6c+4e/fuWFhYsGDBghfaHz58OP7+/owcORI7OztUKhU+Pj78+++/ACxevJg7d+6watUqihUrhr6+Pk2bNmX69Ol8//33xMXF4e/vz5o1a0hISNC0u2PHDjIyMvjoo49e+nMA0NXVpUSJEsycOZM6deowbty4l167efNmKlSogJWVFdWrV+fChQuac25ubkydOhUvLy8sLS3p1KkTSUlJL21r3rx5lC1bFmtra5o0aUJISMgr43wTkZGRtGjRQjMCX6tWLTIyMujRowd37tyhZcuWmJmZMXnyZODV74+oqChatWqFhYUFlStX5ubNm5n6Onr0KH5+flhaWuLn58fRo0dfGtfZs2epVKkS5ubmWb4ur3pdszJixAjGjh2b5Yctr/u7k5GRofnbYmtrS8eOHXn06BEAH330ETNmzMh0r7e3N2vXrgVgyJAhuLi4YGFhgY+PD4cOHXppjP/88w8zZ87k3Llz7Nixgz179jBt2rRX/i3t1asXAwYMoFmzZpiamrJv375MbT5+/Jh69eoxePBgFEV55WskhBDvTBFCCPGClJQUpUSJEspPP/2kJCcnK3v27FHMzMyUa9euKYqiKAMHDlTq1Kmj3L17V0lLS1OOHDmiJCUlKfv27VOcnJwytVW0aFFl165diqIoytixYxU9PT1l1apVSkpKijJlyhTFzc1NSUlJURRFUf79918lLCxMSU9PV1asWKGYmJgo4eHhmnNFihRRTp48qWRkZCiBgYFKcHDwC3189913SpUqVZSIiAjlwYMHSrVq1ZQxY8YoiqIo+/btU3R1dZXvvvtOSUlJUbZs2aIYGxsrjx49yvJ1qFq1qvLVV18pSUlJyoEDBxQzMzOlW7duiqIoyt27dxUbGxtly5YtSnp6urJz507FxsZGefDgwQvtpKWlKV5eXsqXX36pPHnyRElMTFQOHTqkKIqiBAYGKjt37lSSkpKUBw8eKLVq1VKGDBmS6fWrUqWKcv/+feXu3buKvb29UrFiReXMmTNKYmKiUq9ePWXcuHGa6+fOnavExcUpSUlJypAhQxRvb2/NOUdHR+XgwYOKoijKo0ePlNOnT2f5vOfPn6/o6uoqv/32m5KSkqKsWLFCsbCwUKKiohRFUZRatWopAwYMUBITE5WzZ88qdnZ2yp49ezL9jNetW6ekp6crCQkJmdqOj49XdHR0lL1792bZt6IoSqdOnZSePXu+cDw1NVXR1dVVtm/friiKopQsWVJZvHix5nznzp1feO2evi/mz5+v1KhR44U2586dqzg4OGQZx5kzZxR7e3vl+PHjSlpamrJgwQKlaNGiSlJSkqZ9Pz8/JSwsTImKilLKlCmj/PXXX1m2tX79eqVEiRLKlStXlNTUVGXChAlKtWrVNOcBJTAwMMt769Spo8yZMyfLc6NGjVI+/fRTJSUlRUlJSVEOHjyoZGRkvPD8n32+L3t/dOrUSenQoYPy5MkT5eLFi0qRIkU0r1lUVJRiZWWlLFq0SElNTVWWLVumWFlZKZGRkS/ElJycrLi6umreP6tWrVL09PSU0aNHv9Hr+jxAuXHjhlKpUiXN6zB69GjF399fURTltX93fv/9d6VKlSpKaGiokpSUpPTv31/p3LmzoiiKsnDhQqV69eqa+y5fvqxYWlpqYlm8eLESGRmppKamKlOnTlUKFSqkJCYmZhmnoijK9OnTlYoVKypubm7KunXrXvu31N/fX7GwsFAOHz6spKenK4mJiYq/v78yevRoJTIyUvHz89O8bkIIkdskORZCiCwcPHhQKVSokJKenq451rlzZ2Xs2LFKenq6YmRkpJw7d+6F+94kOa5SpYrmXHp6eqaE7Xne3t7K+vXrFUVRlMaNGyu///57ltc920fx4sWVLVu2aM5t375dKVq0qCY+IyMjJTU1VXPe3t5eOXbs2AtthoSEKLq6usqTJ080x7p06aJJjidOnKh079490z2NGzdWFixY8EJbR48eVezs7DL1+zLr1q1TKlSokOm5LVmyRPO4Xbt2ymeffaZ5PH36dKV169ZZthUdHa0ASkxMjKIoiuLi4qLMmjVLiY2NfWUM8+fPVwoXLqxJshRFUfz8/JRFixYpd+7cUXR0dJS4uDjNuVGjRmkSlbFjxyq1atV6adt3795VAOXq1asvvaZBgwbKyJEjszxXqFAhzesxYcIEpVGjRoqiKEpsbKxibGysnDlzRnPtmyTH27ZtU/T09LLs67PPPtN8sPJUqVKllP3792vafzY5Hz58uPLpp59m2VbTpk2Vf/75R/M4PT1dMTY21nzA87rk2NjYWLG0tNT8exrXd999p7Rq1SrLe7NKjp/17PsjLS1N0dPTy/Rz+eabbzSv2aJFixQ/P79M91etWlWZP3/+C+0eOHDghfdPtWrVNEne617X5z19bbZs2aK4uroqycnJb5UclylTRtm9e7fmXHh4uKKnp6ekpqYqcXFxiomJiebn8O233yq9e/d+6WtmZWWV5d++pzIyMpTKlSsrbdq0URTl1X9LFUWdHPfo0SNTG/7+/krv3r2V8uXLK5MnT35pX0IIkdNkWrUQQmQhPDwcFxcXdHT+/2eyaNGihIWFERkZSVJSEiVKlMhW2y4uLprvdXR0cHZ2Jjw8HIBFixZpplpaWVlx6dIlzVTm0NDQN+ozPDycokWLZor7afsAtra26OnpaR6bmJjw5MmTLNuxtrbG1NQ0U1tPhYSEsGrVKk2sVlZWHD58mHv37r3QVmhoKEWLFs3U71MRERF07twZJycnLCws6N69+wvTtwsVKqT53tjY+IXHT+NPT09n1KhRlChRAgsLC9zc3AA07a1Zs4atW7dStGhR6tSpw7Fjx16I5yknJydUKlWm5x4eHk54eDg2NjaYm5tnOhcWFqZ5/OzP+HnW1tbo6Ohk+To9ZWdnl+X5tLQ0IiMjsbOzA6BHjx7s27eP8PBwVq9eTYkSJahYseJL281KWFgYNjY2WZ4LCQnh119/zfQzDg0NzfR+cnR01Hz/svfS07aGDBmiacfGxgZFUTK9bq8yffp0YmJiNP8mTJgAqKeou7u707hxY4oXL87EiRNf2sar3h8PHz4kLS0t08/u2ff7879XT89nFX94eHiW759nX4vXva5ZadasGc7Ozvz999+vvO55ISEhtG3bVtNX2bJl0dXVJSIiAnNzc5o3b65Zz7x8+XK6deumuXfq1KmULVsWS0tLrKysiI2NfeH381kqlYqyZctSvnx5zWvxsr+lT2X1+7JlyxYSExP57LPP3uq5CiHEu5DkWAghslCkSBFCQ0MzVYe9c+cOTk5O2NnZYWRk9MJ6RABTU9NMa0DT09N5+PBhpmtCQ0M132dkZHD37l2KFClCSEgI/fr1Y8aMGURFRRETE4OHh4dmnZ2Li0uWfWYV+7NrOe/cuUORIkXe/Mn/T+HChYmOjiY+Pj5TW0+5uLjQo0ePTAlLfHw8o0aNeqEtFxcX7ty5k+V6yW+//RaVSsXFixeJi4tjyZIl2V5buGzZMjZs2MDu3buJjY0lODgYQNOen58fGzZs4MGDB7Rp04aOHTu+tK2wsLBMcTx9HYsUKcKjR494/PhxpnNOTk6ax88mRc8zMTGhWrVqrFmz5qXXNGzYkG3btmV67UGd3BsaGlK1alVAnWTUqlWLJUuWsHjx4pcW4nqVdevWUatWrSzPubi4MHr06Ew/44SEBLp06fLW/bi4uPD3339naisxMZHq1au/dVvPMjc359dff+XWrVts3LiR3377TbM+/Pmfw6veH/b29ujp6WX6/Xz2/f7879XT88/+3J8qXLhwlu+fp97ldf3pp5/4+eefM/2ded3fHRcXF7Zt25apv6SkJE3sXbp0Yfny5Rw7doykpCTq1asHwKFDh5g8eTL//vsv0dHRxMTEYGlp+Va/n6/6W/pUVr8v/fr1o2nTpjRr1uyF3wMhhMgtkhwLIUQWqlSpgomJCZMnTyY1NZX9+/ezadMmOnfujI6ODn369GHo0KGEh4eTnp7OsWPHSE5OplSpUiQlJbFlyxZSU1P58ccfM21tAnD69GnWrl1LWloav//+uybZiY+PR6VSYW9vD8D8+fMzVRH+5JNPmDp1KqdPn0ZRFIKCgrIsaNSlSxd+/PFHHj58SGRkJD/88EO29iYuWrQovr6+jB07lpSUFA4fPpypQnD37t3ZtGkTO3bsID09naSkJPbv38/du3dfaKty5coULlyYUaNGER8fT1JSEkeOHAHUBXfMzMywtLQkLCyMKVOmvHWsTz1+/BhDQ0NsbW1JSEjg22+/1ZxLSUlh6dKlxMbGoq+vj4WFRabRrOc9ePCA6dOnk5qayqpVq7h69SrNmjXDxcWF6tWr880335CUlMSFCxeYO3fuW73GkydPZsGCBUyZMoWoqCgAzp8/T+fOnQH1iLCzszMdOnQgODiY1NRUduzYweDBgxk3bhyWlpaatvz9/ZkxYwZHjhzJNOL3Kunp6dy+fZtBgwaxf/9+xo4dm+V1/fr1Y9asWZw4cQJFUYiPj2fLli2ZPhh4U5999hm//PKLpgBWbGwsq1ateut2nrd582aCgoJQFAVLS0t0dXU1P9dChQpx69YtzbWven/o6urSrl07xo0bR0JCAleuXGHhwoWa882aNePGjRssW7aMtLQ0Vq5cyZUrV2jRosULMVWrVg09PT3N+2ft2rWcPHlSc/5dXte6devi4eGRKbbX/d357LPPGD16tObvxcOHD9mwYUOm5xYSEsL3339Pp06dNK/f48eP0dPTw97enrS0NH744Qfi4uJeG+OzXvW39HVmzJhB6dKladmyJYmJiW/VrxBCZIckx0IIkQUDAwM2bdrEtm3bsLOzY+DAgSxatIgyZcoA6qmGnp6e+Pn5YWNjw8iRI8nIyMDS0pKZM2dqtjUxNTV9oYps69atWblyJdbW1ixevJi1a9eir69PuXLlGDZsGNWqVaNQoUJcvHiRGjVqaO7r0KEDo0ePpmvXrpibm9OmTRtNxdlnjRkzBl9fX7y8vPD09KRSpUqMGTMmW6/DsmXLOHHiBDY2NowfP56ePXtqzrm4uLBhwwZ+/vln7O3tcXFxYcqUKZlGiJ7S1dVl06ZNBAUF4erqirOzMytXrgRg7NixnDlzBktLS5o3b067du2yFStAz549KVq0KE5OTpQrV04zwvrU4sWLcXNzw8LCglmzZrF06dKXtlWlShUCAwOxs7Nj9OjRrF69GltbW0A99TQ4OJgiRYrQtm1bxo8fT8OGDd84zurVq7N371727t1L8eLFsbGxoX///jRr1gwAQ0NDdu/ejYuLC1WqVMHCwoKhQ4fy008/MXz48Extffzxxzx69IgGDRpQuHDhV/Z77NgxzMzMsLCwoG7dusTFxXHq1Ck8PT2zvN7X15c5c+bwxRdfYG1tjbu7e5bVt99E27ZtGTlyJJ07d8bCwgIPDw/N1lVv4osvvsi0z7GPjw8AgYGBNGzYEDMzM6pVq8bAgQM1I5/ffPMNP/74I1ZWVkydOvW174+n20U5OjrSq1cvevfurTlna2vL5s2b+fXXX7G1tWXy5Mls3rxZM8X9WQYGBqxdu5YFCxZgY2PDypUrM72v3/V1/fHHHzP97r/u786QIUNo1aoVjRs3xtzcnKpVq3LixAnNeUNDQ9q1a8fu3bvp2rWr5niTJk1o2rQppUqVomjRohgZGb1yyUBWXve39FVUKhWzZ8/G2dmZ1q1bv7ISuhBC5ASVkt25a0IIId7auHHjCAoKYsmSJdoORbzCggUL+Oeffzh8+LC2QxFCCCFEHpGRYyGEEEIIIYQQBZ4kx0IIIYQQQgghCjyZVi2EEEIIIYQQosCTkWMhhBBCCCGEEAWeJMdCCCGEEEIIIQo8PW0HkNfs7Oxwc3PTdhhCCCGEEEIIIXJBcHAwkZGRb31fgUuO3dzcCAgI0HYYQgghhBBCCCFyga+vb7buk2nVQgghhBBCCCEKPEmOhRBCCCGEEEIUeJIcCyGEEEIIIYQo8ArcmmMhhBBCCCHEhy81NZW7d++SlJSk7VCElhgZGeHs7Iy+vn6OtCfJsRBCCCGEEOKDc/fuXczNzXFzc0OlUmk7HJHHFEUhKiqKu3fvUqxYsRxpU6ZVCyGEEEIIIT44SUlJ2NraSmJcQKlUKmxtbXN05oAkx0IIIYQQQogPkiTGBVtO//wlORZCCCGEEEKIbNDV1aVChQp4eHjQoUMHEhIS3rqNZs2aERMTk63+169fz5UrV7J1r3iRJMdCCCGEEEIIkQ3GxsacO3eOS5cuYWBgwKxZs966ja1bt2JlZZWt/iU5zlmSHAshhBBCCCHEO6pVqxZBQUFs2rSJKlWqULFiRRo2bEhERAQAT548oXfv3nh6euLl5cWaNWsAcHNzIzIyEoAlS5ZQuXJlKlSowKeffkp6ejoAZmZmjB49Gm9vb6pWrUpERARHjx5l48aNDB8+nAoVKnDz5k1u3rxJ06ZN8fHxoVatWly7dg2AVatW4eHhgbe3N7Vr184y/ilTpuDn54eXlxdjx44FIDg4mLJly9KvXz/Kly9P48aNSUxMfOHeiIgI2rZti7e3N97e3hw9ehSANm3a4OPjQ/ny5Zk9e7bmejMzM4YPH0758uVp2LAhJ0+epG7duhQvXpyNGzdq+q5VqxaVKlWiUqVKmjZzk1SrFkIIIYQQQnzQxm+6zJXwuBxts1wRC8a2LP9G16alpbFt2zaaNm1KzZo1OX78OCqVin/++YfJkyfz66+/MmHCBCwtLbl48SIA0dHRmdq4evUqK1eu5MiRI+jr6zNw4ECWLl1Kz549iY+Pp2rVqvz000+MGDGCOXPmMGbMGFq1akWLFi1o3749AA0aNGDWrFmULFmSEydOMHDgQPbu3csPP/zAjh07cHJyynIK986dOwkMDOTkyZMoikKrVq04ePAgrq6uBAYGsnz5cubMmUPHjh1Zs2YN3bt3z3T/4MGDqVOnDuvWrSM9PZ0nT54AMG/ePGxsbEhMTMTPz4+PP/4YW1tb4uPjqV+/PlOmTKFt27aMGTOGXbt2ceXKFfz9/WnVqhUODg7s2rULIyMjAgMD6dKlCwEBAW/7Y3wrkhwLIYQQQgghRDYkJiZSoUIFQD1y3LdvX65fv06nTp24d+8eKSkpmm2Gdu/ezYoVKzT3WltbZ2prz549nD59Gj8/P03bDg4OABgYGNCiRQsAfHx82LVr1wuxPHnyhKNHj9KhQwfNseTkZABq1KhBr1696NixI+3atXvh3p07d7Jz504qVqyoaSswMBBXV1eKFSumeY4+Pj4EBwe/cP/evXtZtGgRoF6HbWlpCcD06dNZt24dAKGhoQQGBmJra4uBgQFNmzYFwNPTE0NDQ/T19fH09NS0n5qayhdffMG5c+fQ1dXlxo0bL/Sb0yQ5FkIIIYQQQnzQ3nSEN6c9XXP8rEGDBjF06FBatWrF/v37GTdu3Bu1pSgK/v7+/PLLLy+c09fX11Rm1tXVJS0t7YVrMjIysLKyeiEegFmzZnHixAm2bNmCj48Pp0+fxtbWNlPf33zzDZ9++mmm+4KDgzE0NNQ81tXVzXJadVb279/P7t27OXbsGCYmJtStW1ez7dKzz0dHR0fTh46Ojua5TZs2jUKFCnH+/HkyMjIwMjJ6o37fhaw5FkIIIYQQQogcEhsbi5OTEwALFy7UHG/UqBF//vmn5vHz06obNGjA6tWrefDgAQCPHj0iJCTklX2Zm5vz+PFjACwsLChWrBirVq0C1Anv+fPnAbh58yZVqlThhx9+wN7entDQ0EztNGnShHnz5mmmQ4eFhWnieBMNGjTgr7/+AiA9PZ3Y2FhiY2OxtrbGxMSEa9eucfz48TduD9SvY+HChdHR0WHx4sWa9de5SZJjIYQQQgghhMgh48aNo0OHDvj4+GBnZ6c5PmbMGKKjozWFsfbt25fpvnLlyvHjjz/SuHFjvLy8aNSoEffu3XtlX507d2bKlClUrFiRmzdvsnTpUubOnYu3tzfly5dnw4YNAAwfPhxPT088PDyoXr063t7emdpp3LgxXbt2pVq1anh6etK+fXtN0v0m/vjjD/bt24enpyc+Pj5cuXKFpk2bkpaWRtmyZRk1ahRVq1Z94/YABg4cyMKFC/H29ubatWuYmpq+1f3ZoVIURcn1Xt4jvr6+ub6QWwjxAVq6FEaPhjt3wNUVfvoJunXTdlRCCCGEeImrV69StmxZbYchtCyr90F2cz5ZcyyEEEuXQv/+kJCgfhwSon4MkiALIYQQQhQQMq1aCCFGj/5/YvxUQgJxQ0ew5cI9gh48Ji09QzuxCSGEEEKIPJFryXGfPn1wcHDAw8PjhXO//vorKpVKs9m1oigMHjwYd3d3vLy8OHPmjObahQsXUrJkSUqWLJlpQfvp06fx9PTE3d2dwYMHU8BmhwshckjKlasoLyl2YfbgHp8vO0PD3w5S7vsdfPTHIb5ccZaZ+4MIfZSQ5T1CCCGEEOLDlGvJca9evdi+ffsLx0NDQ9m5cyeurq6aY9u2bSMwMJDAwEBmz57NgAEDAHWFtvHjx3PixAlOnjzJ+PHjNVXdBgwYwJw5czT3ZdWXEEK8VGQkEb36o+PpiYIqy0tUJsZs6VuR3zp607uGG4UsDDl5+xGTt1+n6z/HSUmT0WQhhBBCiPwi15Lj2rVrY2Nj88Lxr776ismTJ2v2tQLYsGEDPXv2RKVSUbVqVWJiYrh37x47duygUaNG2NjYYG1tTaNGjdi+fTv37t0jLi6OqlWrolKp6NmzJ+vXr8+tpyKEyGcSlq8kqWgxbBfNZZNfM2589wuYmGS+SF8fVUIC5ds1oZ11Kt80K8uC3pU5+k0D5vr7EvookZWn7mjnCQghhBBCiByXp2uON2zYgJOT0wulw8PCwnBxcdE8dnZ2Jiws7JXHnZ2dXzj+MrNnz8bX1xdfX18ePnyYg89ICPHByMiAx4/Zfuk+fY/HcahIeWbPWE/jA2sp88NImD0bihYFlUr9df582LEDDAzA3DxTU/XLOODnZs30vUEkpuT+nntCCCGEECL35VlynJCQwM8//8wPP/yQV11q9O/fn4CAAAICArC3t8/z/oUQWnbgAKm+fpxs3J7PlpwmulhpHPZuZ+DAlpga/q9of7duEBysTqKDg9WPGzeGgACws4OUFPjnH8jIQKVSMaJpGR4+TmbB0WAtPjEhhBBCaJOuri4VKlTAw8ODDh06kJCQQEBAAIMHD37ntuvWrYurq2um2kpt2rTBzMwsW+2Fh4fTvn37d44rP8uz5PjmzZvcvn0bb29v3NzcuHv3LpUqVeL+/fs4OTkRGhqqufbu3bs4OTm98vjdu3dfOC6EEJlcuwatW0PdukTeDGWVgxcjm5Zh06CaeLtYvVkbT5eA/Psv9Ounbi8mBj83G+qVtmfWgZvEJqbm2lMQQgghRA5ZuhTc3EBHR/116dJ3btLY2Jhz585x6dIlDAwMmDVrFr6+vkyfPv2d2wawsrLiyJEjAJqlp9lVpEgRVq9enSNx5Vd5lhx7enry4MEDgoODCQ4OxtnZmTNnzuDo6EirVq1YtGgRiqJw/PhxLC0tKVy4ME2aNGHnzp1ER0cTHR3Nzp07adKkCYULF8bCwoLjx4+jKAqLFi2idevWefVUhBAfgpUrwcMDZd8+ZjbpS8+Ri/h87jgG1C2Bvm42/vR16wb/+Q9s3w5+fnDpEl83KU1sYiqzD97M+fiFEEIIkXOWLoX+/SEkBBRF/bV//xxJkJ+qVasWQUFB7N+/nxYtWgDw5MkTevfujaenJ15eXqxZswaA5cuX4+npiYeHByNHjnxpm507d2bFihUArF27lnbt2mnOPXnyhAYNGlCpUiU8PT3ZsGEDAKdOncLLy4ukpCTi4+MpX748ly5dIjg4WLOT0IIFC2jTpg2NGjXCzc2NGTNm8Ntvv1GxYkWqVq3Ko0ePADh37hxVq1bFy8uLtm3baooj51e5lhx36dKFatWqcf36dZydnZk7d+5Lr23WrBnFixfH3d2dfv36MXPmTABsbGz47rvv8PPzw8/Pj++//15T5GvmzJl88sknuLu7U6JECT766KPceipCiA9FYqJ6SjRAvXoon3/O0J/XMM2nHb/1rIabnWn221ap4IsvYN8+ePIEqlSh/OmDtPAqzLzDwTx4nJQjT0EIIYQQ2VS37ov//pdX8M03kPDcNowJCTBkiPr7yMgX730LaWlpbNu2DU9Pz0zHJ0yYgKWlJRcvXuTChQvUr1+f8PBwRo4cyd69ezl37hynTp16aXHhBg0acPDgQdLT01mxYgWdOnXSnDMyMmLdunWcOXOGffv2MWzYMBRFwc/Pj1atWjFmzBhGjBhB9+7ds9xe99KlS6xdu5ZTp04xevRoTExMOHv2LNWqVWPRokUA9OzZk0mTJnHhwgU8PT0ZP378W70uHxq93Gp4+fLlrzwf/PR/YAGVSsWff/6Z5XV9+vShT58+Lxz39fXl0qVL7xSjECKfyMiAJUtg9GhwcoJjx8DBgUWdvmLdxsuMaV4WT2fLnOmrZk04fRp69YKiRRlWpATbLt3nz71BjG/94n94hBBCCPEeeGZJZiZRUe/UbGJiIhUqVADUI8d9+/bl6NGjmvO7d+/WjPwCWFtbc/DgQerWrauphdStWzcOHjxImzZtXmhfV1eXmjVrsmLFChITE3Fzc9OcUxSFb7/9loMHD6Kjo0NYWBgRERE4Ojry/fff4+fnh5GR0UuneNerVw9zc3PMzc2xtLSkZcuWgHrG74ULF4iNjSUmJoY6deoA4O/vT4cOHd7l5Xrv5VpyLIQQeWLvXvj6azh7Fnx9YfJkUKm4HB7LT1uuUq+0PX1rFsvZPosUgZ07ASgG/B5xgB/3VeCTWsVxsTF59b1CCCGEyB3797/8nKureir184oWVX+1s3v1/S/xdM1xburcuTNt27Zl3LhxmY4vXbqUhw8fcvr0afT19XFzcyMpST2TLSoqiidPnpCamkpSUhKmpi/OnjM0NNR8r6Ojo3mso6NDWlpa7j2h91iebuUkhBA5atUqaNAAHj2CZcvgxAmoXZv45DQGLT+LlYk+Uzt4Z9pXPccFBdFi6R+smz+E1X+vz71+hBBCCJF9P/0EJs99gG1ioj6eixo1apRphmx0dDSVK1fmwIEDREZGkp6ezvLlyzWjs1mpVasW33zzDV26dMl0PDY2FgcHB/T19dm3bx8hzyT/n376KRMmTKBbt26vXNP8KpaWllhbW3Po0CEAFi9e/Mo48wNJjoUQH5aICDh+XP19y5Ywfbq6KnWXLurqk8DYjZe5HRnP750rYGtm+IrGcoC7O6ojRzA11GPgd72ImDYzd/sTQgghxNvr1g1mz1aPFKtU6q+zZ6uP56IxY8YQHR2Nh4cH3t7e7Nu3j8KFCzNx4kTq1auHt7c3Pj4+rywurFKp+Prrr7Gzs3vuKXUjICAAT09PFi1aRJkyZQBYtGgR+vr6dO3alVGjRnHq1Cn27t2brfgXLlzI8OHD8fLy4ty5c3z//ffZaudDoVKe3TirAPD19SUgIEDbYQgh3lZCAvz2G0yaBI6OcP26Jhl+1vqzYXy58hyD6rszrHHpPAsvOiSca/WaU+32ORg2DKZOzbO+hRBCiILo6tWrlC1bVtthCC3L6n2Q3ZxPRo6FEO+39HRYsABKloTvvoPGjWHr1iwT4+DIeEavu4hvUWuGNCiZp2FaFy3Cqb+WMavKx9wu6ZWnfQshhBBCiHcnybEQ4v22fTv07g3OznDoEKxZo06Un5OSlsGg5WfR1VHxR5eK6GVnL+N31KduSWY3/5QxuqXUB+bPh4MH8zwOIYQQQgjx9iQ5FkK8fy5dgn//VX/frJl6pPj4cfU2Si8xefs1LobFMrm9N05WxnkUaGZmhnoMrFuCI0FRHL16D379VV0wbPp0KFgrWIQQQgghPjiSHAsh3h/37kG/fuDtrd6eKTVVXTTjo4/UX19i37UH/HP4Nj2qFqWph2MeBvyi7lWLUsTSiEl7b6EcPqxO7ocMgR491OumhRBCCCHEe0mSYyGE9sXHw/jx6unSCxfC4MHqfYv19V97a0RcEsNWnaeMozmjm2u/KIeRvi5DGpbkfGgMO8OSYN06mDBBvdVUzZqQnKztEIUQQgghRBYkORZC5J2lS8HNTV1My81N/RjgyhV1ctysGVy9CtOmcTn9Ph4zPbj84HKWTSWlpnPsZhRfLDtDYko6M7pWxEhfN8+eyqt8XMmZ4vamTN1xnXRUMGYMbN4MXbuCYS5vLSWEEEIIIbJFkmMhRN5YuhT694eQEPX625AQdaGtpUvBz0+9NdO//0KJEsSnxNNsWTOuPLxC82XNiU+JJy4plX3XHjBx2zU+/usonuN20GXOcc7cieHHNh64O5hr+xlq6OnqMKxRaQIfPGHZiRD1wWbN1FPFAfbtg59/howM7QUphBBCFECXH1x+5Yfvb0tXV5cKFSrg4eFBhw4dSEhIICAggMGDB79z23Xr1sXV1ZVnd95t06YNZmZmAISHh9O+ffvXttOsWTNiYmLeOZ6CQE/bAQghCojRo19cc5uaSuLXIznp1xh9XWsMgh+hr6vDyP19iHgSgYJCWNx93Ke2wujxUBQF9HRUeDlb0qdmMaoUs8HH1QZLk9dPv85rH3k4UqukHeM3XcHFxoS6pR3+f3LtWpgxA06dUk8jt7DQXqBCCCFEAfH0w/fQ2FCaL2vO5YGXMTUwfac2jY2NOXfuHADdunVj1qxZDB06FF9f3xyIGKysrDhy5Ag1a9YkJiaGe/fuac4VKVKE1atXv7aNrVu35kgsBYGMHAsh8sadO1keNrwfjv+8k3Sdc4L2s45Rf9b37Li5keR09drcNCWZB6mH8Cl7kmX9qnBxXBPWDqzBNx+VpX6ZQu9lYgygo6NiZrdKlCpkzsClZzgfGvP/k9Onw7RpsGkTVK6snkouhBBCiFzVZ2MfHsQ/QEEhIj6Cvhv75mj7tWrVIigoiP3799OiRQsAnjx5Qu/evfH09MTLy4s1a9YAsHz5cjw9PfHw8GDkyJEvbbNz586sWLECgLVr19KuXTvNueDgYDw8PABYsGAB7dq1o2nTppQsWZIRI0ZornNzcyMyMpLg4GDKlClDr169KFWqFN26dWP37t3UqFGDkiVLcvLkSQAePXpEmzZt8PLyomrVqly4cCFHX6f3mSTHQojcoygQGwtAmmPhLC9Jc3JmzYDqLO9XhcV9K5NhvhxU6ZmuySCV7Xd/pXoJO1ClcP/J/VwPPSeYG+mzoI8fNqYG9FlwiuDIePUJlQq+/BL27IHoaHWCfO2aVmMVQgghPnR1F9R94d/MUzMBmBUwi9VXVpOUlgRAUloSq66sos+GPgBEJkS+cO/bSEtLY9u2bXh6emY6PmHCBCwtLbl48SIXLlygfv36hIeHM3LkSPbu3cu5c+c4deoU69evz7LdBg0acPDgQdLT01mxYgWdOnV6aQznzp1j5cqVXLx4kZUrVxIaGvrCNUFBQQwbNoxr165x7do1li1bxuHDh5k6dSo///wzAGPHjqVixYpcuHCBn3/+mZ49e77Va/Ehk+RYCJHzFEVdgKpaNWjThnuxifxY259E/eeKUZmYoD/xZ0IS9jFgV0OKFUrm1yaTMNE3yXSZkZ4RE+pNAGDzjc0U+bUINebVYOrRqdx8dDOvnlW2OJgbsahPZRTAf/5JHj5+plp1nTpw+rQ6US5dWlshCiGEEPne9/u+J0PJXOsjQ8lgzZU179RuYmIiFSpUwNfXF1dXV/r2zTwavXv3bj7//HPNY2tra06dOkXdunWxt7dHT0+Pbt26cfDgwSzb19XVpWbNmqxYsYLExETc3NxeGkuDBg2wtLTEyMiIcuXKERIS8sI1xYoVw9PTEx0dHcqXL0+DBg1QqVR4enoSHBwMwOHDh+nRowcA9evXJyoqiri4uLd8ZT5MsuZYCJFz0tNhzRp1sanz58HNjSdfDqPbnOM8KF2HPr8Ww/XXn9RTrF1dOTamF8NTZnHk3yOUtStLxJMI+lTsw46bO9h4fSNJaUkY6RnRunRrvqr2FQC+RXwZX3c8666tY/iu4QzfNRxPB0/2+e/D1sRWyy9A1orbmzHX35euc07QZ8EpVvSviqnh//78Ojurt3oCuH0bRo2CmTPB9v18LkIIIcT7an+v/S89N7HhRAZvG0x8arzmmIm+Cb9/9DsAdiZ2r7z/ZZ5dc5xbOnfuTNu2bRk3btwrrzN8ZkcMXV1d0tLSXnmNjo6O5rGOjk6W1xc0MnIshMg5c+ZAp06QlAQLFhB77jId8CY8Nol5vfxwHdQPgoPJSE+j09QqVA8bz83om/zd4m8uDLiATxEfAOa1moeDqQMqVBQyLcTcVnM1XRSzLsZ3db7jzKdnuD3kNtOaTMPDwQMbYxsAvt3zLcN2DOPwncOkZ6RnGaY2VHS15s9uFblyL44BS8+Qmp5FpeqzZ2H9evD1VX8vhBBCiBzRp2IfmpdqjpGeEaCeldayVEt6V+idq/02atSIP//8U/M4OjqaypUrc+DAASIjI0lPT2f58uXUqVPnpW3UqlWLb775hi5duuRqrM/2t/R/223u378fOzs7LApI8VBJjoXQtpft/fshSE6Gv/+GDRvUj7t1U2/HdPkyTzp3o9fSs9x88IS/e/hSuZgNT1KeAKCj0qGQaSHG1RlH4KBA+vv0R0/n/xNZTA1M2dp1K+Xsy7Gl65aXVpJ0s3Ljy6pfsuzjZahUKgDuxN5hxqkZ1JpfiyK/FaH/pv4cCD6Qu6/DG6pfphC/tPPk4I2HjFx9IdPWDAC0aweHDkFaGlSvDosXaydQIYQQIh961YfvuWXMmDFER0fj4eGBt7c3+/bto3DhwkycOJF69erh7e2Nj48PrVu3fmkbKpWKr7/+Gjs7u1yPF2DcuHGcPn0aLy8vRo0axcKFC/Ok3/eBSnnh/87yN19fXwICArQdhhBqT/f+fXaLIxMTmD1bnWi+r+Lj1TFOnQrh4dC9e6ZELik1nd7zT3Ey+BF/dq1EndKW/H78dyYdmcTunrvxLZIz2xu8TFxyHFsDt7Lu2jq2Bm6lT4U+/PHRH6RnpLPu2jqalGiCuaH29kWesTeQqTtv8FmdEoz6qMyLFzx4AB07woED6q2eClAhDCGEEOJNXb16lbJly77VPZcfXKbT6k6sbL+S8g7lcykykZeyeh9kN+eTNcdCaFNWe/8mJKiPv6/J8YIFMHw4REZC3bqwaBHUr685nZqewedLz3D8dhRTOnhwP207pWZ8x924u7Qq3QorI6tcD9HC0ILOHp3p7NGZpLQk4lPU64uOhh6lw6oOGOoa0rB4Q9qWaUur0q2wN7XP9Zie9Xk9dyLikpl14CaOFob0qlEs8wUODrB7t3q7p48/ztPYhBBCiPysvEN5Lg28pO0wxHtKplULoU0v2fv3pce1JTISnqinRGNgAH5+cPgw7NsHDRqotyYC0jMUvlp5jj3XHjChdXn+ON+d3ht6U8S8CAd6HWBD5w2427jnaehGekaaQl3VXapzoNcBBvgO4NKDS3yy6RMcf3XkZJh6X7/nq1jmFpVKxbhW5WlSvhDjN19hy4V7L16kp6f+EMLUVP3aN2kCR4/mSXxv5UNeFiCEEEII8QxJjoXQIsXF5SUnFOjTB+5reT/f8HAYNgyKFoUZM9THunSBrVuhRo1Ml2ZkKHyz9gLrLp7km49K072qG909u7Pi4xUc73uc2kVra+EJZKaro0vtorWZ1nQat4fc5kz/M4ytM5aKjhUBGL1nND6zffjx4I9cfnD5xTXBORqLij86V8S3qDVfrTzHnIO3SEl7SXIeEQE3b6pH6v/6S/3+eB88XRYQEqKOKSRE/VgSZCGEEEJ8gCQ5FkKLDvh/RYJe5r1/0wyNoEULWLIETp3STmDBwTBgABQrBn/8oS4U9bRQxP9GiZ91PzaJLvO2MPP8UO4ZDcTe4QIAn/p+SiePTppiWe8TlUpFxcIV+b7O9+jr6gNQ2q40BroGfLfvOzz+8qD0jNJMODAh12Iw0tfln55+1HC35aetV2n6x0EO3Hj44oUlSqjfC40awcCB6g9OkpJyLa439qplAUIIIUQeKGDlk8RzcvrnL8mxEFpyOTyW/umlWdJnNIqrK6hUPLQpxI+tvyJ1/Qb1SGGLFuqLZ86ETZvybsTws89g7lzo1Qtu3FAX28qi4IWiKMw9cgnPaf6suvsxyQaH+br619QvVv/FNj8AvSr04ljfY4QNDWNms5m4WblxPeq65vz4/ePZdXMXqempOdanpYk+83tXZl4vXzIyFPznneSThQGERMVnvtDaWv0e+P579brvzz/PsRiy7UNZFiCEECJfMjIyIioqShLkAkpRFKKiojAyMsqxNqVatRBakJCSRov/HOZJUhrbv6yNjakBALuvRPDJogD+6FyB1hWc1Benp6vX+J49q153Om1alonqO7lwASZOhEmTwMUFrl0DMzNwdn7pLSFR8YxcfYF14T1I0blJu9Jd+K3pLxS1KpqzsWmZoiioVCoinkRQfHpxElITsDKyokWpFrQr044m7k0w0TfJkb6S09KZfySY/+wJJDVdoV/tYgys646p4XO1EzdvBk9P9XR3RclyND9PODmpp94/r2hRuH1be3EJIYQoEFJTU7l79y5J78NsKqEVRkZGODs7o6+vn+l4dnM+SY6F0IKRqy/w7+lQlvatQnX3/+9Zl5Gh0GjaAQz1dNkyuOb/pyOnpsKff8K4ceptlL74AsaOBSurdwvkxAn46Sf1iKS5uXoqd6tWr7wlLT2DwRv+ZvdZJwx1DGlZJYr2FcpQqUild4vlA5CYmsjOmztZd20dm25s4lHiIxa1WUQP7x7EJsWSrqRjY2zzzv1ExCUxads11p4Nw9HCiG+alaGVd5EXp6dnZECHDlC1Knz9dd4koykp6r2su3VDWbaM5N59MUpN1pxO1DckbdbfmN+7q14zP2mSensyIYQQQog8kt2cT6ZVC5HHNp0PZ2VAKAPrlsiUGAPo6Kj4tHYJrtyL43BQ5P9P6OvDl19CYKB6vemff6qLH2VXejo0a6ZOqg4fhvHj1e29JjFeenYH9hM9+OviQBwcTrBzaG1+bta1QCTGAMb6xrQu05oFbRYQ8XUEe3ruoVVp9Ws2/9x8HKY40HBRQ/48+SdhcWHZ7qeQhRG/darAmgHVsDM3YMiKc3T8+xiXw2MzX5iSArq6MGIEdOr0/4riuSUoSF2IrUcPOHaMXRUaMKLJF8Q7OoFKRaqzC99+NIixpt4QG6su4ubjA6dP525cQgghhBA5QJJjIfJQ6KMEvl17kYquVnzZsFSW17SuWAQHc0NmH7z14kl7e/j7b/WUVW9v9bEffoCDB1/fuaLASfWWRejqQvnyMHmyOin+/nv1mtaXuHD/Cp7/aUj3jU2JT3vAFxWmsn/geApbGr++33xKT0eP+sXqY2lkCUCj4o0YXn04d+Pu8sW2L3Ce5kz1udXfaX2yT1EbNnxek4ntPLn5MJ7WM46w4/IzFcyNjGDlSvXPcc0aqFJFvUY8NyxdChUrqhPkNWvIqFqNabsDuVC7OYZ370BGBvqhd3D+/BPWng3jSP8RsGsXPH6s/hDmp58gLS13YhNCCCGEyAEyrVqIPJKankHHv48RFPGErUNq4WLz8qmmf+2/yaTt19g8qCYeTpYvbzQuDry81Alux44wZQocOqSuFnznDri6wo8/grGxOjk5exbOnFEnOW9AURQO3HhI21UNiU0Loopdb/7t9iMur0ikBVx9eJV119YRGhvKXy3+AuCzzZ9ha2xL27Jt8Sns89YVvGMSUug1/xSXwmKZ2a0Sjcs7Zr5gzx716LGtLVy5ov4AJKd89RX8/jvUrKlOkl1d2XrxHgOXnmFaJ2/aVvz/2vSk1HSa/q7+sGb7l7UxehyrrrC9erV6BPnphzpCCCGEELlE1hy/IUmOhbZM3XGdGfuC+E+XirT0LvLKa2MTU6n+yx4alivEH51fk8gmJKiT4kmT/j8yl/rMaKVKpR41LlkSvvkGunUDA4NXNhmfEs/QrT8THladi6FgbfGQb5v60qGSx5s8VfGcDCWDj5Z+xJ5be0hX0nGxcKFNmTb4e/vjU8TnjduJS0qlx9yTXAmP5c+uWSTIISHqdb5VqqjXIwPo5MAEoY0b1Yntd9+Bnh7pGQpNfz9IhqKw86s66OpkTvSPBEXS7Z8TfFHPna+blFYfvHQJPP73/jl2TD2aLAW7hBBCCJELZM2xEO+xozcj+XN/EB19nV+bGANYGuvTtYormy/c4250wqsvNjFRF+e6dk29Njn1uWm8igJ2dnD1KvTunSkxvvzgMh4zPbj84DIAaRlpfLf7D+wnuTH7/M9cit7Dj208ODGipyTG70BHpcOO7juI+DqC+a3nU7FwReacmcOe23sAeJz8mM03NpOU9upqmxZG+izuW5lyRSz5fNkZdl2JyHxB0aLqxBjUxdtatoTo6LcPWFHUI8XTpqkft2qlXpeup66avflCOIEPnvBlw1IvJMYANdztaFfRib8P3uRGxGP1waeJ8ZEjUL26eu/sh1ns6SyEEEIIoSWSHAuRyx7Fp/DVynMUszNlXKvyb3xf7xrFUAFzD99+sxtcXSExMctTSlQUJ+/EkpaeoTkWnxJPs2XNuPLwCs2XNWfa4cXYTyzNj0e+RCfDgZE+/3J15BS6Vy2KgZ78qcgJtia29KrQiw2dN/Bw+EM+8/0MgK2BW2m5vCX2U+zpuKojyy8uJzYpNss2LIz0WdRHnSAPXHr6xQT5qSJF1Gt+fX3VW3W9qYcP1Un1V1+pE9nnJhelpWfwx+5AShcyp7ln4Zc2M7p5WcwM9fh27UUyMp5po1o1mDoVtm5Vb0e1ZcubxyaEEEIIkYvk/3iFyEUZGQojVl8gOj6V6Z0rYmKg9/qb/qeIlTGtKhRhxclQYhJS3uieBMesR6XDze3o+PcxfH7czaDlZ1l39i7d1/biQfwDFBTuxt1n+K6hJKQm8Um5/3B/5DkmtuiAkX4OrlsVmZgZmGFhaAFA27Jt2d5tO908u3HoziG6ru2K/RR77sTeAdTTsp9laZw5Qd6dVYL82Wdw4AAkJakT0uXLXx/U3r3qNcG7d6srTa9a9cLU543nw7kVGc9XjUqik8Wo8VO2ZoZ826wsASHRrDgV+v8TOjowbBicOgUODtCihXobKiGEEEIILZPkWIhcoigKP2y+wu6rEYz6qMyrC2u9RP/axUlMTWfJ8ddv27TxfDjf+nYm2cAo8wkTE6z/mMqfXSvRsGwhjt2M5JPVk9lwbYNmGm+6koyO3hOmNPmOOR2+wMxIP4seRG4x0DWgiXsTZrWYRdjQMI70OcK4uuNwsXABoPeG3tScV5Nfj/7KrWh1FXNNglzYggHPJMiZpspXq6ZeK+zjA/7+r97+KzQUmjYFS0v1/teff/5CYpyansEfewIpV9iCxuUcX9LQ/7X3caZqcRsmbrvKg8fPTRn38lJXT//6ayhT5i1eLSGEEEKI3CHJsRC55NedN1hwNJg+NYrRu4Zbttoo42hB3dL2LDgaTFJq+kuv23LhHl+tPEd4849h9mz12lOVSv119mxMevWkuVdh/OuoqFt5B9EGf6KoMq9NTs1I4qfDY7MVp8g5OiodqrtU59ta32oqWlcoVIH41Hi+3vU1JaaXwHuWNzNPzVQnyH2raBLkTRduZZoqH58SD46O6krWe/eq3w8A8+eDm5t6FNfVVV2B2sUF1q6FgICXVpRedyaMkKgEhjYq9cpR46dUKhU/tfUkKTWDCZuvvniBkZG6mNwnn6gfL1qkXtssWz4JIYQQQgskORYiF8zcH8SMfUF09nPhuxZl33rbnmf1r12cyCcprD0TluX5HZfvM2TFWSq6WDG/lx+G/j0gOFhdrTg4mORO7QFITkum9vza/HHiD7wKeWKoa5ipHRN9EyY2nJjtOEXu+araV5z99Cy3Bt/it8a/YWloye1o9Vp0U0MV7iU3UcgumC6r/bn/JAIFhYj4CPpu7KtuQF9fvQ0TwODB0LevehRZUdQjxn37qhPkFi3A1DTLGFLS1KPG3s6WNCjr8Maxl7A3Y2C9Emw6H87+6w9effGxY+pCYjVqQGDgG/chhBBCCJETZCsnIXLYwqPBjN14mdYVivBbxwpZVvN9G4qi0PrPIzxJSmPX0Mzb5uy5GsFnS07j4WTJoj6VMf/fdOgnKU9Yd3Udiy8sJuxxGJcGXEKlUrH39l48HTyxN7Wn0+pObLy+kaS0JIz0jGhdujUr2q94p1hF3lEUBZVKxcWIi/jM9iE1I/WFawx0jPm4+HdUtGtLcmoGyWkZDO9dD4uYyBcbLFpU/aHKSyw9EcLodZdY0NuPuqXfPDkGSE5Lp9kfh0hOy2DXV3UwNnjFWvaVK2HAAEhOVlfL7tdPtnwSQgghxFuRrZyEeA+sCghl7MbLNCpXiKkdvN85MQb11NT+tYtzKzKef44f1Kwn3Xf9AQOWnKFsYQsW/i8xPnPvDD3X9cRxqiM91/ck6FEQH5f9mJR0dUGv+sXqY29qD8C8VvNwMHVAhYpCpoWY22ruO8cq8s7T2QiehTyJHBGpKe71rJSMRFYG/szUQ3NZdDKALRfvYRYTlWV7yp07L+0rOS2dGXuDqORqRZ1S9m8dq6GeLj+39eRudCK/77nx6os7dYKLF9XbPX36KRw//tb9CSGEEEJkhyTHQuSQLRfuMXLNBWqVtGNG14ro6+bcr1fT8o44Wav4ak8nrjy8QoOFTem3+AglC5kxooURiWmPAAh6FMSmG5vUVY97H+Lm4Jv8UO8HDPUMX2jT1MCUrV23Us6+HFu6bsHUIOvptOL9Z2FowbQm0zDVz/wzNNE34aOSdXigP5VAXX8izfrSo4cxf/lC8nODt/ct7Pnn0C0SUzKvbb/84DIlfi9HSNx1hjUune0lAlWK29LJ14U5B29x7GbWCbqGkxPs2KGuml2tmvrYzZvZ6lcIIYQQ4k3JtGohcsDeaxH0X3Saiq5WLOxT+a22bHpTVWa14OT9XaBKQaXoY6rriquNMVciL/FT/Z/4tta3pKankq6kY6Rn9PoGRb6T1VT5pe2WcvHBRQ7fOczhO4c5dG0nCfHRRE0CHQVm+kGMqR6RZXuyxqIl9mZmDKhbgm5VXElXkij7ZzlC40Ix0SlExIhAzAzNsh3fk+Q0Wv3nMI+T09g6uBb25i9+aJOlixfVFbd79lRPtTY3z3YMQgghhMj/spvzSXIsxDs6GhRJrwWnKF3InKX9qmCRC9sgzTs7j0HbBpGQmpDpeHGr4gyrPoyO5TtiZ2KX4/2KD0t8SjzlZpYjNDYUV0tXLg+8/MKMAEVReLjoLxzGToY7d2jd24iNrokAGOgYYqFbhvR4P9xNOoHN75x9uJs0JRkDHSPaln33delX78XR5s8j+LpZs6hPlTdbepCSoi7UNXEiFCsGS5b8f0RZCCGEEOI5suZYCC04HRLNJ4sCKGZryqI+lXMlMQb4Zs83LyTGAE9SnzDQb6AkxgJ4s6nyKpUKB/+BmormG+Ym8ODrB6zvtJ5BVb6ghIMR1csmgMk+AiLUiTFASkYSm25sYt7Zee8UY9nCFvzQujxHgqKYvucNK1IbGMDPP8PBg+oq7DVrqrd8EkIIIYTIQTJyLEQ2XQqLpcuc49iaGvDvZ9VwMM+9qczzzs5j8LbBxKfGa46Z6Jswo9kMelfonWv9ioJJURQcf3XkQfyLWy85mDoQ8XXEO7c/bNV51p0NY3GfKtQs+RYf7sTFwZAh6v2ZJUEWQgghRBZk5FiIPKQoCgOWnsbcUI8ln1TJ1cQYoE/FPjQv1VyzlthIz4iWpVpKYixyhUql4pcGv7xQ4EtfR5+JDd59L2yVSsWPbTxwtzfjy5VniYhLevObLSxg/nz1NGuAXbvgzz/VezYLIYQQQrwDSY6FyIYbEU8IfZTIkIYlcbY2yZM+ZeslkZee/0BGV6VLakYqVx5eyZH2TQz0mNmtEvHJ6Qxafpa09Iy3a+Bp1ezly+GLL6BZM7h3L0diE0IIIUTBJMmxENlwKPAhADVLvv2er9klWy+JvPbsBzLOFs78WO9HelXolWPtlyxkzk9tPTh5+xHTdr9m/+OXmTtXPXJ84AB4esLatTkWnxBCCCEKFkmOhciGg4GRlLA3xcnKOE/7Le9QnksDL1HeoXye9isKpuc/kBldezTlHcqjKAo/H/qZ4Jjgd+6jXSVnOvu58Oe+m+y7/uIa59dSqWDgQDhzRl3J+uOPYc+ed45LCCGEEAWPJMdCvKWk1HRO3IqiVh6OGguhLVl9IBMaF8rkI5Op+k9VToeffuc+xrUqTxlHc4auPEd4TGL2GilTBo4ehQULoH599bHo6HeOTQghhBAFR64lx3369MHBwQEPDw/NseHDh1OmTBm8vLxo27YtMTExmnO//PIL7u7ulC5dmh07dmiOb9++ndKlS+Pu7s7Eif8vBHP79m2qVKmCu7s7nTp1IiUlJbeeihCZBARHk5yWQe1Ssn2SKJhcLV052vcoRnpG1F5Qmy03trxTe0b6uszsVomUtAwGLT9L6tuuP35KXx/8/dWjySEhUKIEfPONep9kIYQQQojXyLXkuFevXmzfvj3TsUaNGnHp0iUuXLhAqVKl+OWXXwC4cuUKK1as4PLly2zfvp2BAweSnp5Oeno6n3/+Odu2bePKlSssX76cK1fUxWBGjhzJV199RVBQENbW1sydK8WJRN44FPgQfV0VVYrZajsUIbSmnH05jn9ynDJ2ZWi1ohX/nPnnndorbm/GxI+9OB0SzZQd1989QFtb9RTriROhShW4fPnd2xRCCCFEvpZryXHt2rWxsbHJdKxx48bo6ekBULVqVe7evQvAhg0b6Ny5M4aGhhQrVgx3d3dOnjzJyZMncXd3p3jx4hgYGNC5c2c2bNiAoijs3buX9u3bA+Dv78/69etz66kIkcnBwEh8ilpjaqin7VCE0CpHM0cO9DpAi1ItKGRa6J3ba+ldhO5VXZl98Ba7rrzbXsqYmcGcObBhA4SFgY8P/P67bPkkhBBCiJfS2prjefPm8dFHHwEQFhaGi4uL5pyzszNhYWEvPR4VFYWVlZUm0X56XIjc9uBxElfvxcl6YyH+x8zAjPWd1tOydEsAdt3cRVLaW+xb/Jwxzcvh6WTJ4OVnOXn70bsH2KoVXLwIjRqpvz7dAkoIIYQQ4jlaSY5/+ukn9PT06NatW570N3v2bHx9ffH19eXhw4d50qfIn44ERQJQW5JjITRU/0s4g2OCabasGY0WN+JRYvYSWyN9Xeb18qOIlRG955/kzJ0cKKpVqBBs3AgzZ6ofnzsHK1e+e7tCCCGEyFfyPDlesGABmzdvZunSpZr/oXJyciI0NFRzzd27d3FycnrpcVtbW2JiYkhLS8t0/GX69+9PQEAAAQEB2NtLUiOy79CNSKxN9ClfxELboQjx3nGzcmNJ2yWcDDtJ9bnVuRV9K1vt2JsbsqxfVezMDfGfd5KLd2PfPTiVCgwN1d//8Qd07gzdu8MzhSGFEEIIUbDlaXK8fft2Jk+ezMaNGzExMdEcb9WqFStWrCA5OZnbt28TGBhI5cqV8fPzIzAwkNu3b5OSksKKFSto1aoVKpWKevXqsXr1agAWLlxI69at8/KpiAJIURQOBkZSs6Q9OjoyNVOIrHTy6MTuHrt5EP+AanOrcSrsVLbaKWRhxLJ+VbEw0qfHvBNcvReXc0HOmQPjx8OKFeDlBfv25VzbQgghhPhg5Vpy3KVLF6pVq8b169dxdnZm7ty5fPHFFzx+/JhGjRpRoUIFPvvsMwDKly9Px44dKVeuHE2bNuXPP/9EV1cXPT09ZsyYQZMmTShbtiwdO3akfHn1XpuTJk3it99+w93dnaioKPr27ZtbT0UIAK7df0zkk2RqlZQtnIR4lVpFa3Gs7zFM9U3Ze3tvtttxsjJmeb+qGOvr0v2fEwRGPM6ZAPX04Pvv1fsiGxlBgwbw3O4KQgghhCh4VIpSsEp3+vr6EhAQoO0wxAdo9sGb/Lz1Gse+qU9hS2NthyPEey82KRYLQwtUKhXhj8MpYl4kW+3ceviETrOPA/Dvp9UoZmeac0HGx8P06fD11+p9kpOT/z/9WgghhBAfpOzmfFqrVi3Eh+ZQYCQlHcwkMRbiDVkaWaJSqQiOCcZjpgfDdgwjQ8l463aK25ux7JMqZGQodJ1znNBHCTkXpKkpfPONOjF+9AjKlYOpUyHj7eMUQgghxIdNkmMh3kBSajonbj+SLZyEyAYXCxd6ePXgt+O/0XFVRxJTE9+6jZKFzFnySRUSU9PpMuc4YTFv38ZrKYp6DfLw4eqp1nfu5HwfQgghhHhvSXIsxBs4efsRKWkZ1Col642FeFu6Orr88dEfTGsyjbVX19JgUQMexr/9tnplC1uwuE8VYhNS6TbnOBFx2d9POUu2trB2LcydCwEB6kR56VJ10iyEEEKIfE+SYyHewKHAhxjo6lClmI22QxHig/Vl1S9Z1WEVZ++fZeLhidlqw9PZkoV9K/PwcTJdcyNBVqmgTx84fx7Kl4fFi3O2fSGEEEK8tyQ5FuINHAqMxNfNGhMDPW2HIsQH7eNyH3O0z1F+avATQLbWIFdytWZ+78qExyTR8LcDLDhym7T0HF4jXLw4HDyo3u5JpVJPsd61K2f7EEIIIcR7RZJjIV7jQVwS1+4/lvXGQuSQioUrYqRnRHRiNH5z/FhzZc1bt1G5mA2bB9ekgosV4zZdocV/DnMq+FHOBqqrC1ZW6u8nTIDGjeHLLyExF9Y7CyGEEELrJDkW4jUOB0UCyP7GQuSwdCUdQ11DOqzqwLRj03jbnQVL2JuxqE9l/upWibjEVDrMOsbQled48DiHp1qDerunQYPgjz/A1xfOns35PoQQQgihVZIcC/EahwIjsTU1oFxhC22HIkS+Ymdix56ee2hXth1Ddw5lyPYhpGekv1UbKpWKjzwLs3tYHT6vV4LNF+7RYOoB5h7O4anWxsbqBHn7doiOhipVYMuWnGtfCCGEEFonybEQr5CRoXAoMJKaJe3Q0VFpOxwh8h1jfWP+7fAvQ6sO5T8n/8O3e77NVjsmBnoMb1KGHV/VplJRayZsvkLz6Yc5fisqZwNu0gQuXoT+/aFmTfUxqWYthBBC5AuSHAvxCtfuPybySbKsNxYiF+modPi1ya/MaTmHIVWHvFNbxexMWdDbj9k9fHiSnEbn2ccZsuIsj5NScyha1Fs+zZgBlpaQlAS1asHChZIkCyGEEB84SY6FeIVDgeq9WGW9sRC575NKn1DEvAhpGWkM3DKQ65HXs9WOSqWicXlHdg+tw+AGJdly4R5DVpwjPSMXkte4OHXhrl69oEMHiIzM+T6EEEIIkSckORbiFQ4FRlK6kDmFLIy0HYoQBUZITAirr6ym+rzqHL5zONvtGBvoMrRRKca1Ks/eaw+YsiN7yfYrOTjA3r0waRJs3Aienup1yUIIIYT44EhyLMRLJKakczL4kYwaC5HHStiU4Pgnx7EzsaPhoob8e/nfd2qve9WidK/qyqwDN1l/NiyHonyGri6MGAEnT6qnXH/7LaS/XWExIYQQQmifJMdCvMTJ4EekpGVQq5SsNxYirxW3Ls7RPkfxc/Kj0+pOzDw1853aG9uyPFWL2zBizQXOh8bkTJDPq1ABAgJgwwZ1whwTA6dP505fQgghhMhxkhwL8RKHbjzEQE+Hym422g5FiALJ1sSWXT120atCL3yL+L5TW/q6Oszs5oODuSH9FwcQEZcLeyEDGBmBi4v6+7FjoWpV+PFHSEvLnf6EEEIIkWMkORbiJQ4FRlLZzQZjA11thyJEgWWkZ8T81vOp7FQZgCUXlhCfEp+ttmxMDfjH35fHSWn0X3yapNRcnvo8bpy6SNd330Ht2nDzZu72J4QQQoh3IsmxEFmIiEviesRjWW8sxHvkWuQ1/Nf7U2dBHe4/uZ+tNso4WjCtUwXOh8bw7dqLKLm5/ZK1NSxbpv535Qp4e8PWrbnXnxBCCCHeiSTHQmThUKB6OxbZ31iI90cZuzJs6LyBq5FXqfpPVa48vJKtdpqUd2RYo1KsPRvG7IO3cjjKLHTpAhcvQpMm6gRZCCGEEO8lSY6FyMKhwIfYmRlSxtFc26EIIZ7RolQLDvY6SHJ6MjXm1WB/8P5stfNFfXeaexZm4vZr7Lv2IGeDzIqLC6xZA05OkJEB3brBli25368QQggh3pgkx0I8JyND4XBgJLVK2qGjo9J2OEKI5/gU8eF43+MUMS9CaGxottpQqVRM6eBFucIWDF5+lqAHj3M4yleIjIRLl6BFC/jsM4jP3hpqIYQQQuQsSY6FeM6Ve3FExafIemMh3mNFrYpy9tOz9PDuAcCVh1feev2wiYEes3v6YqivwycLA4hNSM2NUF/k4KDeE3nECJg9W70F1IkTedO3EEIIIV5KkmMhnvN0vXFNd0mOhXifGegaAOrEuOLfFem/qT+p6W+X4DpZGTOruw9hMYl8vuxM7lewfsrQECZNgn37ICUFunaV7Z6EEEIILZPkWIhnKIrClovhlCtsgYOFkbbDEUK8gbJ2ZRlefTj/nP2Hlstb8jj57aZI+7rZ8HNbTw4HRdJj7gliElJyKdIs1KkDFy7A+vWgpwfJyRAUlHf9CyGEEEJDkmMhnhEQEs2lsDi6VnHVdihCiDekUqn4sf6PzGk5h923dlN7QW3CH4e/VRsdfF34T5eKnA+N5eO/jhL6KCGXos2CpSV4eqq//+kn8PKCWbMgN7eZEkIIIcQLJDkW4hlzD93G0lifjys5azsUIcRb+qTSJ2zpuoWgR0HMOzvvre9v6V2ExX0r8/BxMu3+OsqlsNhciPI1Pv0UatWCAQOgZUu4n739nIUQQgjx9iQ5FuJ/Qh8lsPPKfbpWccXYQFfb4QghsqGJexPOfXqOb2t9C0BSWtJb3V+luC1rBlTHQFeHjn8fY//1PNjm6VlOTrBtG0yfDnv2qEeUd+/O2xiEEEKIAkqSYyH+Z+HRYHRUKnpWK6rtUIQQ76CETQl0VDrcib1D6RmlWXhu4VvdX7KQOWsHVsfN1pS+CwNYeepOLkX6Ejo6MGgQnD4NJUtCoUJ5278QQghRQElyLATwJDmNladCaeZZmMKWxtoORwiRAywNLSllW4peG3oxfv/4t9rqqZCFEf9+Vo0a7naMXHORabtuvPVWUe+sXDk4cuT/65FHj1Y/FkIIIUSukORYCGBVQCiPk9PoU7OYtkMRQuQQSyNLtnTdgr+3P+MOjKPPxj6kpL95JWozQz3m+vvSwceZP/YEMmL1BVLTM3Ix4iyoVOqv0dGwfDnUrq1OklPysKK2EEIIUUBIciwKvPQMhQVHg6nkakUFFytthyOEyEEGugbMbz2fcXXGseDcAn48+ONb3a+vq8Pk9l4MaVCSVafv0ndhAE+StbAfsbU1nD8PvXrBzz9DtWpw9WrexyGEEELkY5IciwJvz9UIQqIS6FuzuLZDEULkApVKxdi6Y1nTcQ3Dqw/P1v1fNSrFpI89ORIUSZ/5p8jI0MI2S+bmMHcurF0Ld+5AgwbqfZGFEEIIkSMkORYF3rwjtyliaUST8lL0Roj8rF3ZdpgbmhOfEk+bFW04d//cW93fyc+VX9p6cjL4ERvOh+VOkG+ibVu4eBGWLgVDQ8jIgAd5XFVbCCGEyIckORYF2uXwWI7feoR/dTf0dOXXQYiC4N6Te5y+d5pa82uxI2jHW93b3scZb2dLJm27TkKKFqZXP+XoCPXqqb+fORPKloXVq7UXjxBCCJEPSDYgCrT5R4IxMdCls5+rtkMRQuQRdxt3jvc9TgnrEjRf1px/zvzzxvfq6Kj4vmU57scl8feBW7kY5Vto1AiKF4cOHcDfH2JjtR2REEII8UGS5FgUWA8eJ7HxXDjtfZyxNNHXdjhCiDzkZOHEwd4HaVi8If029WP6ielvfK9PURtaehfh74M3CY9JzMUo31Dp0nD0KHz3HSxZAt7esuWTEEIIkQ2SHIsCa+nxO6SkZ9Crupu2QxFCaIGFoQWbumxiaNWhtCjV4q3uHdm0NIoCk7dfy6Xo3pK+PvzwgzopNjCQQl1CCCFENkhyLAqkpNR0lp4IoUEZB4rbm2k7HCGElujr6vNrk18pbl0cRVGYdHgS0YnRr73P2dqEfrWKs/5cOGfuvP76PFO1Kly5AvXrqx//9RdcuqTdmIQQQogPhCTHokDaeD6cyCcp9KlZTNuhCCHeE+cjzvPdvu+oMa8GITEhr71+QN0S2Jsb8sOmKyiKFrZ2ehk9PfXXx4/Vo8m+vjBtmrqqtRBCCCFeSpJjUeAoisK8w7cp42hO9RK22g5HCPGeqOBYgR3ddxD+OJyqc6tyOvz0K683NdRjRJPSnAuNYeP58DyK8i2Ym8P589C4MQwdqv569662oxJCCCHeW5IciwLn2K0ort1/TJ8axVCpVNoORwjxHqlXrB5H+x7FUNeQOgvqsC1w2yuv/7iSMx5OFkzcdo3ElPQ8ivItODjAhg0wZw4cP64eRY6P13ZUQgghxHtJkmNR4Mw7fBsbUwNaVSii7VCEEO+hcvblOP7JcTwLeWKga/DKa3V0VHzfojz3YpOYffA92drpeSoVfPIJnDunnl5taqo+npCg1bCEEEKI940kx6JAuR0Zz55rD+hexRUjfV1thyOEeE85mjlytM9RGhRvAMDBkINkKFmv2a1czIbmnoWZdeAm92Lfg62dXsbdHbp0UX+/dq16C6i9e7UbkxBCCPEekeRYFCgLjwajp6Oie7Wi2g5FCPGee7rs4nT4aeosqEO3td1ISkvK8tpRH5UhPUNhyvbreRli9rm6qkeQGzRQr0dOyvp5CSGEEAWJJMeiwIhNTOXfgFBaehfBwdxI2+EIIT4QlQpXYlLDSay4tIJGixvxKPHRC9e42JjQt1Yx1p4N41xoTN4H+bZ8feHMGRg4UD3V2s9PXbxLCCGEKMAkORYFxuYL4SSkpNOnhmzfJIR4cyqVihE1RrDi4xWcDDtJ9bnVuRX94vrigXVLYGdmyITN79nWTi9jYgJ//glbt0JkJFy8qO2IhBBCCK2S5FgUGPdiktBRQfkiFtoORQjxAerk0YndPXbzIP4Bu27ueuG8uZE+w5uU4nRINJsv3NNChNn00Udw/Tp066Z+vHEjhLx+n2chhBAiv5HkWBQYsYmpWBjry/ZNQohsq1W0Fte/uM6nvp8CEJUQlel8ex8XyhVWb+2UlPoebu30MhYW6qrWiYnQvz94ecGSJfAhjIALIYQQOUSSY1FgxCamYmmsr+0whBAfOHtTewAuPbhEieklmHFyhuacro6K71qUIywmkb/239RWiNlnbAzHjoGnJ/ToAZ06waMX11gLIYQQ+VGuJcd9+vTBwcEBDw8PzbFHjx7RqFEjSpYsSaNGjYiOjgZAURQGDx6Mu7s7Xl5enDlzRnPPwoULKVmyJCVLlmThwoWa46dPn8bT0xN3d3cGDx78YazvEloVlyTJsRAi5xS3Lk5dt7oM2jaIYTuGabZ6qlbCllbeRZixL4izd6K1HGU2FCsGBw7AL7/A+vXqUeTYWG1HJYQQQuS6XEuOe/Xqxfbt2zMdmzhxIg0aNCAwMJAGDRowceJEALZt20ZgYCCBgYHMnj2bAQMGAOpkevz48Zw4cYKTJ08yfvx4TUI9YMAA5syZo7nv+b6EeF5sYioWRpIcCyFyhom+CWs6rmFQ5UH8dvw3Oq7qSGKqep/jCW08cLQwYsiKczxOStVypNmgqwujRsGJE/Dll2BpqT6ekfVez0IIIUR+kGvJce3atbGxscl0bMOGDfj7+wPg7+/P+vXrNcd79uyJSqWiatWqxMTEcO/ePXbs2EGjRo2wsbHB2tqaRo0asX37du7du0dcXBxVq1ZFpVLRs2dPTVtCvIxMqxZC5DRdHV3+aPoHvzX+jbVX1zL9xHQALI31+b1zBe5GJzB2w2UtR/kOKlaEr79Wf3/sGFSooN4CSgghhMiH8nTNcUREBIULFwbA0dGRiIgIAMLCwnBxcdFc5+zsTFhY2CuPOzs7v3BciFeJS0zDQpJjIUQOU6lUfFXtK/b672VotaGAermQn5sNg+qXZO3ZMNafzQf/jUpJgagoqFJFPeU6/QMqOCaEEEK8Aa0V5FKpVHlWNXj27Nn4+vri6+vLw4cP86RP8X5RFIW4xFQsjPW0HYoQIp+q61YXfV19Ip5EUHVuVY6FHmNQfXd8ilozZv0l7kQlaDvEd1Onjnov5LZt4dtv1Y9vvbjfsxBCCPGhytPkuFChQty7p9778d69ezg4OADg5OREaGio5rq7d+/i5OT0yuN379594fjL9O/fn4CAAAICArC3t8/ppyU+AEmpGaSkZ8i0aiFErotPjedR4iPqL6rPhuvr+L1TBVQqGLLyLGnpH/iaXRsbWLkSFi9WJ8qrV2s7IiGEECLH5Gly3KpVK03F6YULF9K6dWvN8UWLFqEoCsePH8fS0pLChQvTpEkTdu7cSXR0NNHR0ezcuZMmTZpQuHBhLCwsOH78OIqisGjRIk1bQmQl7n8FcSQ5FkLktuLWxTna5ygVHSvSYVUHVl//mx/beHD2TgzT9wRqO7x3p1JB9+5w5QoMG6Y+duwYREZqNy4hhBDiHeVactylSxeqVavG9evXcXZ2Zu7cuYwaNYpdu3ZRsmRJdu/ezahRowBo1qwZxYsXx93dnX79+jFz5kwAbGxs+O677/Dz88PPz4/vv/9eU+Rr5syZfPLJJ7i7u1OiRAk++uij3HoqIh+ITVQnx1KtWgiRF+xN7dnTcw/tyrZj6M6h3EleS3sfZ2bsC+LErShth5cznJzUVa1TUqBjR/XeyNu2aTsqIYQQIttUSgHbINjX15eAgABthyHy2KngR3SYdYxFfSpTu5RMrRdC5I0MJYNJhyfRz6cfRrpWtJh+iJS0DLYNqY2lST76sO7CBejWDS5dgoEDYcoUMDHRdlRCCCEKqOzmfForyCVEXopLlGnVQoi8p6PS4Zta32BnYoeBXgZObv8S/jiCb9ZdIF99Nu3lBadOwdChMHOmegsomWYthBDiAyPJsSgQNNOqJTkWQmjJ+fvnWXdjIU8sR7HhUgCrAu6+/qYPiZER/Por7NkDTZqAra22IxJCCCHeiiTHokCIlZFjIYSW+Tn5sb/XfnR0kog0HsHwjSu5+fCJtsPKefXrw/Tp6sJdN25Aw4YQFKTtqIQQQojXkuRYFAhxiWkAWBjJPsdCCO2p7FSZ458cx8WqEKF639Jp0XRS0j7w7Z1eJTgYTp+GChVgzhzIT1PJhRBC5DuSHIsCITYxFVMDXfR05S0vhNCu4tbFOfHJMfwc6xAeacnPW69qO6Tc07ixej/kKlWgf39o3RoePNB2VEIIIUSWJFMQBUJsYqpMqRZCvDdsTWw58ekuBtSox/yjtxm+ZRZpGWnaDit3ODvDrl0wbRrs3KlelyyEEEK8hyQ5FgVCXFKqFOMSQrx3Rn1UhuJOoUwNGEDDhS2JT4nXdki5Q0cHvvwSzpyBsWPVx27cgCf5cM21EEKID5Ykx6JAkJFjIcT7SF9Xh3979aGozmAO3NlJzXm1uf/kvrbDyj3lyqn3P05Lg1at1Fs+HT+u7aiEEEIIQJJjUUDEJcrIsRDi/WRvbsha/3EUTv2OSw+uUPWfqlx9mI/XIQPo6cHs2ZCaCjVqwPffq78XQgghtEiSY1EgxMnIsRDiPVbJ1ZopLXtjl/gL0QmJ3Ii6oe2Qcl/t2nD+PPToARMmqJNkKdYlhBBCiyQ5FgWCTKsWQrzvulZ2pYdPPSzjZmKSURWA29G3tRxVLrO0hAULYPVqcHQEGxttRySEEKIAk+RY5Hup6RnEp6RjYSTJsRDi/aVSqfihtQfeToUYuvIcqy/uodSMUvx86GeU/L4/8Mcfw8aN6unWDx6oR5Pv5+O110IIId5LkhyLfO9xknp7FEtjPS1HIoQQr2akr8tf3Suhp6ti1q4MPi7bgdF7R/Pp5k/z71ZPzwsIUI8ke3jAunXajkYIIUQBIsmxyPdiE9VFXixNZORYCPH+c7Y24T9dKnHrYQo2ycP4tua3zDkzh5bLW/I4+bG2w8t9zZqpt3wqWhTatYM+fSAuTttRCSGEKAAkORb53tPkWKZVCyE+FDVL2jGiaRm2XryPm35f5rScw66bu1h6cam2Q8sbZcvCsWMwejQsXAijRmk7IiGEEAWAzDMV+V7c05FjKcglhPiAfFq7OOdDY5i4/RqL+7bhzKeV8XTwBCA1PRV93Xz+N83AAH78UT2SXLKk+lhEBFhbq88JIYQQOUxGjkW+FyvJsRDiA6RSqZjSwZtidqYMWnYWO8OSqFQqbkTdoMyfZdhza4+2Q8wb1auDvT1kZEDbtlC1Kly5ou2ohBBC5EOSHIt8TzOtWpJjIcQHxsxQj797+JCclsFnS06TlJqOsZ4xJvomNF3alIXnFmo7xLyjowMjRkBoKPj4wPTp6oRZCCGEyCGSHIt8Ly5JRo6FEB+uEvZmTOtUgQt3Yxm97hLOFs4c7n2YOkXr0GtDL8bvH5//t3p6qk0buHgRGjSAIUOgaVP11k9CCCFEDpDkWOR7sYmpGOjpYKSvq+1QhBAiWxqVK8SQBiVZc+YuC48GY2lkydZuW/H39mfcgXHMCpil7RDzjqMjbNoEs2ZBZCSYmmo7IiGEEPmEJMci34tLTJVK1UKID96QBiVpWLYQE7Zc5fitKAx0DZjfej6zW8ymV4Ve2g4vb6lU8OmncOqUOjlOSICRIyE2VtuRCSGE+IBJcizyvbjENCyNpTC7EOLDpqOjYlonb4ramvD50jOExySiUqno59MPY31jYpNi6by6M6GxodoONe/o/m9G0P798Ouv4OUFBw5oNSQhhBAfLkmORb4Xm5gq642FEPmCuZE+s3v4ZirQ9dS1yGtsDdxK1blVOXf/nPaC1IZmzeDIEfUWT/XqqQt3JSdrOyohhBAfGEmORb4Xm5gqlaqFEPmGu0PmAl1Pi3FVca7C4T6HUaGi1vxa7AjaoeVI81iVKnDuHPTvD1OmwMCB2o5ICCHEB0aSY5HvxSXJyLEQIn95tkDXomMhmuNehbw48ckJSliXoPmy5qy5skaLUWqBqam6UNemTfDNN+pjT57Ilk9CCCHeiCTHIt+TadVCiPxIXaDLgQmbr3DiVpTmuJOFEwd7H6SHdw+qOFfRYoRa1KIFuLuDokCPHtCwoXp/ZCGEEOIVJDkW+VpGhiLVqoUQ+ZKOjorfOlXA1daEgf8r0PWUhaEF81vPx9nCmfSMdP5z4j+kpKdoMVotatECTp4ET09Ytkzb0QghhHiPSXIs8rX4lDQyFGTkWAiRL1k8U6BrwHMFup7ac3sPg7cPpumSpsQkxeR9kNqkUkHfvnD+PJQrB926QZcuEB2t7ciEEEK8hyQ5FvlabGIqIMmxECL/cncw47eO3py/G8uwf8/z8HHmKs2NSzRmcdvFHL5zmBrzahASE/KSlvKxEiXg4EGYMEH9NaWAjqILIYR4JUmORb72NDm2kH2OhRD5WOPyjgxvUpqtl+5RY9JeRq25QNCDx5rz3b26s6P7DsLiwqg6typn7p3RYrRaoqcHY8bAjRtQqBCkp8Mff0BSkrYjE0II8Z6Q5Fjka3GJaQCylZMQIt/7vJ47e4bWoYOPM+vOhtHwt4P0WXCKYzejUBSFesXqcbTvUayMrAru+mNQV7QG2LMHvvwSfH3VW0AJIYQo8CQ5FvmaTKsWQhQkxe3N+KmtJ0dH1eerhqU4HxpDlznHaTnjMBvOhVHSpgyXBlyiqnNVAALCA7QcsRY1bgzbtkFUFFSuDJMmqUeThRBCFFiSHIt8Le7ptGqpVi2EKEBszQwZ0rAkR0bV55d2niSkpDNkxTnqTN7H/CMhRD5JZnvQdvzm+DFq9ygylAK6D3DTpnDxIrRsCaNGqYt3CSGEKLBkIabI1+KS/jdybCLJsRCi4DHS16VLZVc6+bqw7/oDZh+8xY9brvLjlqvYmupSwqQtk45M4sDNK0yuP4vyReywMTXQdth5y84OVq+GxYuhVCn1sbQ00NVVV7sWQghRYEhyLPK12MRUdFRgZiBvdSFEwaWjo6JB2UI0KFuIS2GxHL8VxY2Ix1y/P5QnT2w4fn8ujRbfwj5lDIXMbCnpYE6pQmY0Ke9ItRK2qPJ7kqhSQc+e/3/81Vdw/z7MmgW2ttqLSwghRJ6SjEHka7GJqZgb6aOjk8//x04IId6Qh5MlHk6WmseKUoNZp+owZEc/mnk9xJKy3Ih4wurTd1l4LAQPJws+rV2Cjzwc0dMtIKuxnJ3h77/hyBGYPx+aNNF2REIIIfKAJMciX4tLTJViXEII8QoqlYoBlXvQonRdXCxdAHic/Bh9HRPWnQ1jzsFbDFp+FhcbY/rVKk4HHxeMDXS1HHUuGzlSXbCre3f1uuQvvlAX7DIx0XZkQgghclEB+QhYFFSxkhwLIcQbeZoYH797HLc/3NhxczNdKruya2gdZnX3wc7MkO83XKb6xD1M23WDqCfJWo44l1WsCAEB6u2e5s+HsDBtRySEECKXSXIs8rXYxFQsjGWChBBCvKliVsUoYV2CtivbMuPkDHR1VDT1cGTtgOqs+qwaPkWt+WNPIDUm7eX7DZe4E5Wg7ZBzj7ExTJsGQUFQsiQoirp4V1qatiMTQgiRC16bHI8YMYK4uDhSU1Np0KAB9vb2LFmyJC9iE+KdxSWlycixEEK8hUJmhdjnv4+WpVsyaNsgvt75NRlKBiqVCj83G/7x92P30Nq08i7C8pN3qPfrfvZcjdB22LnL0VH99cAB6NAB6tSBW7e0G5MQQogc99rkeOfOnVhYWLB582bc3NwICgpiypQpeRGbEO9MplULIcTbMzUwZW3HtQyqPIhfj/3KovOLMp13dzBncntvDo+sT6lC5oxYfYHI/D7NGtRJ8dKlcPkyeHvDvHnq0WQhhBD5wmuT47T/TR3asmULHTp0wNLS8jV3CPH+iE1MxcJIkmMhhHhbujq6/NH0D9Z3Wk8Prx5ZXlPIwojfO1XgcVIa36y9iJLfE0WVCrp2hQsXwM8P+vaF/v21HZUQQogc8trkuEWLFpQpU4bTp0/ToEEDHj58iJGRUV7EJsQ7SUpNJyUtAwsZORZCiGxRqVS0LtMaXR1dQmNDqbewHkGPgjJdU9rRnBFNS7PrSgSrAu5qKdI85uoKu3fDr79CixbqY4qiHlV2cwMdHfXXpUu1GaUQQoi39NrkeOLEiRw9epSAgAD09fUxNTVlw4YNeRGbEO8kLjEVQKZVCyFEDrj/5D4XIy5SbW41joUey3SuT41iVCtuy/hNlwl9lI8LdD1LRweGDoXWrdWPu3SBXr0gJESdKIeEqEeVJUEWQogPxhtVqw4PD2fNmjUsWrSI1atXs3PnztyOS4h3FpekTo5l5FgIId6dn5Mfx/oew9LQkvqL6rP26lrNOR0dFVM7eqOjUjH033OkZ+Tz6dVZ2bbtxSrWCQkwerR24hFCCPHWXpscjx8/nkGDBjFo0CD27dvHiBEj2LhxY17EJsQ7iZWRYyGEyFElbUtyrO8xKjhWoP2/7TMlyE5WxoxvXZ5TwdHMPlgAKzk/fpz18Tt38jYOIYQQ2fba5Hj16tXs2bMHR0dH5s+fz/nz54mNjc2L2IR4J5IcCyFEzrM3tWdvz718Xf1rGhRrkOlc24pONPN05Ldd17kSHqelCLXE1TXLw3H2hUlKTc/jYIQQQmTHa5NjY2NjdHR00NPTIy4uDgcHB0JDQ/MiNiHeSVyienqbhZGeliMRQoj8xVjfmMmNJmNpZElCagJj9o4hITUBlUrFT208sTIx4KuV5wpWUvjTT6QbGWc6lGxgxJjKXWg07QDbL93L/9W8hRDiA/fa5NjX15eYmBj69euHj48PlSpVolq1au/U6bRp0yhfvjweHh506dKFpKQkbt++TZUqVXB3d6dTp06kpKQAkJycTKdOnXB3d6dKlSoEBwdr2vnll19wd3endOnS7Nix451iEvmPjBwLIUTu23d7Hz8f+pn6C+vzIP4B1qYGTG7vxfWIx/y264a2w8s73bqxY8gE7lrYo6hUULQohvP+4dN2VSgZfY/Plpyh65wTXL1XwEbUhRDiA/La5HjmzJlYWVnx2WefsWvXLhYuXMj8+fOz3WFYWBjTp08nICCAS5cukZ6ezooVKxg5ciRfffUVQUFBWFtbM3fuXADmzp2LtbU1QUFBfPXVV4wcORKAK1eusGLFCi5fvsz27dsZOHAg6ekF6BNq8VpPk2MpyCWEELmneanmrO20lgsRF6g2txrXI69Tr7QD3au6MufQLY7fitJ2iHlmqXsN+v2wBlVGBgQHw8cfU37sMOYuGcU0Pwuu3o+j+fRDjF53kUfxKdoOVwghxHPeqFr1hQsX2LhxI2fOnCEoKIi1a9e+/qZXSEtLIzExkbS0NBISEihcuDB79+6lffv2APj7+7N+/XoANmzYgL+/PwDt27dnz549KIrChg0b6Ny5M4aGhhQrVgx3d3dOnjz5TnGJ/CUuMRUTA130dd/obS6EECKb2pRpwz7/fTxOfkz1edU5FnqMb5uVxc3WlGH/ntfsHpCfpaVncPZODH5u1v8/aGQEmzejio+n7XB/DnRxp2c1N1acCqXulH38uS+IxwXgtRFCiA/Fa7OGPn360KdPH9asWcOmTZvYtGkTmzdvznaHTk5OfP3117i6ulK4cGEsLS3x8fHBysoKPT312lBnZ2fCwsIA9Uizi4sLAHp6elhaWhIVFZXp+PP3CAHqkWOZUi2EEHmjinMVjn9ynLJ2ZbEzscPEQI/fOnpzPy6J8RuvaDu8XHft/mMSUtLxKWqd+YSXF+zcCVFRWLb4iHGVbdk+pBY+Ra2ZsuM6NSbu5bddN4hJkJFkIYTQttdWKjp+/DhXruTcf9Sio6PZsGEDt2/fxsrKig4dOrB9+/Ycaz8rs2fPZvbs2QA8fPgwV/sS7w9JjoUQIm8Vty7Ood6HUKlUKIrCveRjDKxbgv/sDaJROQeaehTWdoi5JiD4EQC+bjYvnvT1ha1boXFj+OcfSo4Zw/zelblwN4YZe4OYvieQuYdu0b1aUT6pWRx7c8M8jl4IIQS8wchxtWrVcjQ53r17N8WKFcPe3h59fX3atWvHkSNHiImJIS1NXV347t27ODk5AeqR5qfVsdPS0oiNjcXW1jbT8efveV7//v0JCAggICAAe3v7HHsu4v0Wl5SKhZEkx0IIkZdUKhUAq6+spvmy5gSm/I6HkynfrL1IRFySlqPLPadCoiliaYSTlXHWF9SoAWfOwOjRmkNezlbM7unLji9r06BsIeYcvEXNSXsZt/Ey4TGJeRS5EEKIp16bHPfs2ZNq1apRunRpvLy88PT0xMvLK9sdurq6cvz4cRISElAUhT179lCuXDnq1avH6tWrAVi4cCGtW7cGoFWrVixcuBBQ77lcv359VCoVrVq1YsWKFSQnJ3P79m0CAwOpXLlytuMS+U9sYpoU4xJCCC35uNzHjKg+gr9PzyLBfBIJqQkM+/c8GRn5bzsjRVE4HRyNT1ajxs8qXRpUKrh5Ezp2hMeP1YcdzZnepSJ7htWldYUiLDkeQp0p+/hm7QVCouLz4BkIIYSAN5hW3bdvXxYvXoynpyc6Ou9e2KhKlSq0b9+eSpUqoaenR8WKFenfvz/Nmzenc+fOjBkzhooVK9K3b19N/z169MDd3R0bGxtWrFgBQPny5enYsSPlypVDT0+PP//8E11d3XeOT+QfcYmplCtsoe0whBCiQNJR6TCp0STcrNz4YtsXFLUJ40DQCGYfsuOzOiW0HV6OCotJ5H5cEr7Przd+mWvXYO1aiIiAbdvAxASAYnamTG7vzeAGJfn7wC1WBoSy8lQo1UvY0dK7ME3KO2JlYpCLz0QIIQo2lfKaHemrVavGsWPH8iqeXOfr60tAQIC2wxB5wHPsDtr7OjO2ZXlthyKEEAXa5hub6b62O7Vtf+HK7aKsHVgdL2crbYeVY9afDePLlefYPKgmHk6Wb3bTypXQtSs0aAAbN6orWz/nQVwSi4+HsOl8OMFRCejrqqhV0p6W3oVpVM4RM8PXjnEIIUSBlN2c77V/VStWrEjXrl1p2bIlhob/LxDRrl27t+5MiLySnqHwODlNCnIJIcR7oEWpFgR/GYwqw5SP/jjIp8t2s2tIm3yT3AWEPMLMUI8yjuZvflOnTpCYCL17Q4cOsGYNGGQeFXawMGJY49IMbVSKS2FxbLoQzubz4ey99gBDvYvUL+NAC68i1C/jgLGBzJ4TQoh39dr/KiUmJmJoaMjOnTs1x1QqlSTH4r0Wl6jeN1KSYyGEeD9YGVkB0KFmJMP29KTjonFs7feNVmPKKQHB0VR0tUJP9y2Xn/XqpU6QFy1SfzXIesq0SqXC09kST2dLRjUtw9nQaDadv8fmC/fYduk+Jga6NC3vyMB6JXB3eIsEXQghRCavTY7nz5+fF3EIkaPiktTJsVSrFkKI90sv38b8GVCBbeHf0v3fWBZ3+EVT4fpDFJuYyvWIxzT1cMxeAwMGQL9+oKcHSUmgrw+vqKGio6PCp6gNPkVt+K5FOU7cimLThXtsPBfG+nNhtK3ozJcNS+JiY5LNZySEEAXXa5PjpKQk5s6dy+XLl0lK+v8WDPPmzcvVwIR4F7EyciyEEO8la2Nrzg/cT9lprVl6dRIZax6wqN1s9HQ+zCnWZ+9Eoyjg97pK1a+ipwcpKdC8ORQvDrNnq6tav4aujorq7nZUd7fj68almHXgJouOhbDxfBid/Vz5or47hSxeXMsshBAia6+d/9OjRw/u37/Pjh07qFOnDnfv3sXcXKbsiPebJjk2keRYCCHeN6aGxhzutw57pTPLL89n7ZV12g4p206HRKOro6KCi9W7NWRgANWqwT//wJAh8Op6qS+wNTNkdPNyHBhej46+Liw/eYfak/fxy9arRMenvFtsQghRQLw2OQ4KCmLChAmYmpri7+/Pli1bOHHiRF7EJkS2xSWmATKtWggh3leutqbMbfsrhZKncCfME4AMJUPLUb29gOBoyhY2xzQniotNmABDh8J//gOjRr11ggzgaGnET2092TusLs09CzP70C1qTd7H77tv8Ph/S46EEEJk7bXJsb6+OrmwsrLi0qVLxMbG8uDBg1wPTIh3IdOqhRDi/dfSuwg9Kjbiz/03WXL6IF5/eXHpwSVth/XGUtMzOBsajW/Rd5hS/SyVCqZOVa9DnjxZ/X02udqa8FunCuz8sja1Strx++5Aak/ex7qzd3MmViGEyIdemxz379+f6OhofvzxR1q1akW5cuUYMWJEXsQmRLZJciyEEB+Gca3K42ZryuTtV4lKeESNeTXYc2uPtsN6I1fC40hKzcDXzTrnGlWpYMYM+PpraNbsnZsrWcicv7r7sOmLmjhbm/D9+stkZLz9iLQQQhQEr02OP/nkE6ytralduza3bt3iwYMHfPbZZ3kRmxDZFpeUir6uCiP9t9xWQwghRJ4yNdRjeueKJCa4UN92Ni4WLjRd2pSF5xZqO7TXCgiJBsi5keOndHRgyhQoX149tfr48Xdu0tPZkh7VivI4OY1bkfE5EKQQQuQ/r80cvv32W2JiYjSPo6OjGTNmTG7GJMQ7i01MxdJY/4PeHkQIIQoKT2dLhjcpzZHrKgZ7LaN20dr02tCLDdc2aDu0VwoIfoSTlTGOlrlYEXrxYnWhrjlz3rmpp0XDzofGvHNbQgiRH702Od62bRtWVlaax9bW1mzdujU3YxLincUmpmIhU6qFEOKD8UnN4tQqacfU7WFMqr2cKY2m8FHJj7Qd1kspikJASDR+OTmlOiudOsFHH8Gnn8KSJe/UVAl7M0wNdDl/NyZnYhNCiHzmtclxeno6ycnJmseJiYmZHgvxPopLTJVK1UII8QHR0VHxR+eK2JsZ8vmyC/T0+AIDXQMexj+k38Z+xCbFajvETEIfJfLwcTI+77K/8ZswNIQ1a6BePfD3h9Wrs92Uro4KL2crGTkWQoiXeG1y3K1bNxo0aMDcuXOZO3cujRo1wt/fPy9iEyLb4v43rVoIIcSHw8bUgDk9fYlLTOPTJadJTkvn+N3jLDi/gFrza3E37v2ptBwQ8ggA36K5PHIMYGwMGzeqp1f36AH372e7KW8XK67ciyM5LT0HAxRCiPzhtcnxyJEjGTNmDFevXuXq1at89913Uq1avPdiJTkWQogPUrkiFvza0Zuzd2IYs+4SLUq1YFu3bQTHBFPlnyqcv39e2yECcCo4GnMjPUoVMs+bDk1NYetW2LABHB2z3UwFF0tS0xWuhMflYHBCCJE/vNGO9U2bNqVp06a5HYsQOSYuKQ0L4zd6ewshhHjPNPMszOD67kzfG0T5Ihb0qtGQI32O0GxZM2rNr8XWblup6VpTqzGeDnlEJVdrdHXysPCjhQU0bqz+fsMGsLaG2rXfqgnvZ4pyVXTNg1FvIYT4gMg+NyLfURRFRo6FEOID92XDUjQsW4gJW65yNCgSz0KeHO97nIbFG1LKtpRWY4tNSOVGxJO8mVKdlbQ0+P57aN4cTpx4q1sdLYxwMDfk/N33aw23EEK8DyQ5FvlOfEo66RmKJMdCCPEB09FRMa2TN8XtTBm47AyhjxJwsnBibae1OJg6kJqeyoJzC1AUJc9jO31Hvd7YJ7crVb+Mnh5s2waFCkHTpnD27BvfqlKp8HaRolxCCJGVN0qOExMTuX79em7HIkSOiEtMBZBq1UII8YEzN9JnTk9fMjIU+i0KID45TXNu+aXl9N7QG//1/qSkp+RpXAHB0ejpqDT7BmtFkSKwZ496qnWjRnDp0hvfWsHFiluR8cQmpOZigEII8eF5bXK8adMmKlSooFlzfO7cOVq1apXrgQmRXbH/S45l5FgIIT58bnamzOhaiRsRj/l61XkyMtQjxT28evBjvR9ZfGExTZc0JSYpJs9iCgiJpnwRC0wMtFzbomhR2LsXDAxg1ao3vu1pUn8hLCZ34hJCiA/Ua5PjcePGcfLkSaysrACoUKECt2/fzu24hMg2SY6FECJ/qV3Knm+blWXbpfvM2BcEqKcHj649msVtF3P4zmFqzqtJSExIrseSkpbB+dAYfIrm8v7Gb6pECfW06nHj1I/fYJq5p7MlgEytFkKI57w2OdbX18fS0jLTMZUqDyszCvGWNNOqJTkWQoh8o2/NYrSr6MRvu26w8/L/9/nt7tWdHd13EJcclyejx5fCY0lOy8BPW+uNs1KoEKhUcPUq1KoFd1+9H7SFkT4l7E05J8mxEEJk8trkuHz58ixbtoz09HQCAwMZNGgQ1atXz4vYhMgWGTkWQoj8R6VS8XM7T7ydLflq5Tmu3f//Pr31itUjcFAg3o7eAFx9eDXX4jgdHA1osRjXq8THw8WL0KAB3L//yku9Xaw4FxqrlYJmQgjxvnptcvyf//yHy5cvY2hoSJcuXbCwsOD333/Pg9CEyJ5YGTkWQoh8yUhfl797+GJiqEf7v46x6Xy45pyhniEASy8sxfMvT/4O+DtXYggIeYSrjQkO5ka50v478fWFrVshLAwaNoTIyJdeWsHFisgnyYTHJuVhgEII8X57bXJsYmLCTz/9xKlTpwgICOCnn37CyOg9/A+CEP8Tl5SGSgXmhloulCKEECLHOVoasW5gdUoVMmPQ8rOMWnOBxJR0zfnWZVrT1L0pn235jFG7R5GhZORY34qiEBAcje/7OGr8VI0asGkT3LyprmIdHZ3lZd7OVoCsOxZCiGe9NHto2bLlK9cWb9y4MVcCEuJdxSWmYm6oh46OrI0XQoj8yNnahJWfVuP33TeYuf8mp0Oi+U/XipRxtMDMwIz1ndczaOsgJh2ZREhsCAtaL9CMLL+L4KgEouJT8H1finG9TL16sG4dTJum3hM5C2UKm2Ogq8P50BiaeRbO4wCFEOL99NKR46+//pphw4ZRrFgxjI2N6devH/369cPMzIwSJUrkZYxCvJXYxFQsTWRKtRBC5Gf6ujoMb1KGxX2qEJ2QSusZR1h6IgRFUdDT0WNm85lMajiJfy//y6E7h3Kkz4DgRwDv98jxU02bwvbtYG6uXouckJDptKGeLmWLWEhRLiGEeMZLR47r1KkDwLBhwwgICNAcb9myJb6+vrkfmRDZFJeYioWRJMdCCFEQ1Cxpx7YhtRj67zlGr7vE0aAofm7niaWxPiNqjKBNmTaUsi0FQFJaEkZ62V8adjokGgsjPdztzXIq/NylUkFGBjRrBoaGsHEjPLM0rqKLFf8GhJKeoaArs62EEOL1a47j4+O5deuW5vHt27eJj4/P1aCEeBexialSqVoIIQoQe3NDFvau/N/27jysqmr/4/j7MMuozAgoKjiAoiKOWY6IlZqllUPqTcvKSpuHa3Wre29Z1wbLhmupqVlW1k/LucksZ1AxMRVnQAUEZFBm9u+Pk3jNWYHDgc/reXyQffbw3afVkQ9r7bV45saWrEw8xs3v/MrWw+ZnbU8H4x/2/0DoO6FsTt181dfZfDCL6BBP63psx8YGxo6F77+H22+H4uKKl9oGe3CquIyk9DwLFigiUnNcMhy/9dZb9OzZk549e9KjRw969erFtGnTqqM2kauicCwiUvfY2Ji4v0czvry/KwC3f7ieD3/ZR1m5eamiIPcgHGwd6PFJD77dfeXzpmSfLGZfxkk6NLaCIdV/NWYMfPABLFkCI0dCaSmgSblERP7qkuG4f//+JCUlMW3aNN555x12795Nv379qqM2kauSW6hh1SIidVVUowYsnXg9MeF+TFm+i25TfuSVZX9glDRk/bj1tPZtza1f3Mr0TdMBSExPpPX7rUlMT7zoeeMPmXuio60xHAPcf795gq6FC+GJJwAI8XLB3cmObck5Fi5ORKRmuKy1bhwdHWnbtm1V1yJSKTQhl4hI3eZRz573R0axamcaX8UlM+u3A8xYs5+W/m6MajsTT6e/8/DyhwlyD2LSikkk5yRz82c3kzghERcHFwBKy8rZnprD+n2ZrN17nLhD2TjY2dA2uL5lb+5aPPKIefbq2FjA3NveNri+eo5FRP6khWClVikqLaOwpFzDqkVE6jiTyURshD+xEf5k5hexZPtRvtmayhsrD2My3Uu3gA68vmYm6SfTMTBIO5nG7V+OZmjIVNbtO87G/VnkFZmHH7f0d2NUl8b0b+2Pk72the/sGj30kPmrYcDixbQNbMkHa/ZTUFxGPQcrvzcRkWukcCy1Sm6B+QcZdyc1bRERMfNydWRMtxDGdAthX0Y+i7am8uHmX9mX9T2GqQgwz2S9Yu9SNv4RTOv6tzCgbUOuC/WiS1MvvF2vfY3kGmfRIrjtNoaMfZDp3v1JPJJDdEgNX79ZRKSKXTBBbNmy5aIHRkVFVXoxItcqp6AEAHf1HIuIyHk083Hl8X4teD1hLkZp0VmvGaYi8pzeZ3D3xtwTdQ9ujm4WqrIaDB4MDzxAkw/eY9J12WwbEK5wLCJ13gXD8eOPP37Bg0wmEz/99FOVFCRyLU6HYw2rFhGRi3m176tMXD6RkyVnlqe0s7HD29mbv//0d+6Lvg+AlXtX4mDrQPdG3bG3rUX/tphMMH06FBby6OzZLHrfG67XaiQiUrddMBz//PPP1VmHSKXILVTPsYiIXNrY9mNZuW8l3+7+lsLSQpzsnLilxS0sGLqA9JPpONs7A/DiLy+yIWUDHo4exIbGMiBsADeG3Yi3s7eF76AS2NjARx+x+Y9Ubv7qffj3JGja1NJViYhYzGU9mLljxw527txJYWFhxbbRo0dXWVEiVytXPcciInKZZg2aRfj74STnJOPn4sfMQTMB8HXxrdjn+1Hf88P+H1iyZwlLk5byZeKXDGw+kG+Hm9dK3n18N829mmMymSxyD9fM1pZt/5rGv+csY6ZvIF6WrkdExIIuGY5feuklVq9ezc6dO7nppptYvnw53bt3VziWGknDqkVE5HK5OLiwbMQy7lx4J18M/aJiGaf/5ergyuCWgxnccjDlRjlbj27FwAAgNTeVlu+1JNg9mAHNBzCg+QB6hfSinn296r6Va9KmiQ//btiC7Sk59Nr2E5SWwl13WbosEZFqZ3OpHRYuXMiPP/6Iv78/s2fPJiEhgZwcLRYvNdPpnmN3J4VjERG5tAjfCHZM2EGEb8Ql97Ux2dChYQeiG0YD4OboxsxBM4luGM3chLnc/NnNeL3uxfKk5QAYhlGltVeWNoEe2Jhg2+FsmDULxoyBr76ydFkiItXukj3H9erVw8bGBjs7O3Jzc/H19SU5Obk6ahO5YjkFJdSzt8XB7pK/9xEREbkm7o7ujG0/lrHtx1JUWsQvh35hyZ4lRPpFAvDxlo95P+59BoSZe5U7BnbExlTz/n1ycbQjzNeNhNQc+OYb6N8fRowAJycYONDS5YmIVJtLfkJHR0dz4sQJ7r33Xjp06EBUVBRdu3atjtpErlhOQYmGVIuISLVztHOkX7N+vHPjOwS6BwLg4+KDu6M7r/72Kl1mdsF/qj93L76b0vJSC1d7rrbBHiQkn8BwcYGlS6FdOxg6FL7/3tKliYhUm0v2HL///vsA3H///fTv35/c3FwiIyOrvDCRq5FbUIp7vcuaZ05ERKRKnX5WOasgi5V7V7IkaQkpuSnY2Zj/nXr+p+fxrOfJgOYDCPMKs2it7YIb8GVcCoezTtHYywNWroReveC33yAmxqK1iYhUl0umiD59+vDjjz8CEBIScs42kZpEPcciIlLTeNbzZHib4QxvM7xim2EYrNi3grgjcTy26jGaezVnQNgAhrUeRsfAjtVeY9tgDwC2JZ+gsZcLeHrCunXgbF7SitJSsNMvn0WkdrvgsOrCwkKysrI4fvw42dnZZGVlkZWVxcGDB0lNTa3OGkUum8KxiIhYA5PJxOZ7N7N/4n7evfFdmtRvwvTN01mWtAyAUyWnmJswl4yTGdVST3M/N5zsbUhI/p9JV11cwGSC33+HiAjYsqVaahERsZQL/grwv//9L2+//TZHjhwhKiqqYru7uzsPPfRQtRQncqVyC0to6eRm6TJEREQuS5MGTXio00M81Okh8ovzKSkzr7qw+uBqxiwagwkTXYK6VCwV1ca3TZWsqWxva0Prhh4kpJw490V3dygshH79YPVqaN260q8vIlITXLDneNKkSRw4cICpU6dy4MCBij8JCQkKx1Jj5RSU4K6eYxERsUKuDq40qNcAgP6h/dl872b+0eMflJSXMPmnybT9sC3bjm0DIONkBgUlBZV6/bbB9dmRmkNJWfnZLzRuDD/9BA4O0Lcv7NlTqdcVEakpLjlb9X333cc777zD0KFDGTp0KNOnT6ekpKQ6ahO5ImXlBnmFpRpWLSIiVs/GZEN0w2j+0fMfbL53M0ceO8KcwXNo698WgOd/fh6v170Y+PlA/hv3X1JyU675mm2D61NUWs7uY3nnvtisGfz4I5SXQ+/eMG0ahISAjY356/z513x9ERFLu+TMChMmTKCkpIQJEyYAMG/ePB544AE+/vjjKi9O5ErkF5qXxlA4FhGR2ibALYDRbUdXfD+yzUgcbB1YsmcJS/YsgaVwU9hNLB2x9Kqv0S6oPgAJKSdoHehx7g6tWsEPP8B998Gzz0LBnz3Xhw7B+PF/Fjbyqq8vImJpFwzHpaWl2NnZsXnzZhISEiq29+7dm7Zt21ZLcSJXIqfAPKJBw6pFRKS2u77x9Vzf+Hqm9Z/GH8f/YOmepdja2ALmmbCjZkTR1q8tA5oPoF+zfrg7ul/ynMGe9fB0cWDb4ROM7Nz4/DtFRsLRo2eC8WmnTsHkyQrHImLVLjisulOnTgDY2tqyb9++iu379+/H1tb2mi564sQJhg4dSsuWLWnVqhXr168nKyuLmJgYwsLCiImJITs7GzB/wE+cOJHQ0FAiIyPZ8j8zJc6ZM4ewsDDCwsKYM2fONdUk1u90OFbPsYiI1BUmk4lwn3CevO5JHuv6GAB5xXmE+4Tz7e5vuf2r2/F63Ys+c/vw4/6LL8NpMploG+TB2kNbaf1+axLTE8/ZZ+eRXIzDh89/ggttFxGxEhcMx4ZhADB16lR69epFz5496dmzJ7179+aNN964potOmjSJ/v37s2vXLhISEmjVqhVTpkyhT58+JCUl0adPH6ZMmQLA8uXLSUpKIikpiRkzZvDAAw8AkJWVxUsvvcTGjRvZtGkTL730UkWglropt1DhWERExN3Rnfm3zSf9yXTW/G0Nj3d9nLT8NApKzb29O9J38PjKx/n5wM8Vs2Of1rKhA5vyn2Jnxk5u/uxmThafpKSsnO8SjnD7h+u46Z1fOeLuc/4Lu7jAkSNVfXsiIlXmgsOqMzIyePPNNwHzpFxlZWWAuSd569at9OrV66oumJOTw5o1a/jkk08AcHBwwMHBgcWLF7N69WoAxowZQ8+ePXnttddYvHgxo0ePxmQy0aVLF06cOMHRo0dZvXo1MTExeHp6AhATE8OKFSsYPnz4VdUl1u/MsOpLPkovIiJS69nZ2FUMv57Sd0pFx8fWo1uZvnk6b254E3dHd2KbxTKg+QBuD7+dFan/oIwcwOBYfhrdP7oD+xOPkp5XRCNPZ567uRUNWvwHHnrAPJT6T6U2ttiePInp3Xfh1VctdMciItfmgimirKyM/Pz8ig/S00pLS8nLO88shpfpwIED+Pj4cPfdd5OQkECHDh2YNm0aaWlpBAQEAODv709aWhoAqampBAcHVxwfFBREamrqBbefz4wZM5gxYwZgDv1SO2lYtYiIyIWdXh95VNtR3NrqVn7Y/wNL9yxlSdISvtvzHadKTrHp2A9gKgagqKyQhIwf6eoVxewhD9OjuQ82Nia4vik42JqfMT58mOKGQbzUdQS/N4rgjdE3EAawahX8/DM88QR4eVnupkVErsAFw3FAQAAvvPBCpV+wtLSULVu28O6779K5c2cmTZpUMYT6NJPJVKkL3I8fP57xf86iGB0dXWnnlZolV+FYRETksrg6uDK45WAGtxxMuVHO/uz9XDfrOk6VnDprP8NUxN6iGfRq+c+zTzByZMXkWw7A3en5jPx4A3d8tZt54+rTev16eO01eO89ePRReOwx8DjPDNgiIjXIJZ85rmxBQUEEBQXRuXNnAIYOHcqWLVvw8/Pj6NGjABw9ehRfX18AAgMDSU5Orjg+JSWFwMDAC26XuiunoAQ7GxP17K9twjgREZG6xMZkQ6hnKK/2eRUXe5dzXu/RuAeFpYUXPUeorytf3tcVZwc7hn+0gS13T4Tt2yEmBl5+GZo0gQ8/rKpbEBGpFBcMxz/+ePEZDa+Wv78/wcHB7N69u+I64eHhDBo0qGLG6Tlz5nDLLbcAMGjQIObOnYthGGzYsAEPDw8CAgKIjY1l1apVZGdnk52dzapVq4iNja2SmsU65BSU4FHPvlJHHYiIiNQVY9uP5ebmN+Nk5wSAo60jAa4BfLXzKxbvWnzJ4xt7ufDl/V3xdHFg1Mcb2egcAF9/DfHx0K0blJebdywpOXcpKBGRGuCCw6pPT3RVFd59911GjhxJcXExTZs2Zfbs2ZSXl3PHHXcwc+ZMGjduzJdffgnATTfdxLJlywgNDcXZ2ZnZs2dX1Pf888/TsWNHAF544YUqrVlqvtzCUg2pFhERuQazBs0i/P1wknOS8Xf1J3FCItvTttM5yDzi79Ptn+Lr4ku/Zv3Oe3xg/Xp8eV9XRny0gTGzN/Hx6I50j4qCJUvg9KjEmTPNvcl//zvcey84OlbX7YmIXJTJqKrx0zVUdHQ0cXFxli5DqsDoWZvIKShh8YPXWboUERERq5WYnsidC+/ki6FfEOEbUbHdMAyiP4pmy9EtxDSN4fWY12nn3+685zieX8RdH29k//GTfDAyij6t/M68uH49PPMMrFkDwcHw/PPwt7+BvX7BLSKV42oz3wWHVYtYm9PDqkVEROTqRfhGsGPCjrOCMZgnTF03dh1vxb5F/NF4ov4bxej/G01yTvI55/B2dWTB+C609HfjvnnxTFm+i/yiUvOLXbvC6tXw/ffQsCGMHw933lkNdyYicnEKx1Jr5Ckci4iIVClHO0ce6fII+ybu46nrnuKrnV9xKOfQefet7+zAp/d0ZnD7QD78ZR993ljNoq2p5klfTSbo29fci7xkCTzyiPmgrCz44oszzyeLiFQjhWOpNXIKSnB3uuBj9CIiIlJJ6jvVZ0rfKSQ/mkz3Rt0BmPzjZN5c/yZFpUUV+7k72TP19rZ8M6Ebfu5OPPLFNm7/cD07UnPMO5hMcPPNcMMN5u9nz4Zhw6BdO1i06MxzyiIi1UDhWGoFwzA0rFpERKSaeTt7A1BulJOQlsDjqx6n5Xst+fz3zyk3zvT+RjVqwKIJ1/HakDYcOH6SQdN/Y/L//U72yeKzT/jIIzB/PhQWwq23QseOsHx5Nd6RiNRlCsdSKxSUlFFabigci4iIWICNyYYlI5aw6q5V1Heqz4hvRtDpo04kHEs4s4+NiTs7NuKnJ3oyumsICzYn03PqauatP0hZ+Z89xLa2MGIE7Nxp7kXOytL6yCJSbRSOpVbIKSgBwF3hWERExGJimsUQPz6euYPnklOUg7ujOwBl5WUV+3jUs+fFQREsm3g9rQLceH5xIgPe/Y24g1lnTmRnZ57Betcu+Ogj87akJPNzyr/+Wo13JCJ1icKx1Aqnw7F6jkVERCzLxmTDqLaj2P3Qbpo0aALA4C8GM27xOFJyUyr2a+Hvxuf3duG9EVHknCrmjv+u54PV+zhrlVEHB/D1Nf/9wAHYscP8fHJsLGzaVJ23JSJ1gMKx1Aq5BeblIRSORUREagYbk/nHzNLyUlp4teDT3z+l+bvNmfzjZHIKzRNymUwmbo4M4PvHenBTmwBeW7GLBz/bwsnTyz79r379YP9++M9/ID4eOneG22/XpF0iUmkUjqVWqBhW7aRwLCIiUpPY2dgxtd9Udj+0m9ta3cYrv71Cs3easS55XcU+Lo52vDu8PX+/qSUrdhzj1vfXcvD4yXNP5uwMTzxh7kX+17+gRQvzjNcABw9Wzw2JSK2lcCy1goZVi4iI1Gwh9UP49LZPibs3jp4hPYnwiQDgWP4xDMPAZDIx/oZmzB3bmYy8IgZO/42fd6Wf/2RubjB5sjkgA6xZA02bwl13mZ9NFhG5CgrHUivkKhyLiIhYhQ4NO7DwjoV4OHlQVl5G37l96TKzC2sOrQGge5g33z7UneAGzoyds5npPyVRXn6JodPh4fDkk/DNN9CqFYwbp55kEbliCsdSK5zuOXZ1srNwJSIiInIlnuj2BKm5qfT4pAe3LLiFPzL+INjTma8f6MYtbRsyddUe7v80nrzCkgufxNsbXnvNPNz64YfNayV36wYlFzlGROQvFI6lVsgpKMHNyQ5bG5OlSxEREZHLZGtjy9/a/Y09D+/hld6v8POBn2n9QWvWHFpDPQdb3rqzHc8PCOfHXekMfm8t+zLyL35CPz946y3YuxfmzAF7eygrMw+/TkurnpsSEaulcCy1Qm5hiYZUi4iIWClne2eevf5Z9k3cx4s9XqRbcDcANh/ZzB0dvfl0XGeyT5UwePpaViUeu/QJg4IgJsb8940b4cUXzc8kP/00ZGZW3Y2IiFVTOJZaIbegRDNVi4iIWDkfFx+e7/E8djZ2FJYWMvDzgYS+G8q2rC/5ZkJnQrxdGD8vnpe+S6SotOzyTtqtG/zxB9x6q3kZqCZN4IUXoKCgam9GRKyOwrHUCjkF6jkWERGpTZzsnPh22Le09G7JhGUTiP28I6N6pTGma2Nmrz3IkA/WnX+5p/MJC4NPP4Xff4fYWFi4EBwczK9pnWQR+ZPCsdQKuQWlCsciIiK1TOegzqwes5pvh32LrcmWO78eSmxULv8d1YHkrAIGvPsbi7elXv4JIyLgq69g82awtYW8PPO2qVPh1KmquxERsQoKx1Ir5BSU4F5PM1WLiIjUNiaTiYEtBrL9ge18O+xbugV3IzbCn3GxKTT0zmbSgm08vXA7BcWXOcwawMXF/PXECWjUyLwMVLNm8O67UFRUJfchIjWfwrHUChpWLSIiUrvZ2dgxsMVAAE6VnOKfvz7NT9l30TBkPp/Hb2fQ9N/Yk5Z3ZScNDoYVK+DXX6FFC5g4EUJDIT29Cu5ARGo6hWOxesWl5RSUlCkci4iI1BHO9s4kTkjk/uj72ZzxFcdd72dn/mwGTP+BzzcdxrjS54i7d4eff4YffoDbbwdfX/P2TZugtLTyb0BEaiSFY7F6uYUlALgrHIuIiNQZvi6+TL9pOokTErkprD9pfEqLhkU8+83vPPz5VvL+/PngsplM0KcPvPmm+fsjR+D6683PJH/+OZSXV/5NiEiNonAsVi+nwPyPn3qORURE6p7mXs1ZeMdCkh5OYvF9d/JkbAs+/eNVerw7lbSca1iuKSAAFiwwz2o9YgRERsI332h2a5FaTOFYrN7pcKx1jkVEROquJg2aYGNjYnQ3Pzw8t7H11N9pPq0rixJ/uboTmkzmtZETEsw9x6Wl5iHX+/dXbuEiUmMoHIvVy8wvBsDb1dHClYiIiIiluTm6sXfiTiZ3m8op4xC3LuxJ7NzbOJJ35OpOaGMDw4bBjh3wyy/mWa0BnnvO/IyyepJFag2FY7F6abmFAPi6KxyLiIgI2Nva86+Yx4m/ZydBtqP4af8vxB/MBbjyybpOs7MzT9wFkJMD8+ZBTAz06mWe7VpErJ7CsVi99NxCbEzg5eJg6VJERESkBokMDCBu4gx6eXzBYwv2s2hbCjHzYnj111c5VXLq6k/s4QF79pjXRd6zB264Afr105BrESuncCxWLz2vCG9XR+xs1ZxFRETkbH7uTnx1fw/aBzdg4oJ1ZOaZ+PtPf6f5u82ZvXU2ZeVlV3diR0d46CHYtw/eeMMcjD08zK8VXMNEYCJiMUoTYvXScgvxc3eydBkiIiJSQ3nUs2fuuE70D29KdvIj3B8+l0C3QMZ+O5Z2/23H/uxr6PGtVw8ee8zcg+zlZX4G+frrYcgQ83PKImI1FI7F6qXlFuGn541FRETkIpzsbXl/ZBTDOwWzPN6THvVnsGDIFwS4BhDoFghAXlHe1V/A5s8fq0tK4Oab4fvvzcs/jRhhDs4A8+dDSIh535AQ8/ciUmMoHIvVS88rxFc9xyIiInIJdrY2vHJrGyb2DuXL+BS+j2/K9H5f42DrQEFJAa0/aM3Ib0Zy8MTBimMS0xNp/X5rEtMTL+8iDg7w0ktw4AA89RQsXgytWsHf/w7jx8OhQ+be5UOHzN8rIIvUGCbjqqfss07R0dHExcVZugypJCVl5YRNXs6jfZszqW+YpcsRERERKzFn3UFe/C4RwwBvVweiQpxJMz5n5aGZGJTzUMeHeKTLI3Sf3Z3knGQaeTQicUIiLg4ul32N0rJyTh0+Ah++T73587BPTTl3p8aN4eDByrsxEbnqzGdXBbWIVJuMvCIADasWERGRKzKmWwh9w/1Yu/c4G/Zlsm5fJsdyb8SbjhQ5L+DNDW8xbeM72NrYYmCQdjKNkV//jVd6zOR4fhEZeUUczz/9p5iMvCKyTxVzsqiU/D//FJaUmy9muo79qVPOX8ihQ/Dyy/DCC+bvd+2Chg3B3b163ggRqaBwLFZNaxyLiIjI1QqsX487ooO5IzoYwzA4mHmK9fsyWb8/kq/3+HK0fD5lhvkX8YWlhSzevZg1O7xxLxtQcQ5HOxu8XR3xdnPE180RVx9XXB3tcHW0xdXRHhdHW9yc7Cic2xDno6nn1FDm4IgpM9P8rKNhQNeucOIE+PlBWBg0bw4DBsCtt5oPKCgwTwImIpVO4VisWlqu+R8sXzc9cywiIiJXz2Qy0cTbhSbeLozo3Igvp66Ak39Z5slUQrbDhwT7bKV3kxiGtb6NTkHtMJlMl77Af14zP2N86sz6yoX2jjzV7yH2Nr2F5/Yep1tTT5g5E5KSzJN4JSXBsmXg42MOx3l55uWiAgPNwfl0eO7XD9q0qeR3RKTuUTgWq5aeZ+451lJOIiIiUple7fMqE5dP5GTJyYptTnZO9G3Sl2Mnj/H2pn9Rz6GMzsHtKSwtZMGOBfRr1o+Gbg3Pf8KRI81fJ0+Gw4ehUSMc//1v+rbuRfzyXYz4eCN9W/nx7E39aHbbbWcfW15+5uvLL58Jz19/DZmZMH26ORzv3g39+5sD8+nwHBYGnTubl5kSkYtSOBarlp5bhK2NCS8XB0uXIiIiIrXI2PZjWblvJd/u/pbC0kKc7Jy4pcUtLBi6AICMkxmUG+bQui55HXcvvhuANr5tiG0WS//Q/nRv1B1Hu/959GvkyDMhGTABg4B+4X7MXnuQ937eS+xba7irS2Mm9Qmjwemfb04vE+XhAc89d3ahWVlga3vm+65dzeF53jzIzTVvW7QIbrkF1q2Df//7TI/z6fAcHHz2OUTqKM1WLVbtya8S+G3vcdY/28fSpYiIiEgtc7L4JOHvh19ytmrDMNietp2V+1ayYu8Kfjv8GyXlJawft54uQV3Yn72fkrISmns1v+gQ7OP5Rbz1/R4+33QYV0c73ryjHX3D/a6ueMOAjAxzUG7VCjw9YeVKePpp87b/Gd5NfDxERcGPP8KKFWeH54YN4XKGjYvUIFeb+RSOxaqNnrWJnIISFj94naVLERERkVooMT2ROxfeyRdDvyDCN+Kyjskvzmf1wdXcGHojtja2PLzsYaZvnk5jj8YVvcq9m/TGw8njvMfvPpbHE18lsOtYLh/e1YE+ra4yIF+IYcCRI+aQnJQEI0aAiwu8+aZ5PeaiojP7OjtDSgo0aAA//WSeXft0ePbxUXCWGknh+DIpHNcu/d9eQyNPZ2aMjrZ0KSIiIiLndejEIZbvXc6KvSv46cBP5BXnEegWSPKjyZhMJg7nHCbIPQgbk03FMTkFJYyeuZE/jubx4agoeres5IB8IWVl5jB8+rnmgwfhtdfMIXjUKPj00zP7urtDZCSsWWN+fcMG89ewMHNPtYiFKBxfJoXj2qX9y6sYENmQfw5ubelSRERERC6ppKyE9SnrOZZ/jDsi7sAwDJpMa0J+cT79mvUjtlks/Zr1I8AtgJyCEkbN3Miuo3n8d1QHerX0tWzxpaXmsHy6x3nPHiguhhkzzK/37Am//GL+u5eXOSTfcIM5XAPs2we+vuDmZonqpQ652synCbnEahWVlpF9qgRfN61xLCIiItbB3taeGxrfUPF9uVHOK31eYeW+lazcu5LPd3wOwPM3PM/LvV5m7t2dGD7zV+6bF8+M0R3o2cKCAdnODkJDzX9uvPHc1z/6CP744+zwnJZ25vV+/WD/fvMazqefae7bF4YPN79eVASO+rlOLEfhWKxW+p9rHGsZJxEREbFWtja2jGgzghFtRlBulJsn9tq7ki5BXQA4nL+LNfmDcHGO5I757Xhz0BhGduh8eWsrV7fTs19fyBtvwK5dZ8Lz0qXmmbiHDzcvU9WgwZke59PhuVcv82Rhl2P+/LOWyuLf/z5rdnCRS1E4Fqt1eo1jX3f9hlFERESsn43Jhnb+7Wjn365im7O9M2PbjWVZ0nL2l37IqKUf8uTqRqwc9R2RfpGWK/ZqDB587rayMvPX4mLzZGB79piD88KF5jWcX3rJHI7T06FLlzMB/HR4jo42Tww2fz6MH39mFu5Dh8zfgwKyXDaFY7Fa6jkWERGR2i7UM5R3b3qXd4Gtqbu4a/5HHMpbz7FMdyL94LXfXmNJ0hL6N+tPbGgsUQFRZ03sVeOdXl/Zyen8azifVlRkDsd79pgn/jq9hvOsWXD33fDkk2cvTwXm7ydPVjiWy2ZF/+eInC0t19xzrHAsIiIidUH7wJb8+uCrdG8whYc/+4O1e4/j5ezFqZJTPPfzc3T8qCN+U/0Yt3gctWLOXU/PM7NeBwfDZ59BXBycOGF+lvnXXyuefTaOHTvvKYzDh9m4P5OSsvJqKlqsmXqOxWql5RVhb2uigbO9pUsRERERqRaeLg7Mv6czIz7ayLg5m5n1t8HEj7+H9JPpfL/ve1buW0lRWVHFM8mj/280/q7+9A/tz3XB1+FoVwseRzOZzLNe+5onJysoLuOUpx9emecG5CNu3tw5YwOujnZ0bebFDc196BHmQyMv5+quWqyAwrFYrbTcQnzdnGrmhBQiIiIiVcTL1ZH593ZmxEcbuHv2Zu6IDmZ4p0aMjBzJyMgzQ4hLy0s5kneEBTsW8J91/8HZ3pleIb14IPoBbm5+swXvoPKk5xVy79x4QrqNZOqq97EvKjjzorMzDaZN5cPoDqxJyuCX3Rl8v9M8e3YTbxdGdm7EXV0a42Rva6HqpaZROBarlZ5bhJ8m4xIREZE6yNvVkc/u7cIrS//gi7hk5m04RNvg+ozoFMyAyIa4ONphZ2PHD6N/IK8oj9UHV7Ny30pW7F3BgRMHADiWf4wXV79I/9D+9G7SG3dHdwvf1ZXZfSyPsZ9sJutkMRNefQL7O9ufM1u188iR9Af6t/bHMAz2Hz/Jmj0ZrNhxjH8t/YOPft3Pw73DuCM6GAc7PXFa15kMCz2QUFZWRnR0NIGBgSxZsoQDBw4wbNgwMjMz6dChA/PmzcPBwYGioiJGjx5NfHw8Xl5efPHFF4SEhADw6quvMnPmTGxtbXnnnXeIjY295HWvdkFoqXli3vyFZj6ufDiqg6VLEREREbGYE6eK+b+tqXy28TBJ6fm4OtpxS7uGDO/UiNaBHufsX1Zehq2NLT/u/5HBXwwmvzgfOxs7ugZ1pX9of+6JugdfFwuup3wZftmTwYPzt+DiaMvMMR3Pe5+Xsn5fJlNX7Sb+UDbBnvWY1Kc5t7YPxNZGoxKt3dVmPov9emTatGm0atWq4vunn36aRx99lL1799KgQQNmzpwJwMyZM2nQoAF79+7l0Ucf5emnnwZg586dLFiwgMTERFasWMGECRMoOz0VvNQJabmF6jkWERGROq++swN3X9eEVY/ewNcPdCU2wp+F8SkMePc3Bk3/jc83HSa/qLRif1sb8zDiPk37kPlUJqvHrOaJrk+QX5zP5J8mU1hqnvT0pwM/MTdhLsfyzz/ZlaXM23CIsZ9sJtjTmUUPXndVwRigazMvFt7fldl3d8Sjnj1PfJVAv7d+Yen2o5SX14IJzeSKWaTnOCUlhTFjxjB58mTefPNNvvvuO3x8fDh27Bh2dnasX7+eF198kZUrVxIbG8uLL75I165dKS0txd/fn4yMDKZMmQLAs88+C3DWfhejnuPaobCkjJbPr+DJ2BY82CvU0uWIiIiI1Cg5p0pYtC2VzzcdZtexPBztbOjc1IuezX3o2cKHJt4u55235fip43g7ewPwt0V/Y07CHADa+bcjtlks/UP70zOkZ3XeSoWycoN/L/2DWWsP0KelL+8Mb4+LY+U8JWoYBisTj/HGqj0kpecTHuDO4/2a07ulr+a3sUJXm/ks8szxI488wuuvv05eXh4AmZmZ1K9fHzs7czlBQUGkpqYCkJqaSnBwsLlYOzs8PDzIzMwkNTWVLl26VJzzf4+R2k9rHIuIiIhcmIezPWO6hTC6a2O2Jp9gScJRVu9J5+UlO3l5CTTydKbHn0G5azMvnB3MP4efDsYAs26ZxaTOkyqeVX5j/Rus3LeSrfdtBeC73d/R0rsloZ6hVR4gTxaVMmnBVn74I52x1zVh8s2tKnX4s8lkon/rAGLC/fk2IZW3f0hi3Jw4ohrVZ+rtbWnq41pp15Kaq9rD8ZIlS/D19aVDhw6sXr26Wq45Y8YMZsyYAUBGRka1XFOqVlre6TWONaxaRERE5EJMJhNRjRoQ1agBLxBOctYpVu9O55c9GSyMT2HehkM42NrQuaknPZr70L5RA/w9nPB1c8Te1ob2Ae1pH9CeZ7o/Q15RHim5KQAUlxUz7OthnCo5RZP6Tegf2p/YZrH0btIbN0e3Sqv/ZFEpn208zIxf95OZX8Q/b4lgVNeQSjv/X9namLi1fRADIhuyMD6F/6zczS3T1/Lmne2ICfersutKzVDt4Xjt2rV8++23LFu2jMLCQnJzc5k0aRInTpygtLQUOzs7UlJSCAwMBCAwMJDk5GSCgoIoLS0lJycHLy+viu2n/e8xfzV+/HjGjx8PmLvYxfql5Z4Ox+o5FhEREblcwZ7OjOoawqiuIRSVlrH5QDard6ezek8G/1r6R8V+JhN4uTji7+GIv7sTfu5O5q8ermRkZxDm58q2+7axat8qVu5bydyEuXwQ9wEv3PACL/V6iYKSAnZm7KR9QHtsTBee5igxPZE7F97JF0O/IMI3omJ7TkEJc9cdZNbaA2SfKuG6UC8eHRlFdIhnlb4/p9nb2jC8UyNuaO7DA5/Gc+/cOB7uHcojfZtrwq5azGKzVQOsXr2aqVOnsmTJEm6//XaGDBnCsGHDuP/++4mMjGTChAm89957/P7773z44YcsWLCAb775hi+//JLExERGjBjBpk2bOHLkCH369CEpKQlb24uvU6ZnjmuHmb8d4J9LdpLwQj88nO0tXY6IiIiI1UvJPkVSWj7Hcgs5llNIWm7hWX/PPlVy1v5eLg5EBHrQuqE7LQLqUWT6gw5BYTTzbMbypOXc9NlN+Dj70K9ZP2KbxdKvWT/8XM/0vp4sPkn4++Ek5yTTyKMRiRMSKSy2Y9baA8xdd4i8olL6tPTlwd6hRDVqUN1vR4XCkjL+sTiRL+KSuaG5D+8Ma0d9ZweL1SOXZlXPHJ/Pa6+9xrBhw3juuedo374948aNA2DcuHGMGjWK0NBQPD09WbBgAQARERHccccdhIeHY2dnx3vvvXfJYCy1R3puIQ52NrjXqzFNWERERMSqBTVwJqiB8wVfLywpIz23iKM5BexOy2NHag47UnOZsWY/pX/O7uzutJfWgRk09avPpKi32Z39Gyv2rmT+7/MB2PHADiJ8I8g8lcn9S+4n/WQ6BgbH8tPo8uFQSjMmUVhaxk2tA5jQqxkRDa9uJurK5GRvy2tDI2nXqD7/WJzIwOm/8eFdHWpEbVK5LNpzbAnqOa4dHlmwlfjD2fz6VG9LlyIiIiJSpxWWlLEnLY8dqbn8nppD4pEcdh3No7isHACDcopN+ym1/52wesPwda/HxrxJHCuKP+s8JsORvgHP8P6tjxPqW3nPLVemrYezeeDTLWSfKubV29pwW1SQpUuS87D6nmORK5GWW4Sfm543FhEREbE0J3tbIoPqExlUv2JbSVk5+zNOkpZbyPH8Io7nh5ORF8Px/GLz98d3n3Mew1REQt4HhPq+WH3FX6H2jRqwZGJ3Hpy/hce+TCAh+QSTbw7Hwe7Cz1WL9VA4FquUlldIK393S5chIiIiIudhb2tDC383Wvifvwe419ZpTFw+kZMlJyu2Ods7M6XvlOoq8ap5uzoy/57OTFm+i49/O8COI7m8PzJKE8XWAvoVh1il9NwifLWMk4iIiIhVGtt+LDc3vxknO3OgdLJzYmDzgdzd7m4LV3Z57GxteG5AOO8Ob8/OI7kMmv4bB4+fvPSBUqMpHIvVOVlUSn5RqX47JyIiImLFZg2aha+LLyZM+Ln4MXPQTEuXdMUGtm3I1w90o7i0nJEfbyQl+5SlS5JroHAsVic9rwgAP/Uci4iIiFgtFwcXlo1YRrhPOEtHLMXFwcXSJV2V8IbuzBvXmdzCEu76eCPpuYWWLkmuksKxWJ20Pz9wNCGXiIiIiHWL8I1gxwTz8k7WrHWgB5/c3Yn0vCJGfryRrJPFli5JroLCsVid0+FYzxyLiIiISE3RoXEDPh4TzeGsU4yauZGcghJLlyRXSOFYrE56rnlYta+eORYRERGRGqRbM28+HNWBPWl53D17EyeLSi1dklwBhWOxOmm5hdSzt8XNUSuRiYiIiEjN0quFL+8Ob09CSg73zImjsKTM0iXJZVI4FquTlleEn7sjJpPJ0qWIiIiIiJyjf+sA3ri9LRsOZPLAp/EUl5ZbuiS5DArHYnXScgs1pFpEREREarTB7QN55dY2/Lw7g0kLtlJapoBc0ykci9XJyCvSGsciIiIiUuMN79SI5weEs3zHMZ5auJ3ycsPSJclF6KFNsSqGYZCWW0iflr6WLkVERERE5JLGdW9CQXEpU1ftwcnBln8Pbq3HA2sohWOxKvlFpZwqLlPPsYiIiIhYjYd6h3GquIz3V+/DzdGOZ25sqYBcAykci1VJq1jGSWsci4iIiIj1eDK2BflFpfx3zX7cnOx4qHeYpUuSv1A4FquSnlsIgK+beo5FRERExHqYTCZeHBhBfpF5iLWLox13X9fE0mXJ/1A4FquSlmcOx37qORYRERERK2NjY+L1IZGcLCrlpe924upox+3RwZYuS/6k2arFqpwZVq2eYxERERGxPna2NrwzvD3Xh3nz9NfbWfb7UUuXJH9SOBarkpZbiKujHa6OGvQgIiIiItbJ0c6W/47qQFSjBkxasJXVu9MtXZKgcCxWJj2vSJNxiYiIiIjVc3awY+bfOtLcz437P41n04EsS5dU5ykci1VJzy3ET5NxiYiIiEgt4FHPnrljOxFYvx5jP9nM9pQTli6pTlM4FquSllukybhEREREpNbwcnXk03s6U9/ZnjGzNpGUlmfpkuoshWOxGoZhkJZbqMm4RERERKRWCfCox/x7OmNva8PIjzey+5gCsiUoHIvVyC0opai0HF839RyLiIiISO3S2MuFT+/pTElZOf2nreGhz7aw61iupcuqUxSOxWqcWeNYPcciIiIiUvs093Pjh8d68ECPZqzenUH/t3/l3rlxeha5mmg9HLEaabkKxyIiIiJSu3m5OvJU/5aMv6Epn6w7yKzfDvD9zjR6NPdhYp9QOjT2tHSJtZZ6jsVqpOUWAWhCLhERERGp9eo7O/BI3+asfaY3T/Vvwe+pOQz5YD3DZ2xg3b7jGIZh6RJrHfUci9U43XPsq6WcRERERKSOcHOyZ0LPUP7WLYTPNh5mxpr9jPhoI1GN6tOzhS+tAtxpFeBGYP16mEwmS5dr1RSOxWpk5BXh7mRHPQdbS5ciIiIiIlKtnB3suOf6ptzVpTFfxSUzZ/0h3vphD6c7kN2d7P4Myu6EB7gT3tCdUF9XnOz1s/PlUjgWq5GWW6jnjUVERESkTnOyt2VU1xBGdQ3hZFEpu47l8cfRXHYezeWPo7l8sTmZgpIyAGxtTLT0d2Nwu0BuiwrEy1WPJ16MwrFYDfMax/ofWkREREQEwMXRjg6NG9ChcYOKbWXlBocyT/LHUXNoXrvvOP9e9gevr9xFv3B/hnUK5rpm3tjYaAj2Xykci9VIyy2icxPNziciIiIiciG2Niaa+rjS1MeVmyMDeIIW7EnLY8GmZL7ZmsLS348S1KAed0YHMzQ6iACPepYuucZQOBarYBgG6XmF+GpYtYiIiIjIFWnu58YLA8N5+sYWrEpMY8Hmw7zx/R7e+mEPvVr4cmfHYHq39MXOtm4vZqRwLFYh+1QJJWWGlnESEREREblKjna2DGzbkIFtG3I48xRfxB3mq7gUftyVjpeLA31b+RHb2o9uzbzr5EReCsdiFU4v46QJuURERERErl0jL2eejG3Jo32b8/PuDL5LOMKy34/yRVwyLg629GzpS2yEP71a+ODmZG/pcquFwrFYhTPhWD3HIiIiIiKVxc7WhphwP2LC/SgqLWP9vkxWJqbx/c40lm4/ioOtDd1CvYiN8KdvKz983Grvz+MKx2IV0vOKAPB1U8+xiIiIiEhVcLSzpWcLX3q28OVfg1uz5XA2K3ccY+XOYzz7ze/83fQ7d0YHM2VIpKVLrRIKx2IV0v/sOa7Nv6kSEREREakpbG1MdAzxpGOIJ5NvbsUfR/NYmXiMAI/a21mlcCxWIS23iPrO9nVyYgAREREREUsymUyEN3QnvKG7pUupUnV7rm6xGmm5hfhpSLWIiIiIiFQRhWOxCml5RfhqMi4REREREakiCsdiFdJzC7WMk4iIiIiIVBmFY6nxyssN0vOKtIyTiIiIiIhUGYVjqfEyTxZTVm6o51hERERERKqMwrHUeOl55mWctMaxiIiIiIhUFYVjqfHSc4sANCGXiIiIiIhUGYVjqfHScs09xxpWLSIiIiIiVUXhWGq8tD97jn1c1XMsIiIiIiJVo9rDcXJyMr169SI8PJyIiAimTZsGQFZWFjExMYSFhRETE0N2djYAhmEwceJEQkNDiYyMZMuWLRXnmjNnDmFhYYSFhTFnzpzqvhWpJml5hXi5OOBgp9/liIiIiIhI1aj2tGFnZ8cbb7zBzp072bBhA++99x47d+5kypQp9OnTh6SkJPr06cOUKVMAWL58OUlJSSQlJTFjxgweeOABwBymX3rpJTZu3MimTZt46aWXKgK11C7puYX4aki1iIiIiIhUoWoPxwEBAURFRQHg5uZGq1atSE1NZfHixYwZMwaAMWPGsGjRIgAWL17M6NGjMZlMdOnShRMnTnD06FFWrlxJTEwMnp6eNGjQgJiYGFasWFHdtyPVIC1XaxyLiIiIiEjVsug41YMHD7J161Y6d+5MWloaAQEBAPj7+5OWlgZAamoqwcHBFccEBQWRmpp6we1S+6TlFuKnZZxERERERKQK2Vnqwvn5+QwZMoS3334bd3f3s14zmUyYTKZKu9aMGTOYMWMGABkZGZV2Xql6ZeUGx/PVcywiIiIiIlXLIj3HJSUlDBkyhJEjR3LbbbcB4Ofnx9GjRwE4evQovr6+AAQGBpKcnFxxbEpKCoGBgRfcfj7jx48nLi6OuLg4fHx8quq2pApk5hdRboCPnjkWEREREZEqVO3h2DAMxo0bR6tWrXjssccqtg8aNKhixuk5c+Zwyy23VGyfO3cuhmGwYcMGPDw8CAgIIDY2llWrVpGdnU12djarVq0iNja2um9HqtjpZZz83NRzLCIiIiIiVafah1WvXbuWefPm0aZNG9q1awfAK6+8wjPPPMMdd9zBzJkzady4MV9++SUAN910E8uWLSM0NBRnZ2dmz54NgKenJ88//zwdO3YE4IUXXsDT07O6b0eqWFpuIQB+6jkWEREREZEqZDIMw7B0EdUpOjqauLg4S5chl2n+xkNM/r8dbHi2D/4eCsgiIiIiInJxV5v5LDpbtcilpOUWYTKBt6uDpUsREREREZFaTOFYarT03EK8XR2xs1VTFRERERGRqqPEITVaWm6hlnESEREREZEqp3AsNVpabhF+bnrWWEREREREqpbCsdRo6XlF+KrnWEREREREqpjCsdRY6/YeJ/NkEQ096lm6FBERERERqeUUjqVG+jUpg7s/2UxzXzdGdG5k6XJERERERKSWs7N0ASJ/tXp3OuPnxdPMx5X593TG00XLOImIiIiISNVSz7HUKD/tSmP83HjCfF35TMFYRERERESqiXqOpcb4fmcaE+bH0yrAnXljO+PhbG/pkkREREREpI5Qz7HUCCt2HOOBT+MJb+jBvHEKxiIiIiIiUr0UjsXilm4/yoOfbSEyyIN54zrhUU/BWEREREREqpeGVYtFfZtwhEe/2EZUo/rMvrsTro5qkiIiIiIiUv3UcywWs2hrKo8s2EqHxg34RMFYREREREQsSGlEqpVhGOw/fpIVO44xddVuujTxYubfonF2UFMUERERERHLUSKRKnc0p4C1ezNZt+846/Zmciy3EICeLXz4YGQH6jnYWrhCERERERGp6xSOpdJlnyxm/f5M1u49zvp9mew/fhIATxcHujb1oluoF9c186axlzMmk8nC1YqIiIiIiCgcSyVKyy3k5e92smzHUQwDXBxs6dTEkxGdG9GtmTct/d2wsVEYFhERERGRmkfhWK5ZWbnBpxsO8Z+VuykuK+e+G5oRE+5LZFB97G0155uIiIiIiNR8CsdyTRKP5PD3b34nISWH68O8+ectrQnxdrF0WSIiIiIiIldE4ViuysmiUt7+YQ+z1h6kgbM904a1Y1DbhnqGWERERERErJLCsVyxH3am8cLiHRzJKWR4p0Y8078lHs72li5LRERERETkqikcy2U7llPIi98msiLxGM39XFk4vCvRIZ6WLktEREREROSaKRzLJR05UcDc9Yf4dMMhSsvLeap/C+7p3hQHO022JSIiIiIitYPCsVzQlsPZzPrtAMt3HMMwDG5sHcDT/VvSyMvZ0qWJiIiIiIhUKoVjOUtJWTnLfj/KrLUHSUg+gZuTHeO6N2F018YENVAoFhERERGR2knhWADIOlnM55sOM3f9QdJyi2jq7cI/b4ngtqggXBzVTEREREREpHZT6qnj8gpLmLJ8FwvjUygqLef6MG+mDImkR5gPNjZalklEREREROoGheM6LCX7FOM+iWNvRj53RAdx93VNaO7nZumyREREREREqp3CcR215XA24+fGUVRazpy7O9E9zNvSJYmIiIiIiFiMwnEd9F3CER7/KgF/dycWjI8m1Fe9xSIiIiIiUrcpHNchhmHw7k97efP7PXQMacB/R0Xj6eJg6bJEREREREQsTuG4jigsKeOZr7ezaNsRbmsfyKtD2uBoZ2vpskRERERERGoEheM6IDO/iPvmxRN3KJsnY1swoWczTCbNRC0iIiIiInKawnEtl5SWx9g5m0nPLeK9EVHcHBlg6ZJERERERERqHIXjWsowDH7alc4jC7bhaG/LF/d1pV1wfUuXJSIiIiIiUiMpHNcyOadK+GZrCp9vOsyetHxa+rsx828dCaxfz9KliYiIiIiI1FgKx7WAYRhsOZzN/I2HWbr9KEWl5bQN8uC1IW0Y1DaQeg6aeEtERERERORiFI6tWE5BCYu2pvLZxsPsTsvDxcGWIR2CGNGpEa0DPSxdnoiIiIiIiNVQOLYyRaVlxB3M5v+2prJk+xEKS8ppE+jBq7e1YVDbhrg46j+piIiIiIjIlVKSquEMwyApPZ81ezL4Nek4Gw9kUlhSjrODLbe2N/cStwlSL7GIiIiIiMi1UDiugY7nF7F273HW7DnOb3szSMstAqCpjwvDOjbi+jBvujT1Ui+xiIiIiIhIJVG6qkG+SzjCh7/sI/FILgD1ne25LtSbG8K86R7moxmnRUREREREqojCcQ1Sbhi4OtrxZGwLrg/zJqKhB7Y2JkuXJSIiIiIiUuspHNcgt7QL5JZ2gZYuQ0REREREpM6xsXQBIiIiIiIiIpamcCwiIiIiIiJ1nsKxiIiIiIiI1HkKxyIiIiIiIlLnWX04XrFiBS1atCA0NJQpU6ZYuhwRERERERGxQlYdjsvKynjwwQdZvnw5O3fu5PPPP2fnzp2WLktERERERESsjFWH402bNhEaGkrTpk1xcHBg2LBhLF682NJliYiIiIiIiJWx6nCcmppKcHBwxfdBQUGkpqaes9+MGTOIjo4mOjqajIyM6ixRRERERERErIBVh+PLNX78eOLi4oiLi8PHx8fS5YiIiIiIiEgNY9XhODAwkOTk5IrvU1JSCAwMtGBFIiIiIiIiYo2sOhx37NiRpKQkDhw4QHFxMQsWLGDQoEGWLktERERERESsjJ2lC7gWdnZ2TJ8+ndjYWMrKyhg7diwRERGWLktERERERESsjFWHY4CbbrqJm266ydJliIiIiIiIiBWz6mHVIiIiIiIiIpVB4VhERERERETqPIVjERERERERqfMUjkVERERERKTOUzgWERERERGROs9kGIZh6SKqk7e3NyEhIZYuQ2q4jIwMfHx8LF2G1GBqI1Kd1N7kUtRGpKZS25SLqar2cfDgQY4fP37Fx9W5cCxyOaKjo4mLi7N0GVKDqY1IdVJ7k0tRG5GaSm1TLqamtQ8NqxYREREREZE6T+FYRERERERE6jyFY5HzGD9+vKVLkBpObUSqk9qbXIraiNRUaptyMTWtfeiZYxEREREREanz1HMsIiIiIiIidZ7CsViF5ORkevXqRXh4OBEREUybNg2ArKwsYmJiCAsLIyYmhuzsbADmz59PZGQkbdq0oVu3biQkJFSca8WKFbRo0YLQ0FCmTJlywWvOmTOHsLAwwsLCmDNnzjmvDxo0iNatW1/w+AtdZ/r06YSGhmIyma5qink5P2tsI2PHjsXX1/ecfV588UUCAwNp164d7dq1Y9myZVf0XkjVq0ntrWfPnrRo0aKivaSnp5/3+Pj4eNq0aUNoaCgTJ07k9MCxr776ioiICGxsbGrUjKHWzhrbyOTJkwkODsbV1fWs7Z988gk+Pj4Vx3/88cdX/b6IZdWkdllcXMz48eNp3rw5LVu25Ouvvz7v8frsql7W2EYq9bPLELECR44cMeLj4w3DMIzc3FwjLCzMSExMNJ588knj1VdfNQzDMF599VXjqaeeMgzDMNauXWtkZWUZhmEYy5YtMzp16mQYhmGUlpYaTZs2Nfbt22cUFRUZkZGRRmJi4jnXy8zMNJo0aWJkZmYaWVlZRpMmTSrOZxiG8fXXXxvDhw83IiIizlvvxa6zZcsW48CBA0bjxo2NjIyMSnqHxNraiGEYxi+//GLEx8efs88//vEP4z//+c81vBtS1WpSe+vRo4exefPmS9bcsWNHY/369UZ5ebnRv39/Y9myZYZhGMbOnTuNXbt2XfZ55PJYYxtZv369ceTIEcPFxeWs7bNnzzYefPDBq3wnpCapSe3yhRdeMCZPnmwYhmGUlZVd8GcifXZVL2tsI5X52aWeY7EKAQEBREVFAeDm5karVq1ITU1l8eLFjBkzBoAxY8awaNEiALp160aDBg0A6NKlCykpKQBs2rSJ0NBQmjZtioODA8OGDWPx4sXnXG/lypXExMTg6elJgwYNiImJYcWKFQDk5+fz5ptv8txzz12w3otdp3379oSEhFTK+yJnWFsbAbjhhhvw9PSslPuX6lWT2tvlOHr0KLm5uXTp0gWTycTo0aMramvVqhUtWrS42rdCLsDa2sjp6wYEBFztLYsVqEntctasWTz77LMA2NjY4O3tfc7x+uyqftbWRk5ft7I+uxSOxeocPHiQrVu30rlzZ9LS0ir+Z/D39yctLe2c/WfOnMmNN94IQGpqKsHBwRWvBQUFkZqaes4xF9vv+eef5/HHH8fZ2fmCNV7udaRqWEMbuZTp06cTGRnJ2LFjK4YuSc1k6fYGcPfdd9OuXTv++c9/Vgw5/OvxQUFBl7yOVA1raCOX8vXXXxMZGcnQoUNJTk6+4uOl5rFkuzxx4gRg/vcyKiqK22+//bzX1GeXZVlDG7mUK/3sUjgWq5Kfn8+QIUN4++23cXd3P+s1k8mEyWQ6a9vPP//MzJkzee211yrl+tu2bWPfvn3ceuutlXI+qXy1oY088MAD7Nu3j23bthEQEMDjjz9eKbVJ5bN0ewPz816///47v/76K7/++ivz5s2rtHPLtasNbWTgwIEcPHiQ7du3ExMTU9F7JNbL0u2ytLSUlJQUunXrxpYtW+jatStPPPFEpZxbKkdtaCNX89mlcCxWo6SkhCFDhjBy5Ehuu+02APz8/Dh69ChgHnrj6+tbsf/27du55557WLx4MV5eXgAEBgae9VujlJQUAgMD2bhxY8XD+t9+++0F91u/fj1xcXGEhITQvXt39uzZQ8+ePUlOTq44/sMPP7zg8VK1rKmNXIyfnx+2trbY2Nhw7733smnTpkp7j6Ty1IT2dvocYB7+NmLECDZt2kRZWVnF8S+88AKBgYEVQ93+erxUHWtqIxfj5eWFo6MjAPfccw/x8fHX+taIBdWEdunl5YWzs3PF9W+//Xa2bNmiz64awprayMVc1WfXFT2hLGIh5eXlxqhRo4xJkyadtf2JJ544a3KAJ5980jAMwzh06JDRrFkzY+3atWftX1JSYjRp0sTYv39/xeQAO3bsOOd6mZmZRkhIiJGVlWVkZWUZISEhRmZm5ln7HDhw4IKTLV3OdTQhV+WytjZysX2OHDlS8fc333zTuPPOOy9+81Ltakp7KykpqfgcKS4uNoYMGWJ88MEH5635r5PaLF269KzXNalN5bLGNnLaXye1+d/PpG+++cbo3Lnz5b0JUuPUlHZpGIZx5513Gj/++KNhGOaJk4YOHXremvXZVb2ssY2cVhmfXQrHYhV+/fVXAzDatGljtG3b1mjbtq2xdOlS4/jx40bv3r2N0NBQo0+fPhX/M40bN86oX79+xb4dOnSoONfSpUuNsLAwo2nTpsa//vWvC15z5syZRrNmzYxmzZoZs2bNOuf1SwWfC11n2rRpRmBgoGFra2sEBAQY48aNu5q3RP7CGtvIsGHDDH9/f8POzs4IDAw0Pv74Y8MwDOOuu+4yWrdubbRp08YYOHDgWR/uUjPUlPaWn59vREVFGW3atDHCw8ONiRMnGqWlpec9fvPmzUZERITRtGlT48EHHzTKy8sNwzD/wBAYGGg4ODgYvr6+Rr9+/SrrbarTrLGNPPnkk0ZgYKBhMpmMwMBA4x//+IdhGIbxzDPPGOHh4UZkZKTRs2dP448//qikd0mqW01pl4ZhGAcPHjSuv/56o02bNkbv3r2NQ4cOnfd4fXZVL2tsI5X52WUyjKuYlUFERERERESkFtEzxyIiIiIiIlLnKRyLiIiIiIhInadwLCIiIiIiInWewrGIiIiIiIjUeQrHIiIiIiIiUucpHIuIiFgBW1tb2rVrV/Hn4MGDV3T86tWrGTBgQNUUJyIiUgvYWboAERERubR69eqxbds2S5chIiJSa6nnWERExErFx8fTo0cPOnToQGxsLEePHgVg79699O3bl7Zt2xIVFcW+ffsAyM/PZ+jQobRs2ZKRI0diGAYAL7/8Mh07dqR169aMHz++YruIiEhdonAsIiJiBQoKCiqGVN96662UlJTw8MMPs3DhQuLj4xk7diyTJ08GYOTIkTz44IMkJCSwbt06AgICANi6dStvv/02O3fuZP/+/axduxaAhx56iM2bN7Njxw4KCgpYsmSJxe5TRETEUjSsWkRExAr8dVj1jh072LFjBzExMQCUlZUREBBAXl4eqamp3HrrrQA4OTlVHNOpUyeCgoIAKp5b7t69Oz///DOvv/46p06dIisri4iICAYOHFh9NyciIlIDKByLiIhYIcMwiIiIYP369Wdtz8vLu+Axjo6OFX+3tbWltLSUwsJCJkyYQFxcHMHBwbz44osUFhZWWd0iIiI1lYZVi4iIWKEWLVqQkZFREY5LSkpITEzEzc2NoKAgFi1aBEBRURGnTp264HlOB2Fvb2/y8/NZuHBhldcuIiJSEykci4iIWCEHBwcWLlzI008/Tdu2bWnXrh3r1q0DYN68ebzzzjtERkbSrVs3jh07dsHz1K9fn3vvvZfWrVsTGxtLx44dq+sWREREahSToSkpRUREREREpI5Tz7GIiIiIiIjUeQrHIiIiIiIiUucpHIuIiIiIiEidp3AsIiIiIiIidZ7CsYiIiIiIiNR5CsciIiIiIiJS5ykci4iIiIiISJ2ncCwiIiIiIiJ13v8DHlgtOeHEnekAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fechas con picos maximos: | | Desc | date | inpatient_beds_used_covid |\n", + "|---:|:------------|:--------------------|----------------------------:|\n", + "| 0 | Pico Maximo | 2020-04-04 00:00:00 | 13107 |\n", + "| 1 | Pico Minimo | 2020-04-05 00:00:00 | 12363 |\n", + "| 2 | Pico Maximo | 2020-04-06 00:00:00 | 12711 |\n", + "| 3 | Pico Minimo | 2020-04-07 00:00:00 | 12611 |\n", + "| 4 | Pico Maximo | 2020-04-10 00:00:00 | 13369 |\n", + "| 5 | Pico Minimo | 2020-04-11 00:00:00 | 13361 |\n", + "| 6 | Pico Maximo | 2020-04-14 00:00:00 | 14126 |\n", + "| 7 | Pico Minimo | 2020-04-19 00:00:00 | 12496 |\n", + "| 8 | Pico Maximo | 2020-04-20 00:00:00 | 12507 |\n", + "| 9 | Pico Minimo | 2020-04-21 00:00:00 | 12335 |\n", + "| 10 | Pico Maximo | 2020-04-22 00:00:00 | 13005 |\n", + "| 11 | Pico Minimo | 2020-05-10 00:00:00 | 6674 |\n", + "| 12 | Pico Maximo | 2020-05-12 00:00:00 | 8237 |\n", + "| 13 | Pico Minimo | 2020-05-17 00:00:00 | 5966 |\n", + "| 14 | Pico Maximo | 2020-05-18 00:00:00 | 6110 |\n", + "| 15 | Pico Minimo | 2020-05-24 00:00:00 | 4659 |\n", + "| 16 | Pico Minimo | 2020-06-02 00:00:00 | 3805 |\n", + "| 17 | Pico Maximo | 2020-05-26 00:00:00 | 4708 |\n", + "| 18 | Pico Maximo | 2020-06-04 00:00:00 | 4261 |\n" + ] + } + ], + "source": [ + "plt.figure(figsize=(16,8), facecolor='white')\n", + "plt.plot(df02)\n", + "plt.plot(df02[peaks], marker='o', linestyle='dashed', color='red')\n", + "plt.plot(df02[peaks1], marker='d', linestyle='dashed', color='green')\n", + "plt.xlabel('Fecha')\n", + "plt.ylabel('Total de camas')\n", + "plt.title('ocupación de camas por COVID en el Estado de Nueva York')\n", + "plt.legend(['Pacientes en cama', 'Pico Maximo', 'Pico Minimo'], loc='upper right')\n", + "plt.show()\n", + "\n", + "print(\"Fechas con picos maximos: \", picos.to_markdown())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### 3 - ¿Cuáles fueron los cinco Estados que más camas UCI -Unidades de Cuidados Intensivos- utilizaron durante el año 2020? La medición debe realizarse en términos absolutos." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "df03 = df.loc[:,['state', 'date', 'inpatient_beds', 'adult_icu_bed_utilization_numerator', 'staffed_pediatric_icu_bed_occupancy']]\n", + "df03['Year'] = pd.DatetimeIndex(df03['date']).year\n", + "#filtrado por año\n", + "df03 = df03.loc[(df03['Year'] == 2020)]" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "state 0\n", + "date 0\n", + "inpatient_beds 5\n", + "adult_icu_bed_utilization_numerator 7196\n", + "staffed_pediatric_icu_bed_occupancy 7735\n", + "Year 0\n", + "dtype: int64" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df03.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 16446 entries, 0 to 16445\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 state 16446 non-null object \n", + " 1 date 16446 non-null datetime64[ns]\n", + " 2 inpatient_beds 16441 non-null float64 \n", + " 3 adult_icu_bed_utilization_numerator 9250 non-null float64 \n", + " 4 staffed_pediatric_icu_bed_occupancy 8711 non-null float64 \n", + " 5 Year 16446 non-null int64 \n", + "dtypes: datetime64[ns](1), float64(3), int64(1), object(1)\n", + "memory usage: 899.4+ KB\n" + ] + } + ], + "source": [ + "df03.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "df03 = df03.dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "254" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(df03.date.unique())" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "df03['total_icu_bed_use'] = df03['adult_icu_bed_utilization_numerator'] + df03['staffed_pediatric_icu_bed_occupancy']" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "df03 = df03.groupby('state')['total_icu_bed_use'].sum()\n", + "df03 = df03.reset_index()\n", + "df03['total_camas'] = df03.total_icu_bed_use / 254" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "col = ['state', 'total_camas']\n", + "top05_3 = df03.nlargest(5, 'total_camas')[col]\n", + "top05_3 = pd.merge(top05_3, nam[['state', 'state_name']], on=['state'], how='left')\n", + "first_column = top05_3.pop('state_name') \n", + "top05_3.insert(0, 'state_name', first_column)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "top05_3 = top05_3.round()\n", + "df03 = df03.sort_values('total_icu_bed_use', ascending=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statetotal_icu_bed_usetotal_camas
4CA1121942.04417.094488
\n", + "
" + ], + "text/plain": [ + " state total_icu_bed_use total_camas\n", + "4 CA 1121942.0 4417.094488" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df03.head(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "def linealPlot(df_new, x, y):\n", + " fig= go.Figure(data=[\n", + " go.Bar(\n", + " x=df_new[x],\n", + " y=df_new[y]\n", + " )\n", + " ])\n", + " fig.update_layout(\n", + " height=300, width=1000,\n", + " plot_bgcolor='black',\n", + " paper_bgcolor= 'black',\n", + " font_color='#cee3e1',\n", + " legend=dict(\n", + " x=0.05,\n", + " y=1,\n", + " title_font_family=\"Times New Roman\",\n", + " font=dict(\n", + " family=\"Courier\",\n", + " size=12,\n", + "color=\"LightSteelBlue\"\n", + " ),\n", + " bgcolor=\"Black\",\n", + " bordercolor=\"LightSteelBlue\",\n", + " borderwidth=1\n", + " ),\n", + " xaxis=dict(showgrid=False,showline=True,linecolor='rgb(255,255,255)'),\n", + " yaxis=dict(showgrid=False),\n", + " margin=dict(l=10,r=10,b=10,t=10)\n", + " )\n", + " return fig" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Los estados con ocuparon mas camas UCI, 2020: \n", + " | | state_name | state | total_camas |\n", + "|---:|:----------------|:--------|--------------:|\n", + "| 0 | California | CA | 4417 |\n", + "| 1 | Texas[27]​ | TX | 4097 |\n", + "| 2 | Florida | FL | 3523 |\n", + "| 3 | Nueva York[19]​ | NY | 2448 |\n", + "| 4 | Pensilvania[25]​ | PA | 2180 |\n" + ] + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "type": "bar", + "x": [ + "CA", + "TX", + "FL", + "NY", + "PA", + "OH", + "IL", + "MI", + "GA", + "NC", + "MO", + "IN", + "TN", + "VA", + "LA", + "AL", + "NJ", + "AZ", + "SC", + "WI", + "KY", + "MD", + "CO", + "MN", + "OK", + "AR", + "WA", + "CT", + "NV", + "MS", + "KS", + "WV", + "UT", + "IA", + "OR", + "MA", + "DC", + "PR", + "NM", + "NE", + "ID", + "ME", + "DE", + "NH", + "RI", + "HI", + "MT", + "SD", + "ND", + "AK", + "WY", + "VT" + ], + "y": [ + 4417.094488188976, + 4096.688976377953, + 3522.952755905512, + 2448.212598425197, + 2179.803149606299, + 2060.468503937008, + 1668.9724409448818, + 1438.5826771653544, + 1313.6377952755906, + 1204.6535433070867, + 1203.4015748031495, + 1147.0708661417323, + 1086.4055118110236, + 942.9291338582677, + 851.2637795275591, + 841.8779527559055, + 805.4685039370079, + 785.2283464566929, + 739.9685039370079, + 737.3149606299213, + 714.0669291338583, + 686.7007874015748, + 668.5551181102362, + 668.003937007874, + 647.7716535433071, + 627.6023622047244, + 594.4094488188977, + 453.6653543307087, + 451.90944881889766, + 429.4763779527559, + 408.61417322834643, + 406.3582677165354, + 399.28740157480314, + 336.1062992125984, + 333.4685039370079, + 293.5590551181102, + 271.0866141732283, + 268.6023622047244, + 250.06692913385828, + 249.60236220472441, + 174.5511811023622, + 163.15748031496062, + 131.98031496062993, + 119.91732283464567, + 106.74015748031496, + 106.15748031496064, + 102.12204724409449, + 94.32283464566929, + 75.35433070866142, + 70.27952755905511, + 35.02755905511811, + 32.42125984251968 + ] + } + ], + "layout": { + "font": { + "color": "#cee3e1" + }, + "height": 300, + "legend": { + "bgcolor": "Black", + "bordercolor": "LightSteelBlue", + "borderwidth": 1, + "font": { + "color": "LightSteelBlue", + "family": "Courier", + "size": 12 + }, + "title": { + "font": { + "family": "Times New Roman" + } + }, + "x": 0.05, + "y": 1 + }, + "margin": { + "b": 10, + "l": 10, + "r": 10, + "t": 10 + }, + "paper_bgcolor": "black", + "plot_bgcolor": "black", + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "width": 1000, + "xaxis": { + "linecolor": "rgb(255,255,255)", + "showgrid": false, + "showline": true + }, + "yaxis": { + "showgrid": false + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print('Los estados con ocuparon mas camas UCI, 2020: \\n' , top05_3.to_markdown() )\n", + "linealPlot(df03, 'state', 'total_camas')" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "hovertemplate": "state=%{x}
total_camas=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 4417.094488188976, + 4096.688976377953, + 3522.952755905512, + 2448.212598425197, + 2179.803149606299, + 2060.468503937008, + 1668.9724409448818, + 1438.5826771653544, + 1313.6377952755906, + 1204.6535433070867 + ], + "coloraxis": "coloraxis", + "pattern": { + "shape": "" + } + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "CA", + "TX", + "FL", + "NY", + "PA", + "OH", + "IL", + "MI", + "GA", + "NC" + ], + "xaxis": "x", + "y": [ + 4417.094488188976, + 4096.688976377953, + 3522.952755905512, + 2448.212598425197, + 2179.803149606299, + 2060.468503937008, + 1668.9724409448818, + 1438.5826771653544, + 1313.6377952755906, + 1204.6535433070867 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "total_camas" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Top 05 estados Los estados con ocuparon mas camas UCI, 2020 " + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "state" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "total_camas" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Los estados con ocuparon mas camas UCI, 2020: \n", + " | | state_name | state | total_camas |\n", + "|---:|:----------------|:--------|--------------:|\n", + "| 0 | California | CA | 4417 |\n", + "| 1 | Texas[27]​ | TX | 4097 |\n", + "| 2 | Florida | FL | 3523 |\n", + "| 3 | Nueva York[19]​ | NY | 2448 |\n", + "| 4 | Pensilvania[25]​ | PA | 2180 |\n" + ] + } + ], + "source": [ + "# Plotting 20 Países 2021\n", + "fig = px.bar(df03.head(10), x='state', y='total_camas', color='total_camas', title='Top 05 estados Los estados con ocuparon mas camas UCI, 2020 ')\n", + "fig.show()\n", + "print('Los estados con ocuparon mas camas UCI, 2020: \\n' , top05_3.to_markdown() )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4 - ¿Qué cantidad de camas se utilizaron, por Estado, para pacientes pediátricos con COVID durante el 2020?" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "df04 = df.loc[:,['state', 'state_name', 'date', 'inpatient_beds', 'all_pediatric_inpatient_bed_occupied']]\n", + "df04['Year'] = pd.DatetimeIndex(df04['date']).year\n", + "#filtrado por año\n", + "df04 = df04.loc[(df04['Year'] == 2020)]" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "state 0\n", + "state_name 858\n", + "date 0\n", + "inpatient_beds 5\n", + "all_pediatric_inpatient_bed_occupied 7731\n", + "Year 0\n", + "dtype: int64" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df04.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statestate_namedateinpatient_bedsall_pediatric_inpatient_bed_occupiedYear
16441NDDakota del Norte2020-12-312456.0206.02020
16442NCCarolina del Norte2020-12-3124073.0263.02020
16443TXTexas[27]​2020-12-3170852.0387.02020
16444IDIdaho2020-12-313738.0227.02020
16445IAIowa2020-12-318120.0NaN2020
\n", + "
" + ], + "text/plain": [ + " state state_name date inpatient_beds \\\n", + "16441 ND Dakota del Norte 2020-12-31 2456.0 \n", + "16442 NC Carolina del Norte 2020-12-31 24073.0 \n", + "16443 TX Texas[27]​ 2020-12-31 70852.0 \n", + "16444 ID Idaho 2020-12-31 3738.0 \n", + "16445 IA Iowa 2020-12-31 8120.0 \n", + "\n", + " all_pediatric_inpatient_bed_occupied Year \n", + "16441 206.0 2020 \n", + "16442 263.0 2020 \n", + "16443 387.0 2020 \n", + "16444 227.0 2020 \n", + "16445 NaN 2020 " + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df04.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "df04 = df04.dropna()\n", + "dimension = len(df04.date.unique())" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "df04 = df04.groupby('state')['all_pediatric_inpatient_bed_occupied'].sum()\n", + "df04 = df04.reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "df04['total_camas_pedia'] = df04.all_pediatric_inpatient_bed_occupied / dimension" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "col = ['state', 'total_camas_pedia']\n", + "top05_4 = df04.nlargest(5, 'total_camas_pedia')[col]\n", + "top05_4 = pd.merge(top05_4, nam[['state', 'state_name']], on=['state'], how='left')\n", + "first_column = top05_4.pop('state_name') \n", + "top05_4.insert(0, 'state_name', first_column)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "top05_4 = top05_4.round()\n", + "df04 = df04.sort_values('total_camas_pedia', ascending=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "hovertemplate": "state=%{x}
total_camas_pedia=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 1902.1338582677165, + 1733.708661417323, + 1104.251968503937, + 1079.8385826771653, + 918.496062992126, + 834.8976377952756, + 784.0866141732283, + 780.3464566929134, + 628.5590551181102, + 544.8228346456693 + ], + "coloraxis": "coloraxis", + "pattern": { + "shape": "" + } + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "CA", + "NY", + "PA", + "IL", + "MI", + "OH", + "FL", + "MO", + "IN", + "MN" + ], + "xaxis": "x", + "y": [ + 1902.1338582677165, + 1733.708661417323, + 1104.251968503937, + 1079.8385826771653, + 918.496062992126, + 834.8976377952756, + 784.0866141732283, + 780.3464566929134, + 628.5590551181102, + 544.8228346456693 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "total_camas_pedia" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Los estados que ocuparon mas camas pediatricos" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "state" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "total_camas_pedia" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Los estados que ocuparon mas camas pediatricos \n", + " | | state_name | state | total_camas_pedia |\n", + "|---:|:----------------|:--------|--------------------:|\n", + "| 0 | California | CA | 1902 |\n", + "| 1 | Nueva York[19]​ | NY | 1734 |\n", + "| 2 | Pensilvania[25]​ | PA | 1104 |\n", + "| 3 | Illinois | IL | 1080 |\n", + "| 4 | Míchigan[13]​ | MI | 918 |\n" + ] + } + ], + "source": [ + "fig = px.bar(df04.head(10), x='state', y='total_camas_pedia', color='total_camas_pedia', title='Los estados que ocuparon mas camas pediatricos')\n", + "fig.show()\n", + "print('Los estados que ocuparon mas camas pediatricos \\n' , top05_4.to_markdown() )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5 - ¿Qué porcentaje de camas UCI corresponden a casos confirmados de COVID-19? Agrupe por Estado." + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "df05 = df.loc[:,['state', 'date', 'inpatient_beds', 'adult_icu_bed_covid_utilization']]" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 47585 entries, 0 to 47584\n", + "Data columns (total 4 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 state 47585 non-null object \n", + " 1 date 47585 non-null datetime64[ns]\n", + " 2 inpatient_beds 47580 non-null float64 \n", + " 3 adult_icu_bed_covid_utilization 40094 non-null float64 \n", + "dtypes: datetime64[ns](1), float64(2), object(1)\n", + "memory usage: 1.5+ MB\n" + ] + } + ], + "source": [ + "df05.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "df05 = df05.groupby('state')['adult_icu_bed_covid_utilization'].mean()\n", + "df05 = df05.reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "col = ['state', 'adult_icu_bed_covid_utilization']\n", + "top05_5 = df05.nlargest(5, 'adult_icu_bed_covid_utilization')[col]\n", + "top05_5 = pd.merge(top05_5, nam[['state', 'state_name']], on=['state'], how='left')\n", + "first_column = top05_5.pop('state_name') \n", + "top05_5.insert(0, 'state_name', first_column)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "df05 = df05.sort_values('adult_icu_bed_covid_utilization', ascending=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "hovertemplate": "state=%{x}
adult_icu_bed_covid_utilization=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 0.22994579164207612, + 0.2214171589519579, + 0.21671962056004676, + 0.21456606493733413, + 0.21146916564251927, + 0.20008455877197748, + 0.19979085082947148, + 0.19965395078852038, + 0.1974226600618209, + 0.19446006452489617 + ], + "coloraxis": "coloraxis", + "pattern": { + "shape": "" + } + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "TX", + "MS", + "GA", + "ID", + "NM", + "AR", + "OK", + "NV", + "AL", + "MO" + ], + "xaxis": "x", + "y": [ + 0.22994579164207612, + 0.2214171589519579, + 0.21671962056004676, + 0.21456606493733413, + 0.21146916564251927, + 0.20008455877197748, + 0.19979085082947148, + 0.19965395078852038, + 0.1974226600618209, + 0.19446006452489617 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "adult_icu_bed_covid_utilization" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Camas UCI, para casos confirmados de COVID-19" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "state" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "adult_icu_bed_covid_utilization" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Los estados que ocuparon (%) mas camas UCI: \n", + " | | state_name | state | adult_icu_bed_covid_utilization |\n", + "|---:|:-----------------|:--------|----------------------------------:|\n", + "| 0 | Texas[27]​ | TX | 0.229946 |\n", + "| 1 | Misisipi[14]​ | MS | 0.221417 |\n", + "| 2 | Georgia | GA | 0.21672 |\n", + "| 3 | Idaho | ID | 0.214566 |\n", + "| 4 | Nuevo México[22]​ | NM | 0.211469 |\n" + ] + } + ], + "source": [ + "fig = px.bar(df05.head(10), x='state', y='adult_icu_bed_covid_utilization', color='adult_icu_bed_covid_utilization', title='Camas UCI, para casos confirmados de COVID-19')\n", + "fig.show()\n", + "print('Los estados que ocuparon (%) mas camas UCI: \\n' , top05_5.to_markdown() )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6 - ¿Cuántas muertes por covid hubo, por Estado, durante el año 2021?" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "df06 = df.loc[:,['state','date', 'Year', 'deaths_covid']]\n", + "df06 = df06.loc[(df06['Year'] == 2021)]" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "df06 = df06.groupby('state')['deaths_covid'].sum()\n", + "df06 = df06.reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "col = ['state', 'deaths_covid']\n", + "top05_6 = df06.nlargest(5, 'deaths_covid')[col]\n", + "top05_6 = pd.merge(top05_6, nam[['state', 'state_name']], on=['state'], how='left')\n", + "first_column = top05_6.pop('state_name') \n", + "top05_6.insert(0, 'state_name', first_column)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "df06 = df06.sort_values('deaths_covid', ascending=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "coloraxis": "coloraxis", + "geo": "geo", + "hovertemplate": "state=%{location}
deaths_covid=%{z}", + "locationmode": "USA-states", + "locations": [ + "CA", + "TX", + "FL", + "NY", + "AZ", + "PA", + "GA", + "OH", + "NC", + "TN", + "MI", + "IL", + "KY", + "NJ", + "VA", + "SC", + "AL", + "MO", + "IN", + "PR", + "NV", + "OK", + "MD", + "WA", + "WI", + "MS", + "MA", + "LA", + "AR", + "CO", + "CT", + "WV", + "KS", + "OR", + "MN", + "NM", + "IA", + "ID", + "NE", + "MT", + "RI", + "ME", + "UT", + "AK", + "SD", + "DE", + "DC", + "NH", + "WY", + "HI", + "ND", + "VT", + "VI", + "AS" + ], + "name": "", + "type": "choropleth", + "z": [ + 35108, + 32889, + 26004, + 17620, + 16250, + 13363, + 12338, + 12023, + 10922, + 9439, + 9332, + 7500, + 7252, + 6889, + 6479, + 6434, + 6390, + 6285, + 5846, + 4516, + 4412, + 4180, + 4025, + 3847, + 3665, + 3664, + 3631, + 3624, + 3582, + 2835, + 2725, + 2507, + 2469, + 2412, + 2377, + 1898, + 1876, + 1529, + 1220, + 1172, + 914, + 704, + 618, + 614, + 572, + 562, + 532, + 520, + 496, + 445, + 334, + 131, + 44, + 0 + ] + } + ], + "layout": { + "coloraxis": { + "colorbar": { + "title": { + "text": "deaths_covid" + } + }, + "colorscale": [ + [ + 0, + "rgb(255,255,204)" + ], + [ + 0.125, + "rgb(255,237,160)" + ], + [ + 0.25, + "rgb(254,217,118)" + ], + [ + 0.375, + "rgb(254,178,76)" + ], + [ + 0.5, + "rgb(253,141,60)" + ], + [ + 0.625, + "rgb(252,78,42)" + ], + [ + 0.75, + "rgb(227,26,28)" + ], + [ + 0.875, + "rgb(189,0,38)" + ], + [ + 1, + "rgb(128,0,38)" + ] + ] + }, + "geo": { + "center": {}, + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "scope": "usa" + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mapa = df06[[\"state\", \"deaths_covid\"]]\n", + "mapa = mapa.groupby(\"state\", as_index=False).sum().sort_values(\"deaths_covid\", ascending=False)\n", + "fig = px.choropleth(data_frame=mapa, \n", + " locations=mapa[\"state\"], \n", + " locationmode=\"USA-states\", scope=\"usa\", \n", + " color=mapa[\"deaths_covid\"], \n", + " labels={\"location\":\"Estado\", \"color\":\"Muertes\"},\n", + " color_continuous_scale='ylorrd')\n", + "fig" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "colorscale": [ + [ + 0, + "rgb(25, 23, 10)" + ], + [ + 0.05, + "rgb(69, 48, 44)" + ], + [ + 0.1, + "rgb(114, 52, 47)" + ], + [ + 0.15, + "rgb(155, 58, 49)" + ], + [ + 0.2, + "rgb(194, 70, 51)" + ], + [ + 0.25, + "rgb(227, 91, 53)" + ], + [ + 0.3, + "rgb(250, 120, 56)" + ] + ], + "locationmode": "USA-states", + "locations": [ + "CA", + "TX", + "FL", + "NY", + "AZ", + "PA", + "GA", + "OH", + "NC", + "TN", + "MI", + "IL", + "KY", + "NJ", + "VA", + "SC", + "AL", + "MO", + "IN", + "PR", + "NV", + "OK", + "MD", + "WA", + "WI", + "MS", + "MA", + "LA", + "AR", + "CO", + "CT", + "WV", + "KS", + "OR", + "MN", + "NM", + "IA", + "ID", + "NE", + "MT", + "RI", + "ME", + "UT", + "AK", + "SD", + "DE", + "DC", + "NH", + "WY", + "HI", + "ND", + "VT", + "VI", + "AS" + ], + "text": [ + "CA", + "TX", + "FL", + "NY", + "AZ", + "PA", + "GA", + "OH", + "NC", + "TN", + "MI", + "IL", + "KY", + "NJ", + "VA", + "SC", + "AL", + "MO", + "IN", + "PR", + "NV", + "OK", + "MD", + "WA", + "WI", + "MS", + "MA", + "LA", + "AR", + "CO", + "CT", + "WV", + "KS", + "OR", + "MN", + "NM", + "IA", + "ID", + "NE", + "MT", + "RI", + "ME", + "UT", + "AK", + "SD", + "DE", + "DC", + "NH", + "WY", + "HI", + "ND", + "VT", + "VI", + "AS" + ], + "type": "choropleth", + "z": [ + 35108, + 32889, + 26004, + 17620, + 16250, + 13363, + 12338, + 12023, + 10922, + 9439, + 9332, + 7500, + 7252, + 6889, + 6479, + 6434, + 6390, + 6285, + 5846, + 4516, + 4412, + 4180, + 4025, + 3847, + 3665, + 3664, + 3631, + 3624, + 3582, + 2835, + 2725, + 2507, + 2469, + 2412, + 2377, + 1898, + 1876, + 1529, + 1220, + 1172, + 914, + 704, + 618, + 614, + 572, + 562, + 532, + 520, + 496, + 445, + 334, + 131, + 44, + 0 + ] + } + ], + "layout": { + "font": { + "color": "#cee3e1" + }, + "geo": { + "scope": "usa" + }, + "margin": { + "b": 5, + "l": 5, + "r": 5, + "t": 5 + }, + "paper_bgcolor": "black", + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "width": 800 + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = dict(type = 'choropleth', \n", + " locations = df06['state'], \n", + " locationmode = 'USA-states', \n", + " z = list(df06['deaths_covid']), \n", + " colorscale=[\n", + " [0.0, 'rgb(25, 23, 10)'],\n", + " [0.05, 'rgb(69, 48, 44)'],\n", + " [0.1, 'rgb(114, 52, 47)'],\n", + " [0.15, 'rgb(155, 58, 49)'],\n", + " [0.2, 'rgb(194, 70, 51)'],\n", + " [0.25, 'rgb(227, 91, 53)'],\n", + " [0.3, 'rgb(250, 120, 56)']],\n", + " text = df06['state'])\n", + "layout = dict(geo = dict(scope='usa'))\n", + "\n", + "fig = go.Figure(data=[data], layout=layout)\n", + "fig.update_layout(\n", + " #title='Fallecidos por covid',\n", + " width=800,\n", + " margin=dict(l=5,r=5,b=5,t=5),\n", + " paper_bgcolor= 'black',\n", + " font_color='#cee3e1') \n", + "fig" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "alignmentgroup": "True", + "hovertemplate": "state=%{x}
deaths_covid=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 35108, + 32889, + 26004, + 17620, + 16250, + 13363, + 12338, + 12023, + 10922, + 9439 + ], + "coloraxis": "coloraxis", + "pattern": { + "shape": "" + } + }, + "name": "", + "offsetgroup": "", + "orientation": "v", + "showlegend": false, + "textposition": "auto", + "type": "bar", + "x": [ + "CA", + "TX", + "FL", + "NY", + "AZ", + "PA", + "GA", + "OH", + "NC", + "TN" + ], + "xaxis": "x", + "y": [ + 35108, + 32889, + 26004, + 17620, + 16250, + 13363, + 12338, + 12023, + 10922, + 9439 + ], + "yaxis": "y" + } + ], + "layout": { + "barmode": "relative", + "coloraxis": { + "colorbar": { + "title": { + "text": "deaths_covid" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Muertes por covid, 20219" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "state" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "deaths_covid" + } + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Estados con mayor deceso, 2021: \n", + " | | state_name | state | deaths_covid |\n", + "|---:|:---------------|:--------|---------------:|\n", + "| 0 | California | CA | 35108 |\n", + "| 1 | Texas[27]​ | TX | 32889 |\n", + "| 2 | Florida | FL | 26004 |\n", + "| 3 | Nueva York[19]​ | NY | 17620 |\n", + "| 4 | Arizona | AZ | 16250 |\n" + ] + } + ], + "source": [ + "fig = px.bar(df06.head(10), x='state', y='deaths_covid', color='deaths_covid', title='Muertes por covid, 20219')\n", + "fig.show()\n", + "print('Estados con mayor deceso, 2021: \\n' , top05_6.to_markdown() )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7 - ¿Qué relación presenta la falta de personal médico, con la cantidad de muertes por covid durante el año 2021? (editado) " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "df07 = df.loc[:,['date', 'Year', 'deaths_covid', 'critical_staffing_shortage_today_yes']]\n", + "df07 = df07.loc[(df07['Year'] == 2021)]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "df07_a = df07.groupby('date')['deaths_covid'].mean()\n", + "df07_a = df07_a.reset_index()\n", + "df07_b = df07.groupby('date')['critical_staffing_shortage_today_yes'].mean()\n", + "df07_b = df07_b.reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "df07f = pd.merge(df07_a, df07_b[['date', 'critical_staffing_shortage_today_yes']], on=['date'], how='left')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "col = ['deaths_covid',\t'critical_staffing_shortage_today_yes']" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "df07 = df07.groupby('date')[['deaths_covid', 'critical_staffing_shortage_today_yes']].sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhIAAAImCAYAAAC2DxCGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3jV9fXA8fdNwoYkjAABQsKSJUOmigNRcVZbte5tnbWt2mVr+3N0aau1tcMtuGfrqBsFJ4psUfYeCZssIJBxf398SULIDrkZ8H49D88n9zvPvUAg99xzTigcDoeRJEmSJEmSJEkqQ1R9ByBJkiRJkiRJkhouEwmSJEmSJEmSJKlcJhIkSZIkSZIkSVK5TCRIkiRJkiRJkqRymUiQJEmSJEmSJEnlMpEgSZIkSZIkSZLKZSJBkiTpIDJ27Fgee+yx/brGs88+y/jx40ttX7JkCUOGDGHVqlX7df2GIhwOc8UVV9C2bVtGjRpV6fG18dpWJBQKsXTp0ohdvyG7/PLL+c1vflPr1/3hD3/IbbfdVuExe7/u1113Hb/73e9qPY6amjhxIkcddVR9hyFJkqSDgIkESZKkRiYlJYUWLVrQunVrOnfuzOWXX052dnad3f+iiy7i/fffL7EtIyODa665hldeeYXk5OQ6i6XQRx99RLdu3Wr1mp999hmTJk1i7dq1fPXVV9U61zd4G75HHnmEpk2b8oc//KHK5zz00EP89re/jWBUB7fFixdz5plnkpCQQLt27TjppJNYtGhRiWPuv/9+OnfuTGxsLFdeeSW7du0CYOPGjVxwwQV06dKFuLg4xowZw7Rp04rOS0tL44wzzqBLly6EQiFWrlxZl09NkiSp0TORIEmS1Aj973//Izs7mzlz5jB79mz+9Kc/1Ws8cXFxTJkyhT59+tRrHBXJy8ur1vGrVq0iJSWFVq1aRSiixqe6r2FDds0113D//ffXdxjaS3p6OmeccQaLFi1iw4YNjBo1ijPPPLNo/3vvvcfdd9/Nhx9+yKpVq1i+fDm33347ANnZ2YwcOZKZM2eydetWLrvsMk477bSiJGtUVBQnn3wy//nPf+rluUmSJDV2JhIkSZIasc6dO3PSSScxZ86com1ffvklRx55JPHx8QwZMoSPPvqozHOXLVvGuHHjaN++PR06dOCiiy4iPT29aP+aNWs466yzSEhIoH379tx4441A6U/bT506lZEjRxIXF8fIkSOZOnVq0b6xY8fy29/+ljFjxtCmTRvGjx/P5s2by30+b775JkOHDiU+Pp4jjzySr7/+umhfSkoK9957L4MHDyYuLo7zzjuPnJwctm/fzimnnEJqaiqtW7emdevWpKamcscdd3DOOedw8cUXExsby8SJE8nIyOCqq64iMTGRrl278pvf/Ib8/PxScTz++OP84Ac/4IsvvqB169bcfvvtbNu2jdNPP52EhATatm3L6aefztq1a0udu2DBAq677rqic+Pj4wF46623OOyww4iNjSUpKYk77rij3NcB4C9/+QuJiYl06dKFJ554osS+Xbt28bOf/Yzu3bvTqVMnrrvuOnbu3FnmdSZOnMiYMWO48cYbiYuLo1+/fnz44YdF+yt6TQrPvfnmm2nfvj133HEHS5cu5dhjjyUuLo4OHTpw3nnnFV1rf/4sfP/736dz587ExcVxzDHH8O2331b4+uz7/G6++Wbi4+Pp2bMnU6dOZeLEiSQlJdGxY0eefPLJKr92Fb3u+7ZYev311xk6dCixsbH06tWLd999F4DU1FTOOOMM2rVrR+/evXn00UfLjH369Ol06tSpxJ/B//73vwwZMqTM47ds2cIZZ5xBbGwso0aNYtmyZSX2L1y4kBNPPJF27drRt29fXnrppaJ9O3fu5Kc//SnJycnExcVx1FFHFT3vir5nTJw4kZ49e9KmTRt69OjBs88+C0BBQQG///3vSU5OpmPHjlx66aVkZGQAkJOTw8UXX0z79u2Jj49n5MiRbNiwoczntLdRo0Zx1VVX0a5dO5o0acLNN9/MokWL2LJlCwBPPvkkV111FQMHDqRt27b89re/ZeLEiQD07NmTW265hcTERKKjo7nmmmvYvXt3UUVDp06duOGGGxg5cmSlcUiSJKk0EwmSJEmN2Nq1a3nnnXfo3bs3AOvWreO0007jN7/5DVu3buXee+/l7LPPZtOmTaXODYfD/OpXvyI1NZUFCxawZs2aoje38/PzOf3000lOTmblypWsW7eO888/v9Q1tm7dymmnncaPf/xjtmzZwi233MJpp51W9MYfwHPPPceECRPYuHEju3fv5t577y3zucyePZsrr7yShx9+mC1btnDttddyxhlnFLUuAXjppZd49913WbFiBV9//TUTJ06kVatWvPPOO3Tp0oXs7Gyys7Pp0qULELzRe84555Cens5FF13E5ZdfTkxMDEuXLmX27Nm8//77Zc41uOqqq3jooYc44ogjyM7O5s4776SgoIArrriCVatWsXr1alq0aFGUXNlb//79S5xbmJxp1aoVTz31FOnp6bz11ls8+OCDvPbaa2W+Fu+++y733nsvkyZNYsmSJXzwwQcl9t96660sXryYOXPmsHTpUtatW8ddd91V5rUApk2bRq9evdi8eTN33nknZ511Flu3bgWo9DWZNm0aPXv2ZMOGDdx222389re/Zfz48Wzbto21a9fyox/9CNj/PwunnHIKS5YsYePGjQwbNoyLLrqo3OdT1vMbPHgwW7Zs4cILL+T8889n+vTpLF26lGeeeYYbb7yx6JPpFb12lb3ue/vqq6+49NJL+ctf/kJ6ejqffPIJKSkpAJx//vl069aN1NRUXnnlFX79618zefLkUtcYOXIk7du3L9Eq7Omnn+bSSy8t854//OEPad68OWlpaTzxxBMlEh3bt2/nxBNP5MILL2Tjxo288MIL3HDDDcyfPx+An/3sZ8ycOZOpU6eydetW/vznPxMVFVXh94zt27fz4x//mHfeeYesrCymTp3K0KFDgSDBMHHiRKZMmcLy5cvJzs4u+vvw5JNPkpGRwZo1a9iyZQsPPfQQLVq0qOLvZrFPPvmEzp070759ewC+/fbbEkmWIUOGsGHDhhJ/xgrNmTOH3bt3F31vlCRJ0n4KS5IkqVFJTk4Ot2rVKty6deswEB43blx427Zt4XA4HL777rvDF198cYnjx48fH544cWI4HA6Hjz322PCjjz5a5nVfffXV8NChQ8PhcDg8derUcIcOHcK5ubmljpswYUJ4zJgx4XA4HH7qqafCI0eOLLH/8MMPD0+YMKHofr/73e+K9v3rX/8Kn3TSSWXe/7rrrgv/5je/KbHtkEMOCX/00UdFz/vpp58u2vfzn/88fO2114bD4XB4ypQp4a5du5Y49/bbbw8fffTRRY/Xr18fbtq0aXjHjh1F25577rnw2LFjy4xn7+dZltmzZ4fj4+OLHu/92lZ2bjgcDv/kJz8J33TTTWXuu+KKK8K//OUvix4vWrQoDISXLFkSLigoCLds2TK8dOnSov1Tp04Np6SklPs8EhMTwwUFBUXbRo4cGX7qqacqfU0mTJgQTkpKKnG9Sy65JHz11VeH16xZU2J7bf5Z2LZtWxgIp6enh8PhcPiyyy4L33bbbeU+v969exc9/vrrr8NAeP369UXb2rVrF549e3alr11Fr/u+cVxzzTVl/v6tXr06HBUVFc7MzCzaduutt4Yvu+yyMuO/++67wxdeeGE4HA6Ht2zZEm7RokU4NTW11HF5eXnhmJiY8IIFC4q2/epXvyr6c/bCCy+EjzrqqBLnXHPNNeE77rgjnJ+fH27evHl4zpw5Zd6/vO8Z2dnZ4bi4uPArr7xS4s9IOBwOjxs3Lvyvf/2r6PHChQvDMTEx4dzc3PDjjz8ePuKII8Jz584t8zlXxZo1a8JdunQJP/fcc0XbevbsGX7nnXeKHu/evTsMhFesWFHi3IyMjPChhx4a/uMf/1jqurm5uWWeI0mSpIpZkSBJktQIvfbaa2RlZfHRRx+xcOHCohYxq1at4uWXXyY+Pr7o12effUZaWlqpa2zYsIHzzz+frl27Ehsby8UXX1x0nTVr1pCcnExMTEyFcaSmppYarpycnMy6deuKHnfu3Lno65YtW5Y7GHrVqlXcd999JWJfs2YNqamp1b5WoaSkpBLXz83NJTExsej61157LRs3bqzwGoV27NjBtddeS3JyMrGxsRxzzDGkp6eX2RqpLNOmTeO4444jISGBuLg4HnrooXLbPKWmppaIfe/XeNOmTezYsYPhw4cXPY+TTz65zKqTQl27diUUCpW4XmpqapVek73jAPjzn/9MOBxm1KhRDBw4sOhT8fvzZyE/P59bb72VXr16ERsbW/TJ/oraYO2tU6dORV8XfvJ9323Z2dmVvnYVve77WrNmDb169Sq1PTU1lXbt2tGmTZtyX4e9XXzxxfzvf/9j+/btvPTSSxx99NEkJiaWOm7Tpk3k5eWVG9+qVauYNm1aib8/zz77LOvXr2fz5s3k5OSUGW9F3zNatWrFiy++yEMPPURiYiKnnXYaCxcuLHqee98/OTmZvLw8NmzYwCWXXMJJJ53E+eefT5cuXfjFL35Bbm5uua9lWc91/Pjx3HDDDVxwwQVF21u3bk1mZmbR48Kv936td+7cyXe+8x0OP/xwfvWrX1X5npIkSaqYiQRJkqRG7Nhjj+Xyyy/nZz/7GRC86XvJJZeQnp5e9Gv79u3ceuutpc799a9/TSgUYt68eWRmZvLMM88QDoeLrrN69epKh+t26dKFVatWldi2evVqunbtWu3nkpSUxG233VYi9h07dpR4I7E8e79JXt72pKQkmjVrxubNm4uun5mZWeVe/Pfddx+LFi1i2rRpZGZm8sknnwAUvWaVxXPhhRdyxhlnsGbNGjIyMrjuuuvKPBcgMTGRNWvWFD1evXp10dcdOnSgRYsWfPvtt0XPIyMjo8Kkyrp160rca/Xq1XTp0qVKr8m+z6Vz5848+uijpKam8vDDD3PDDTewdOnS/fqz8Nxzz/H666/zwQcfkJGRwcqVK4GyX9v9UdlrV9Hrvq+kpKRSMwog+DuxdetWsrKySlynvNeha9euHHHEEfz3v//l6aef5pJLLinzuISEBGJiYsqNLykpiWOPPbbE35/s7GwefPBBOnToQPPmzcuMt7LvGSeddBKTJk0iLS2Nfv36cfXVVxc9z71/v1evXk1MTAydOnWiSZMm3H777cyfP5+pU6fy5ptv8tRTT5X7Wu5t27ZtjB8/njPOOIPbbrutxL6BAwcyd+7cosdz586lU6dORa2Pdu3axXe/+126devGww8/XKX7SZIkqWpMJEiSJDVyN910E5MmTWLu3LlFn25+7733yM/PJycnh48++qjMocBZWVm0bt2auLg41q1bx1/+8peifaNGjSIxMZFbb72V7du3k5OTw+eff17qGqeeeiqLFy/mueeeIy8vjxdffJH58+dz+umnV/t5XH311Tz00ENMmzaNcDjM9u3beeutt0q8IVueTp06sWXLlqJhr2VJTExk/Pjx/PSnPyUzM5OCggKWLVvGxx9/XKX4srKyaNGiBfHx8WzdupU777yzwnjWrl3L7t27S5zfrl07mjdvzldffcVzzz1X7vnnnnsuEydOZP78+ezYsaPEvaKiorj66qu5+eabiyoH1q1bx3vvvVfu9TZu3MgDDzxAbm4uL7/8MgsWLODUU0+t0Wvy8ssvF/15atu2LaFQiKioqP36s5CVlUWzZs1o3749O3bs4Ne//nWl59REZa9dRa/7vq666iomTJjAhx9+SEFBAevWrWPhwoUkJSVx5JFH8qtf/YqcnBy+/vprHn/8cS6++OJyr3XppZfy5z//mXnz5nHWWWeVeUx0dDRnnXUWd9xxBzt27GD+/PklhkiffvrpLF68mKeffprc3Fxyc3OZPn06CxYsICoqiiuvvJJbbrmF1NRU8vPz+eKLL9i1a1eF3zM2bNjA66+/zvbt22nWrBmtW7cmKir4EfKCCy7g/vvvZ8WKFWRnZ/PrX/+a8847j5iYGKZMmcK8efPIz88nNjaWJk2aFJ13xx13MHbs2DKfY2ZmJieddBJjxozh7rvvLvN1evzxx5k/fz7p6en8/ve/5/LLLwcgNzeXc845hxYtWvDkk08W3W9vOTk5RTNXdu3aRU5OTrm/J5IkSSrJRIIkSVIjl5CQwKWXXspdd91FUlISr7/+On/84x9JSEggKSmJv/zlLxQUFJQ67/bbb2fWrFnExcVx2mmnlXgDMzo6mv/9738sXbqU7t27061bN1588cVS12jfvj1vvvkm9913H+3bt+fPf/4zb775Jh06dKj28xgxYgSPPvooN954I23btqV3795MnDixSuf269ePCy64gJ49exIfH1+iHdLennrqKXbv3s2AAQNo27Yt55xzTpltn8py0003sXPnTjp06MDhhx/OySefXO6x48aNY+DAgXTu3Lnotfj3v//N//3f/9GmTRvuuusuzj333HLPP+WUU7jpppsYN24cvXv3Zty4cSX233PPPfTu3ZvDDz+c2NhYTjjhBBYtWlTu9UaPHs2SJUvo0KEDt912G6+88krRp7ir+5pMnz6d0aNH07p1a8444wz+/ve/07Nnz/36s3DppZeSnJxM165dGTBgAIcffnil59RURa9dZa/73kaNGsWECRO4+eabiYuL49hjjy36hP7zzz/PypUr6dKlC9/73ve48847OeGEE8q91ve+9z1WrVrF9773PVq2bFnucf/85z/Jzs6mc+fOXH755VxxxRVF+9q0acP777/PCy+8QJcuXejcuTO//OUvi944v/feexk0aBAjR46kXbt2/PKXv6SgoKDC7xkFBQX89a9/pUuXLrRr146PP/6YBx98EIArr7ySSy65hGOOOYYePXrQvHlz/vGPfwCwfv16zjnnHGJjY+nfvz/HHntsUaXFmjVrGDNmTJnP79VXX2X69OlMmDCB1q1bF/0qrLw4+eST+cUvfsFxxx1H9+7dSU5OLkr2FFY+vP/++8THxxed++mnnxZdv0WLFrRu3RoIvmfUZAC0JEnSwSoUru16YUmSJEkNxsSJE3nsscf47LPP6jsUVaBXr148/PDDFSYcDgRDhw7lww8/LEpkSZIkqXGoeHqeJEmSJCmi/vOf/xAKhSqsgDhQzJkzp75DkCRJUg2YSJAkSZKkejJ27Fjmz5/P008/XWZff0mSJKkhsLWRJEmSJEmSJEkqlx95kSRJkiRJkiRJ5TKRIEmSJEmSJEmSytUoZiR06NCBlJSU+g5DkiRJkiRJkqQD0sqVK9m8eXOZ+xpFIiElJYUZM2bUdxiSJEmSJEmSJB2QRowYUe4+WxtJkiRJkiRJkqRymUiQJEmSJEmSJEnlMpEgSZIkSZIkSZLK1ShmJEiSJEmSJEmSGr7c3FzWrl1LTk5OfYeicjRv3pxu3brRpEmTKp9jIkGSJEmSJEmSVCvWrl1LmzZtSElJIRQK1Xc42kc4HGbLli2sXbuWHj16VPk8WxtJkiRJkiRJkmpFTk4O7du3N4nQQIVCIdq3b1/tihETCZIkSZIkSZKkWmMSoWGrye+PiQRJkiRJkiRJ0gEjOjqaoUOHFv1auXJluce2bt0agJUrV/Lcc8/VUYR1Z+zYscyYMWO/r+OMBEmSJEmSJEnSAaNFixbMmTOnWucUJhIuvPDCyARVhry8PGJiGsdb9FYkSJIkSZIkSZIOWNnZ2Rx//PEMGzaMQYMG8frrr5c65tZbb+XTTz9l6NCh3H///axcuZKjjz6aYcOGMWzYMKZOnVrqnJUrV9KvXz8uuugi+vfvzznnnMOOHTsAmDlzJsceeyzDhw/npJNOIi0tDQgqBG666SZGjBjB3//+d15++WUOPfRQhgwZwjHHHAMEcyauuOIKBg0axGGHHcaUKVMAmDhxImeddRYnn3wyffr04Re/+EVRLNdffz0jRoxg4MCB3H777bX+GjaOdIckSZIkSZIkqVG583/fMj81s1avOaBLLLd/Z2CFx+zcuZOhQ4cC0KNHD15++WVeffVVYmNj2bx5M4cffjhnnHFGiVkBd999N/feey9vvvkmADt27GDSpEk0b96cJUuWcMEFF5TZImjRokU8/vjjjBkzhiuvvJJ///vf/OQnP+FHP/oRr7/+OgkJCbz44ovcdtttPPHEEwDs3r276FqDBg3ivffeo2vXrqSnpwPwr3/9i1AoxLx581i4cCHjx49n8eLFAMyZM4fZs2fTrFkz+vbty49+9COSkpL4wx/+QLt27cjPz+f444/n66+/ZvDgwfv1Wu/NRIIkSZIkSZIk6YCxb2uj3Nxcfv3rX/PJJ58QFRXFunXr2LBhA507dy73Grm5udx4443MmTOH6Ojoojfy95WUlMSYMWMAuPjii3nggQc4+eST+eabbzjxxBMByM/PJzExseic8847r+jrMWPGcPnll3Puuedy1llnAfDZZ5/xox/9CIB+/fqRnJxcdP/jjz+euLg4AAYMGMCqVatISkripZde4pFHHiEvL4+0tDTmz59vIkGSJEmSJEmS1LBVVjlQV5599lk2bdrEzJkzadKkCSkpKeTk5FR4zv3330+nTp2YO3cuBQUFNG/evMzj9q5qKHwcDocZOHAgX3zxRZnntGrVqujrhx56iGnTpvHWW28xfPhwZs6cWWFczZo1K/o6OjqavLw8VqxYwb333sv06dNp27Ytl19+eaXPr7qckSBJkiRJkiRJOmBlZGTQsWNHmjRpwpQpU1i1alWpY9q0aUNWVlaJcxITE4mKiuLpp58mPz+/zGuvXr26KGHw3HPPcdRRR9G3b182bdpUtD03N5dvv/22zPOXLVvG6NGjueuuu0hISGDNmjUcffTRPPvsswAsXryY1atX07dv33KfX2ZmJq1atSIuLo4NGzbwzjvvVO2FqQYrEiRJkiRJkiRJB6yLLrqI73znOwwaNIgRI0bQr1+/UscMHjyY6OhohgwZwuWXX84NN9zA2WefzVNPPcXJJ59coopgb3379uVf//oXV155JQMGDOD666+nadOmvPLKK/z4xz8mIyODvLw8brrpJgYOLF2h8fOf/5wlS5YQDoc5/vjjGTJkCP369eP6669n0KBBxMTEMHHixBKVCPsaMmQIhx12GP369SvRaqk2hcLhcLjWr1rLRowYUeYgC0mSJEmSJElSw7FgwQL69+9f32HUiZUrV3L66afzzTff1Hco1VbW71NF78Pb2kiSJEmSJEmSJJXLRIIkSZIkSZIkSdWUkpLSKKsRasJEgiRJkiRJkiRJKpeJBEXexoXwr8Nh8fv1HYkkSZIkSZIkqZpMJByMwmHITIVlU2DdrMjf79v/wqYF8Pz5MPvZyN9PkiRJkiRJklRrYuo7ANWhjQvgjR8FFQK7s4q3DzgTxv8e4rtH5r4rPoGOA6F1R3j9BsjeAEfdDKFQZO4nSZIkSZIkSao1ViQcTJZ+AGunw+Bz4dR74dI34LjbgpZD/xwJU/4Eu3fU7j13ZQf37HMiXPgSHHoOfHgnvP+b2r2PJEmSJEmSJAHR0dEMHTqUgQMHMmTIEO677z4KCgrqO6xa9YMf/ID58+eX2j5x4kRuvPHGWr+fFQkHk6z10KQlnHZfcTVAz2NhyAUw6bfw8d2w/CO49DVo0qJ27rn6CyjIC+4T0xTOehRatIUv/gmdB8GQ82vnPpIkSZIkSZIEtGjRgjlz5gCwceNGLrzwQjIzM7nzzjvrN7Ba9Nhjj9Xp/axIOJhkrYfWnUq3FIpPgu9PhLMfhzXT4JWrID+vdu65/COIbgpJhwePo6LglHsgeQy89VPYsqx27iNJkiRJkiRJ++jYsSOPPPII//znPwmHw+Tn5/Pzn/+ckSNHMnjwYB5++OGiY++55x4GDRrEkCFDuPXWWwFYtmwZJ598MsOHD+foo49m4cKFALz88ssceuihDBkyhGOOOQaAnJwcrrjiCgYNGsRhhx3GlClTyoyprPvMmTOHww8/nMGDB/O9732Pbdu2sXDhQkaNGlV03sqVKxk0aBAAY8eOZcaMGQBMmDCBQw45hFGjRvH555/X8isYsCLhYJK1Htoklr9/0DmwYwu88wt4+2dw+v37P8dgxceQNBqatizeFhUNZz0CD46B/1wFV74fVCtIkiRJkiRJOnC8cyusn1e71+w8CE65u1qn9OzZk/z8fDZu3Mjrr79OXFwc06dPZ9euXYwZM4bx48ezcOFCXn/9daZNm0bLli3ZunUrANdccw0PPfQQffr0Ydq0adxwww1MnjyZu+66i/fee4+uXbuSnp4OwL/+9S9CoRDz5s1j4cKFjB8/nsWLF9O8efOiWN55550y73PppZfyj3/8g2OPPZb/+7//48477+Rvf/sbu3fvZsWKFfTo0YMXX3yR8847r8RzS0tL4/bbb2fmzJnExcVx3HHHcdhhh+3HC1w2KxIOJllp0KZzxceMvjYYhDxzAnzyl/273/YtwTeKHseW3hfXDc74B6TOhsm/27/7SJIkSZIkSVIVvP/++zz11FMMHTqU0aNHs2XLFpYsWcIHH3zAFVdcQcuWwQei27VrR3Z2NlOnTuX73/8+Q4cO5dprryUtLQ2AMWPGcPnll/Poo4+Sn58PwGeffcbFF18MQL9+/UhOTmbx4sUl7l/WfTIyMkhPT+fYY4P3US+77DI++eQTAM4991xefPFFgDITCdOmTWPs2LEkJCTQtGnTUvtrixUJB4twOKhIOOTkyo89/vbg2Cl/gG4joddxNbvnyuAPOz3LSCQADDgDhl8BUx8I7tFrXM3uI0mSJEmSJKnhqWblQKQsX76c6OhoOnbsSDgc5h//+AcnnXRSiWPee++9UucVFBQQHx9fNG9hbw899BDTpk3jrbfeYvjw4cycOTMisZ933nl8//vf56yzziIUCtGnT5+I3KcyViQcLHZlQe72yisSIGhndNpfg6/Xzqj5PZd/DE3bQJdh5R9z0h+hXU/46J6a30eSJEmSJEmSyrBp0yauu+46brzxRkKhECeddBIPPvggubm5ACxevJjt27dz4oknMmHCBHbs2AHA1q1biY2NpUePHrz88ssAhMNh5s6dCwSzE0aPHs1dd91FQkICa9as4eijj+bZZ58tuu7q1avp27dviXjKuk9cXBxt27bl008/BeDpp58uqk7o1asX0dHR/O53vyuz2mD06NF8/PHHbNmyhdzc3KJYa5sVCQeLrPXBWtGMhL01bQmtEiBjdc3vueJjSBkD0RX8MWvaEvqMh1lPQUF+MD9BkiRJkiRJkmpo586dDB06lNzcXGJiYrjkkku45ZZbAPjBD37AypUrGTZsGOFwmISEBF577TVOPvlk5syZw4gRI2jatCmnnnoqf/zjH3n22We5/vrr+f3vf09ubi7nn38+Q4YM4ec//zlLliwhHA5z/PHHM2TIEPr168f111/PoEGDiImJYeLEiTRr1qxEbOXd58knn+S6665jx44d9OzZkwkTJhSdc9555/Hzn/+cFStWlHquiYmJ3HHHHRxxxBHEx8czdOjQiLymoXA4HI7IlWvRiBEjiiZQq4aWfwxPnQGXvQk9jq7aOY8cB83j4NLXqn+/9DXwt0PhpD/BETdUfOzsZ+H1G+CH0yHhkOrfS5IkSZIkSVKDsGDBAvr371/fYagSZf0+VfQ+vK2NDhbVrUgAiE+CjLU1u9+KSuYj7C1xSLCmza3ZvSRJkiRJkiRJEWMi4WCRFUwTp02nqp8TtyeRUJOilRUfB62ROg6o/NiEvhDdDNabSJAkSZIkSZKkhsZEwsEia30w+LhZm6qfE5cEeTth++bq3SscDlop9TgmGNxcmegm0GlAzSoS5jwPXz1a/fMkSZIkSZIkSVViIuFgkb0e2nSu3jnxScGasaZ656WvDu6XfGTVz0kcEiQSqlv9MO0h+PyB6p0jSZIkSZIkKWIawVjeg1pNfn9MJBwssmqQSIirYSJhwzfB2nlI1c9JHAI5GUESoqrCYdi6AjJWw+4d1YtRkiRJkiRJUq1r3rw5W7ZsMZnQQIXDYbZs2ULz5s2rdV5MhOJRQ5OVBt1GVu+cuG7Bml7NRML6b4BQ0K6oqjrvNXC5bXLVztmxBXZlBF9vWVI8tFmSJEmSJElSvejWrRtr165l06ZN9R2KytG8eXO6detWrXNMJBwMwuGaVSS0aAtNWwcDl6tj/dfQric0bVX1czoNgFB0cO6AM6p2ztblxV9vNpEgSZIkSZIk1bcmTZrQo0eP+g5DtczWRgeDnHTIy4E2idU7LxQK2hvVpLVR50HVO6dJC0joW72By1uWFX+9aVH17idJkiRJkiRJqhITCQeDrPXBWt2KBAjaG1VnbkFOJmxbCZ0Prf69CgcuV9XW5RCKCpIdmxdX/36SJEmSJEmSpEqZSDgYZKUFa3UrEgDik6rX2mjj/GDtVM2KBAgSCdkbihMfldm6LEgidBpoIkGSJEmSJEmSIsREwsFgvyoSkmDnVti9vWrHr58XrDWpSOg8OFjTvq7a8VuXQ/te0OEQ2LIUCvKrf09JkiRJkiRJUoVMJBwMCisSWtcwkQCQXsU5CevnBUOaY7tW/16FcxWq0t4oHIYty4Ohzh0OgfzdQUulfeVkVj8OSZIkSZIkSVIREwkHg6z10DwOmras/rnxexIJVW1vtOEb6HRoMKi5uprHQrtesL4KiYQdW2FXRnB8Qt9g2+YlJY/ZuBD+3ANWTa1+LJIkSZIkSZIkwETCwSErrWbzEaC4IiGjCgOXC/Jhw/ziyoKaSBxctYqErcuCtV1P6NAn+HrzopLHLHkPCvKK2y1JkiRJkiRJkqrNRMLBIGtDzeYjQHBeVEzVWhttWQZ5O4OKhJpKHALpq2HntoqP27o8WNv3CloptepYeuDy8o+CNb0KSRBJkiRJkiRJUplMJBwMstbXvCIhKhpiu0BGFRIJG/Zj0HKhqg5c3rIMQlEQnxw87nBIydZGebtg1RfB1+mrah6PJEmSJEmSJB3kTCQc6MLhoLVR6041v0Zc96rNSFj/TVC9kNCv5vdKHBqsaXMqPm7r8qDtUkzT4HHCIbBpUfB8AdZ8FVRHxLSo+qBoSZIkSZIkSVIpJhIOdDu2QkFuzSsSAOK6Ve3N+A3fQIe+ENOs5vdq1T6oMlg7o+Ljti4L5iMU6nAI5KTD9s3B4+UfQSga+p9uayNJkiRJkiRJ2g8mEg50WWnBWtMZCQDxSZCVCvm5FR+3ft7+tTUqlDQqqCgorC7YVzgMW5YH8xEKdTgkWAsHLi//CLqNgE4DYedW2JW9/3FJkiRJkiRJ0kHIRMKBLmt9sO5XRUIShAuKkxJl2b4l2L8/g5YLdRsF2evLn8uwYyvsyihdkQDBwOWd6ZA6C3qODWKHqs14kCRJkiRJkiSVYiLhQFcbFQlx3YK1ovZGRYOWB9X8PoWSRgXrmq/K3r91ebC226siIbYrNGkFmxbDys+CxEePY4uHMdveSJIkSZIkSZJqxETCga6oImF/Wht1D9aKPtW//ptgrY1EQqdDoUnLChIJy4J174qEqCjo0DuoSFjxcXB+t5HFsZtIkCRJkiRJkqQaianvABRhWWnQot3+DUAurEioMJEwD1p3hlYdan6fQtEx0HU4rK2gIiEUBW2TS27v0BdWfxHEmTwGYppCqwSIbmYiQZIkSZIkSZJqyIqEA13W+v2bjwDQpAW07FB+a6OCAlgzrXaqEQp1GxkkJ3bvKL1vy7IgubFvcqTDIUESYfPiYD4CBJUK8UkmEiRJkiRJkiSphkwkHOiy0vavrVGh+KTyKxKWTYZtK2Dwuft/n0JJo6AgD1Jnl963dXnJ+QiFEg4p/rowkQBBeyMTCZIkSZIkSZJUIyYSDnTZG/a/IgEgLgky1pa978t/B22NBnx3/+9TqNuegcv7tjcKh4MZCXvPRyjUYU8ioWUH6DigeHtcBUkQSZIkSZIkSVKFTCQcyAoK9rQ2qoWKhLikoLVROFxy+8aFsOxDGPWDYCZBbWnVPqg62Hfg8s5tkJMB7cuoSGjXE0LR0OOYoKVRofjusH1T2W2SJEmSJEmSJEkVMpFwINuxGcL5tdfaKG9n8Ib83qY9BDHNYfgV+3+PfSWNChIJeycvtiwL1rIqEmKawdmPwXG3ldwev2cos1UJkiRJkiRJklRtJhIOZGlfB2u7Hvt/rW6jgBC8/kPI2x1s27EV5r4QzEZo1WH/77GvpFFBMmTbiuJtW5cHa1kzEgAOPQs69C65LT4pWJ2TIEmSJEmSJEnVZiLhQLbkPYhpAclj9v9a3YbD6ffDkvfh1WugIB9mTgyqFEZfv//XL/Oee+YkFLY32pUdVEA0bQ1tk6t+nfjuwWoiQZIkSZIkSZKqLaa+A1CEhMOw+D3oeSw0aVE71xxxBezKgkm/haatYOlk6DkWOg2o9NQa6dgfmrYJEgmHng0vXw5pc+C8Z4M2RlXVujNENTGRIEmSJEmSJEk1YCLhQLV5MaSvgjE/qd3rjvkx7MqET/4SPP7O32r3+nuLig4qIdZMgzd+DEsnwXf+Dv1OreZ1oiCum4kESZIkSZIkSaoBEwkHqsXvBmuf8bV/7eNuC1obrf8aep9Y+9ffW7dR8MmfYcM3MPZXMPzyml0nvrvDliVJkiRJkiSpBkwkHKgWvw+dDi0eNFybQiE44fbav25Zko8I1mGXwbG/rPl14rsH8x0kSZIkSZIkSdViIuFAtDMdVn9R+22N6kPP4+CyNyH5yCCBUVPx3SF7A+TmQJPmtRefJEmSJEmSJB3gouo7AFXTik/hrZ8Gw5TLs+xDCOfDISfVXVyREgpBj6ODeQn7I757sGas3f+YJEmSJEmSJOkgYiKhsdmyBKY/FgxSLs/i96FFW+g2su7iaugKEwkVvW6SJEmSJEmSpFIinkjIz8/nsMMO4/TTTwdgxYoVjB49mt69e3Peeeexe/fuSIdwYEkcGqxpc8veX5APSycFQ5D391P8B5K4PbMi0lfXbxySJEmSJEmS1MhEPJHw97//nf79+xc9/uUvf8nNN9/M0qVLadu2LY8//nikQziwdBwAUTGQOqfs/etmwY4tB0Zbo9rUJjF43TLW1HckkiRJkiRJktSoRDSRsHbtWt566y1+8IMfABAOh5k8eTLnnHMOAJdddhmvvfZaJEM48DRpDgn9y69IWPwuhKKg17i6jauhi46B2K5WJEiSJEmSJElSNUU0kXDTTTfx5z//maio4DZbtmwhPj6emJgYALp168a6desiGcKBKXFIkEgoa+Dykvcg6XBo2a7u42ro4rubSJAkSZIkSZKkaopYIuHNN9+kY8eODB8+vEbnP/LII4wYMYIRI0awadOmWo6ukUscAjs2Q2Zqye3Zm2D9POh9fP3E1dDFd4d0WxtJkiRJkiRJUnXEROrCn3/+OW+88QZvv/02OTk5ZGZm8pOf/IT09HTy8vKIiYlh7dq1dO3atczzr7nmGq655hoARowYEakwG6fEIcGaNhfi9nr9Vn4SrD3H1nlIjUJ8d8hKg9ycoEWUJEmSJEmSJKlSEatI+NOf/sTatWtZuXIlL7zwAuPGjePZZ5/luOOO45VXXgHgySef5Mwzz4xUCAeuzocGcxDS5pTcvvxjaBYLiUPrI6qGr9sIIAyL3qrvSCRJkiRJkiSp0YjojISy3HPPPfz1r3+ld+/ebNmyhauuuqquQ2j8mraCDoeUHri84mNIOSoYLKzSeo6D+GSY/kR9RyJJkiRJkiRJjUadvOM8duxYxo4dC0DPnj356quv6uK2B7bEIbDik+LH21bBtpUw+vp6C6nBi4qCEVfAB3fAxoXQsV99RyRJkiRJkiRJDV6dVySoliQOCfr9Z20IHhcmFXoeW38xNQaHXQLRTWHmhPqORJIkSZIkSZIaBRMJjVXhwOX1Xwfrio+hdSdI8FP2FWrVAQacCXOeh93b6zsaSZIkSZIkSWrwTCQ0Vp0HBWvqHAiHg4qEHsdAKFSvYTUKI66EXRnwzX/qOxJJkiRJkiRJavBMJDRWzeOgXS9ImwObFkL2hiCRoMp1PwIS+sMMhy5LkiRJkiRJUmVMJDRmiUMg7WtY/nHwuIfzEaokFIKRV0HqbFg3q76jkSRJkiRJkqQGzURCY5Y4BDJWw7evQtsUaJtc3xE1HoPPgyatYMbj9R2JJEmSJEmSJDVoJhIas8KBy2u+tBqhuprHQp8TYcWn9R2JJEmSJEmSJDVoJhIas8JEAkBPEwnVFtsVtm+u7ygkSZIkSZIkqUEzkdCYtWwHcd2Dr61IqL5WHSB3O+zeXt+RSJIkSZIkSVKDFVPfAWg/9TgGtiwJ3hRX9bTuGKzbN0PTVvUbiyRJkiRJkiQ1UCYSGrvv/A0K8us7isapVUKwbt/soGpJkiRJkiRJKoeJhMYuuknwS9VXWMWxfVP9xiFJkiRJkiRJDZgzEnTwKqpIMJEgSZIkSZIkSeUxkaCDV0srEiRJkiRJkiSpMiYSdPBq2hKatg5mJEiSJEmSJEmSymQiQQe3Vh1g+8b6jkKSJEmSJEmSGiwTCTq4tUqwtZEkSZIkSZIkVcBEgg5urRJsbSRJkiRJkiRJFTCRoINbqw5WJEiSJEmSJElSBUwk6OBWWJFQUFDfkUiSJEmSJElSg2QiQQe3VgkQzoec9PqORJIkSZIkSZIaJBMJOri1SghW2xtJkiRJkiRJUplMJOjgZiJBkiRJkiRJkipkIkEHNxMJkiRJkiRJklQhEwk6uBUlEjZX7fhwGJZ/BE+dCS9dGrGwJEmSJEmSJKmhiKnvAKR61bIdEILsjRUfFw7Donfg03th3czgnKgYKMiHqOi6iFSSJEmSJEmS6oUVCTq4RUVDy/aVtzb65j/wwgVB5cLp98PJd0NBLmSl1U2ckiRJkiRJklRPrEiQWiVUIZHwX4jtBj+aBdExsPTDYPu2VRDXLfIxSpIkSZIkSVI9sSJBatWh4hkJuTth2WToe0qQRABomxKs6asiHp4kSZIkSZIk1ScTCVJlFQkrPoG8nUEioVBcNyAUVCRIkiRJkiRJ0gHMRILUKqHiioRFb0PTNpByVPG2mGYQ28WKBEmSJEmSJEkHPBMJUqsE2JUBebtK7ysogEXvQu9xQfJgb/HJViRIkiRJkiRJOuCZSJBadQjWsqoS0uZA9nroe2rpfW2TrUiQJEmSJEmSdMAzkSC1SgjWsuYkLHoHQlHQZ3zpffHJkJladiWDJEmSJEmSJB0gTCRIRYmEMioSFr0DSYdDy3al97VNBsKQsTai4UmSJEmSJElSfTKRILUupyIhfTVsmAd9Tyn7vPjkYN22MmKhSZIkSZIkSVJ9M5EgFVUkbCy5ffF7wVrWfATYU5GAcxIkSZIkSZIkHdBMJEhNW0NM89IVCYvehva9oUPvss9rkwhRTWCbiQRJkiRJkiRJBy4TCVIoFFQl7D0jIScTVnxaflsjgKhoiE+yIkGSJEmSJEnSAc1EggTQqkPJioRFb0NBLvT7TsXnxSdbkSBJkiRJkiTpgGYiQYI9FQl7JRLmvQJx3SFpVMXntU22IkGSJEmSJEnSAc1EggQlWxtt3wLLp8ChZwVtjyoSnww7tsCu7MjHKEmSJEmSJEn1wESCBMWtjcJhmP8aFOTBoHMqP69tcrBalSBJkiRJkiTpAGUiQYKgIiF/N+zKDNoadegLnQ6t/Lz4lGB1ToIkSZIkSZKkA5SJBAmCRAJA6hxYPRUGfb/ytkZgRYIkSZIkSZKkA56JBAmC1kYAXz0SrIeeVbXzWraHJq2sSJAkSZIkSZJ0wDKRIEFxRcLCt6DLMGjfq2rnhUJBVYIVCZIkSZIkSZIOUCYSJChOJBCu2pDlvcUnW5EgSZIkSZIk6YBlIkECaLmntREhGFjFtkaFCisSwuFaD0uSJEmSJEmS6puJBAkgpim0aAspR0FsYvXOjU+G3dmwY2tkYpMkSZIkSZKkehRT3wFIDcaZ/4K2Pap/XtvkYE1fCa3a12pIkiRJkiRJklTfrEiQCvU7DToNqP558XsSCc5JkCRJkiRJknQAMpEg7a+iigQTCZIkSZIkSZIOPCYSpP3VrA20aAcL34Y10x26LEmSJEmSJOmAYiJBqg2jrob18+DxE+CfI+HT+2BXdn1HJUmSJEmSJEn7zUSCVBuO+zX8bDGc8U9olQAf3gVzn6/vqCRJkiRJkiRpv5lIkGpL81gYdglc8TbENIdtK+s7IkmSJEmSJEnabyYSpNoWCkFsF8hcV9+RSJIkSZIkSdJ+M5EgRUJsV8gwkSBJkiRJkiSp8TORIEVCXDcrEiRJkiRJkiQdEEwkSJEQ2xWy0iA/r74jkSRJkiRJkqT9YiJBioS4rhAugOz19R2JJEmSJEmSJO0XEwlSJMR2C1bnJEiSJEmSJElq5EwkSJEQ1zVYM9fWbxySJEmSJEmStJ9MJEiRELsnkWBFgiRJkiRJkqRGzkSCFAnN46Bpa8g0kSBJkiRJkiSpcTORIEVCKBRUJWTY2kiSJEmSJElS42YiQYqUuK5WJEiSJEmSJElq9EwkSJES29UZCZIkSZIkSZIaPRMJUqTEdYPtGyFvV+1dMycDUufU3vUkSZIkSZIkqRImEqRIie0arJmptXfNT/8Kj4+v3eSEJEmSJEmSJFXARIIUKXGFiYRabG+0bibk74JtK2vvmpIkSZIkSZJUARMJUqTEdgvW2pqTUFAAaXODr7csrZ1rSpIkSZIkSVIlTCRIkVJUkbC2dq6XvhJ2ZQZfm0iQJEmSJEmSVEdMJEiR0rQVNI+vXkVCxjr41+Ew//XS+wqrEcBEgiRJkiRJkqQ6YyJBiqS4blWfkZC3C16+DDYtgG/+U3p/2lyIagJdhsGWZbUbpyRJkiRJkiSVw0SCFEmxXatekfDer2HtdGjfG1Z8GsxE2FvaXOjYHzoOsCJBkiRJkiRJUp0xkSBFUlzXqs1ImPM8TH8MjvwxHHUL7NwKG+cX7w+HIXUOJA6B9r0gewPsyopY2JIkSZIkSZJUyESCFEmxXWHnNti9o/xj0ubCmzdBytFw/O3Q4+hg+8pPi4/JWBskFxKHBBULYHsjSZIkSZIkSXXCRIIUSXHdgrW8OQnZG+GFi6FlezhnAkTHQHx3aJsStDcqVDhoOXHoXokE2xtJkiRJkiRJijwTCVIkxXYN1owy2hvt3gHPnw87NsP5z0LrhOJ9KUfDqs+gID94nDYXQtHQ+VBo1wMIWZEgSZIkSZIkqU6YSJAiKW5PImHfioSCAnj1Wlg3C856FLocVnJ/j2MgJwPWzwsep82FhL7QpEXwKy7JigRJkiRJkiRJdcJEghRJRRUJ+yQSPrwTFrwB438H/U8vfV7KPnMS0uYG8xEKte9lIkGSJEmSJElSnTCRIEVSTDNolQCZe7U2mvU0fP43GH4FHHFj2efFJgazEFZ8ClnrIXv9PomE3kFro3A4ouFLkiRJkiRJkokEKdJiuxZXJKz+Et68GXqOhVP/AqFQ+eelHA2rpsK6mcHjfRMJuzJg++aIhS1JkiRJEZO7Eyb/AV68uHg2nCRJarBMJEiRFtctmJGQvib4T3J8Enx/IkQ3qfi8HkfD7iyY9VTwuPOg4n3tewer7Y0kSZIkNTbLpsCDR8Inf4YF/4PM1PqOSJIkVcJEghRpsV0hYy28eBHk5sAFL0CLtpWfVzgnYfG7QeKgWZvife17BauJBEmSJEmNRX4evHodPP3d4PExvwjWbSvqLSRJklQ1JhKkSIvrCruzIe1rOOdxSOhbtfNad4SEfsHXiUNL7ovvDlFNTCRIkiRJajxWfQZzn4fR18P1X8BhFwXbt5pIkCSpoTORIEVa2x7Bevz/wSEnVe/cwqqEvecjAERFQ7ueJhIkSZIkNR6Fs+NGXwNNmkNsN4iKgW0r6zUsSZJUORMJUqT1PQWufA+Ourn65/YaF6xdh5fe1743bF2+f7FJkiRJUl3J2jMLoU1isEbHQFySrY0kSWoETCRIkRbdBLofDqFQ9c/tewpcNQmSjyy9r30v2LIMCgr2P0ZJkiRJirTMtGBeXJMWxdva9bAiQZKkRsBEgtSQhUKQNKrsJET7XpC/CzLX1n1ckiRJklRdWWnQpkvJbW1TnJEgSVIjYCJBaqza9w5W5yRIkiRJagwy10HsvomEHpCTDju31UtIkiSpakwkSI1VUSJhWf3GIUmSJElVkZkGsYklt7VNCVbbG0mS1KCZSJAaq9adoGlrKxIkSZIkNXz5ubB9U+nWRu16BKvtjSRJatBMJEiNVSgUzEnYvKS+I5EkSZKkimWtB8JWJEiS1EiZSJAasw6HmEiQJEmS1PBlpQXrvhUJzdpAyw6wzYoESZIasoglEnJychg1ahRDhgxh4MCB3H777QCsWLGC0aNH07t3b8477zx2794dqRCkA19CX8hYDbuy6zsSSZIkSSpfZmqw7luRAEF7o8oqEnZlwRs/gox1tR6aJEmqXMQSCc2aNWPy5MnMnTuXOXPm8O677/Lll1/yy1/+kptvvpmlS5fStm1bHn/88UiFIB34EvoF6+bF9RuHJEmSJFWkvIoECNobbV1Z8fnf/BdmPQVf/ru2I5MkSVUQsURCKBSidevWAOTm5pKbm0soFGLy5Mmcc845AFx22WW89tprkQpBOvAVJhI2LarfOCRJkiSpIpmpEN0MWrYrva9tD8hcC3kVdCyY93Kwzn0e8nZFJkZJklSuiM5IyM/PZ+jQoXTs2JETTzyRXr16ER8fT0xMDADdunVj3TrLEqUaa9sDoprApoX1HYkkSZIklS8rDdp0hlCo9L62KRAugIw1ZZ+bmQYrP4Okw2HHFlj4VkRDlSRJpUU0kRAdHc2cOXNYu3YtX331FQsXVv3NzkceeYQRI0YwYsQINm3aFMEopUYsOgY69LEiQZIkSVLDlpkGsWW0NYJgRgKUP3D521eBMHzn7xDXPWhxJEmS6lREEwmF4uPjOe644/jiiy9IT08nLy8PgLVr19K1a9cyz7nmmmuYMWMGM2bMICEhoS7ClBqnhL5WJEiSJElq2LJSy08ktE0J1q3lJBK+eQU6D4aO/eCwi2H5lMqHM0uSpFoVsUTCpk2bSE9PB2Dnzp1MmjSJ/v37c9xxx/HKK68A8OSTT3LmmWdGKgTp4JDQL/hPdO7O+o5EkiRJkkoLh4MZCW0Sy97fujPENC87ObBlGaybCYOCWYscdhEQgtnPljxu81JI+7o2o5YkSXuJWCIhLS2N4447jsGDBzNy5EhOPPFETj/9dO655x7++te/0rt3b7Zs2cJVV10VqRCkg0NCXyAMW5bWdySSJEmSVNrObZCXU35FQlQUxCeXnUj45r/BOvCsYI3rBr1PgNnPQEF+sG3xe/Dw0fDCRbUeuiRJCsRE6sKDBw9m9uzZpbb37NmTr776KlK3lQ4+Cf2CddMi6DyofmORJEmSpH1lpQVreRUJEMxJ2Le1UTgctDXqfiTEJxVvH3YpvHQJLP0AstbDmzdDVAxkrA6SFi3a1v5zkCTpIFcnMxIkRVC7XhCKdk6CJEmSpIYpc08iobyKBIC2PYKKhHC4eNuGb4OfcwadXfLYQ06GVgnwv5/A/34MvY6D7z0U7Nu4oFZDlyRJARMJUmMX0xTa9TSRIEmSJKlqCvJh3ay6u19WarBWVJHQNgVyt8P2TcXb5r0cfGhqwHdLHhvTFIZeGFQ6DL0YLngBkkYF+zZ8W5uRS5KkPUwkSAeChL5BayNJkiRJqsxnf4VHj4P139TN/TKr2NoIiuckbN8MX78IvcZBqw6ljz/2Vrj4v3DmPyG6CcR2hWZxsHF+rYYuSZICJhKkA0FCP9iyDPJ213ckkiRJkhqyrPXw6f3B16u/qKN7pkLLDkElQXnapgTr1hXBnIOnvgs70+HYX5R9fNOW0Pt4CIWCx6EQdBoAG0wkSJIUCZUmErZv305BQQEAixcv5o033iA3NzfigUmqhoR+EM6HrcvqOxJJkiRJDdnk30P+bmgeB2un1809M9MgtoJqBID45GBd/zU8czZsXgTnP1vcsqgqOg4IZiTsPWdBkiTVikoTCccccww5OTmsW7eO8ePH8/TTT3P55ZfXQWiSqiyhb7A6J0GSJElSedbPg9nPwOhrIeXoukskZKUGrYcq0qQ5tOkCX/wT0ubC958MKg6qo9MA2JUBGWtrHqskSSpTpYmEcDhMy5Yt+e9//8sNN9zAyy+/zLffOrxIalA69AFCzkmQJEmSVLZwGN77NbRoC8f8HLqNhK3Lg1kEkZaZVvF8hELtekIoCs56BPqdWv37dBwYrM5JkCSp1lUpkfDFF1/w7LPPctpppwGQn58f8cAkVUOTFkFPUSsSJEmSJJVl8buw4hMY+ytoEV/cMmjtjMjeN28X7NgMsV0qP/bEu+Cil+HQs2t2r479g3WDH36UJKm2VZpI+Nvf/saf/vQnvve97zFw4ECWL1/OcccdVxexSaqOhH5WJEiSJEkqLT8P3v8NdDgERlwRbEscCqFoWPvV/l172sPw96GQk1n2/qy0YK1KRUK34dD7hJrH0iIeYrtVvyJhVzZkbaj5fSVJOghUmkg49thjeeONN/jhD39IdnY2PXv25IEHHqiL2CRVR8IhsGVp8EOCJEmSJBVa+kHws8K430B0k2Bb05bQ+dD9n5MwcyJsWwFT/1H2/sw9iYTKhi3Xlk4DYEM1Ewkf3gkPHgm7t0cmJkmSDgCVJhLmzZvHYYcdxsCBAxkwYADDhw93RoLUECX0g/zdsG1lfUciSZIkqSGZ8yy07AB995k70G0UrJsFBTVsX7xpcfDp/+bxwZDkwqTB3rJSg7VNFVob1YaOA2DzYsjPrfo5GxcE7ZdmPxu5uCRJauQqTSRce+21/PWvf2XVqlWsXr2a++67j6uvvrouYpNUHQl9g9U5CZIkSZIKbd8Ci96BwecVVyMU6jYSdmcHb6SXZ/cOmHAaLH6v9L75rwfrBc8Hb9x/9MfSx9R5RcJAKMiFzUuqfk766mD94p9WeEuSVI5KEwnbt28vMRNh7NixbN9uuZ/U4HQwkSBJkiRpH9+8EryxPvTC0vu6jQjWitobzXkWVn0GH9wJ4XDJffNfh6TRkHwkjLoaZj9TOimRlQYxLYKqhbrQcUCwVnVOQn4eZK4LzktfBQveiFxskiQ1YpUmEnr27Mnvfvc7Vq5cycqVK/n9739Pz5496yI2SdXRrDW06mhrI0mSJEnF5jwLiUOCeQj7atcTWrYvP5FQkB98Sr9JK9j4LSz7sHjflmWwYR4M+G7w+JifQ9M28MEdJa+RmRpUI4RCtfFsKtfhEIiKgQ1VbMmclQYFeTDyB9CuF0x9oHTCRJIkVZ5IeOKJJ9i0aRNnnXUWZ511Fps3b+aJJ56oi9gkVVd8d8hYU99RSJIkSWoI1n8DaXNh6EVl7w+FgvZG5SUSFrwRfFDpjAegdWf4/IHiffNfC9YBZwRry3Zw9M2w+F1Y8UnxcVlpdTcfASCmKbTvU/WKhPRVwdquBxzxQ0idDSs/i1x8kiQ1UjGVHdC2bVseeCD4z0J+fj7bt28nNjY24oFJqoH4pOAHBUmSJEma8xxENYFDzyn/mG4jgzf/d26DFm2Lt4fDQeKgXU8Y+L3gA0sf3BH8vJE4BL59LTg3rlvxOaOvg68eg6e/Bz2OgX6nwbZVkHJUpJ5h2ToNgDUVtGvaW+F8hPhk6H4ETPkjTP0H9Dg6cvFJktQIVVqRcOGFF5KZmcn27dsZNGgQAwYM4C9/+UtdxCapuuK7Q8ZaKCio70gkSZIk1af8XPj6Reh7MrRqX/5x3UYG69qZJbevmgqps4JP6UdFw/AroGnr4E32rcth/dfFbY0KNWkBl70RnLNtFbz1U8hKhdg6rEiAYN5BxmrIyQwe5+fCkg8gb3fpY9NXA6EgIdKkBYy6Bpa8BxudPSdJ0t4qTSTMnz+f2NhYXnvtNU455RRWrFjB008/XRexSaquuCTI3w3ZG+o7EkmSJEn1ackk2LG5/LZGhboOg1BU6fZGUx8I5icUnt8iHoZfDt/8F774V7CtsK3R3tr3ghPvgh/NhB9+Baf8OZg/UJc6DQzWjQtg7Qx4ZCw8ezbMfb70sdtWQZtEiGkWPB75g2A49Fs/hZ3pdRWxJEkNXqWJhNzcXHJzc3nttdc444wzaNKkCaG6GpIkqXrik4O1rDkJBQWQk1G38UiSJEmqH3OehVYJ0PuEio9r1ib4BP+qz2H39mDbxoVBu6NR1wSf0i90+PXBXIXpj0HX4UFFdHlCIUjoC6OvDVqw1qXCRMI7P4fHToAdW4PkwIZvSh+bvrrk82jVHr7zN1jzJTx+YjBUWpIkVZ5IuPbaa0lJSWH79u0cc8wxrFq1yhkJUkNV+B/0wj6fe5v1JNw/CHZl1W1MkiRJkurW7u1BRcKhZ0N0k8qP734ErPwU/tgF7j8Unjs3eON95NUlj4vrFlwTYMCZtR93bYlLguZxkPZ1kMi48asgubBxQelj01dD2+SS24acD5e+Dts3wWPHw4pP6yZuSZIasEqHLf/4xz/mxz/+cdHj5ORkpkyZEtGgJNVQXAWJhLUzYFdG8J/plDF1G5ckSZKkurPiE8jfBYecXLXjT7g9GIi8ZQlsXgKbFwdtjMqarXDMz4O5bIPOrdWQa1UoBBe8CE1bQeLgYFvH/rDwrWCIdGGXhfw8yFxXdmVFylFw9WR47nx4+rtwwQvQ58Q6ewqSJDU0lVYkbNiwgauuuopTTjkFCGYmPPnkkxEPTFINNGsNLdqVnUjYvDhYU2fVbUySJEmS6tbid4PByMlV/ABRszYw8LtBkuCsR+Caj+DoW8o+tkMfuOJtiE2srWgjI/mI4iQCBO2bdm4NqgwKZa6FcH75LZra9YQfTIIOh8D/boJd2RENWZKkhqzSRMLll1/OSSedRGpqKgCHHHIIf/vb3yIdl6Saiu9eekZCOAybFwVfp86u+5gkSZIk1Y1wGBa/D72Og5im9R1Nw9Gxf7Du3d6o8ANYFc16aB4Hp/8tSDp89KeIhSdJUkNXaSJh8+bNnHvuuURFBYfGxMQQHR0d8cAk1VB8UumKhO2b9gxaDplIkCRJkg5k6+dBVmrV2xodLDoOCNYyEwnJpY/fW/fRMOwy+PLB4PWVJOkgVGkioVWrVmzZsoXQnh6CX375JXFxcREPTFINxSdD+prgk0iFNu2pRkg5CrYuh53b6ic2SZIkSZG15L1g7W0//xJadwzawG6cX7wtfTWEoiC2a+Xnn3AHtIiHN2+GgoJIRSlJUoNVaSLhr3/9K2eccQbLli1jzJgxXHrppfzjH/+oi9gk1URcEuTthB1bircVzkcYcn6wps6p87AkSZIk1YHF70GXYdCmU31H0rCEQkF7o70rEratgjZdqtYCqmU7GP8HWDsdZjk3UpJ08Imp7IBhw4bx8ccfs2jRIsLhMH379qVJkyZ1EZukmijs75m+Clp1CL7evBiatIK+pwaPU2cHPVMlSZIkHTi2b4a1M2DsrfUdScPUsT98/VJQvR0KBRUJbStpa7S3IefDnGfhg9thwJlBckGSpINEpRUJL7/8Mjt37mTgwIG89tprnHfeecyaNasuYpNUE/FJwZq+18DlzYuhQ+/gP7rtekKqf4clSZKkA86SSUAYDjmpviNpmDr2h12ZkLkueJy+uuJBy/sKhYIWRzkZsPSDiIQoSVJDVWki4Xe/+x1t2rThs88+48MPP+Sqq67i+uuvr4vYJNVEXGEiYa+By5uXQIe+wdddDrO1kSRJknQgWvIetO4EnYfUdyQN094Dl/N2B0Opq5NIgKBtVMsOJhIkSQedShMJ0dHRALz11ltcffXVnHbaaezevTvigUmqoRbx0CwOMvZUJOzKDr7ucEjwuMthwePsTfUWoiRJkqRalp8LSz+EPuMhqtIf9Q9OCf2CdeN8yFwL4QKIr0ZrIwhe297HB6+1Q5clSQeRSv930bVrV6699lpefPFFTj31VHbt2kWB/1hKDVt89+KKhC1LgzWhMJEwLFhTZ9d9XJIkSZJqZtkUmHh6yWHBe1v9ZdC255CT6zauxqRlO2jdOXgNC39eqm5FAkDvE2DHZkibU6vhSZLUkFWaSHjppZc46aSTeO+994iPj2fr1q385S9/qYvYJNVUfFLxjITNi4O1sCIhcTAQMpEgSZIkNQa7suGtn8LT34WVn8LsZ8o+bsl7EN0Ueo6ty+gan479g4qE/Ukk9BoHhIKqBEmSDhKVJhJatmxJx44d+eyzzwCIiYmhT58+EQ9M0n4orEgIh4NEQig6GLIM0KxNkFQwkSBJkiQ1bKunwUNjYPrjcMSNkHzUnoHK+wiHYeHbkHI0NGtd93E2Jh0HwKbFsHVF8HNSbNfqX6NVB+gy1DkJkqSDSqWJhDvvvJN77rmHP/3pTwDk5uZy8cUXRzwwSfshLgl2Z0FOOmxaBG1TIKZZ8f6uwyB1VvADhyRJkqSGJzcHnvt+8H/2K96Gk/4A/U6DzYtg26qSx25eDFuXQb9T6yfWxqRjf8jbCSs+gbiuEB1Ts+v0PgHWfgU7t9VufJIkNVCVJhJeffVV3njjDVq1agVAly5dyMrKinhgkvZDYXlu+mrYvAQS+pbc3+UwyN4AWWl1H5skSZKkwPp58OYtkJ9Xet/SSZCTAd/5GyQfGWzrc2Lxvr0tfDNY+5pIqFTHAcG6bmb1By3vrfcJwbDm5R/VSliSJDV0lSYSmjZtSigUIhQKAbB9+/aIByVpP8UnBevWFcGw5Q77tCPrcliw2t5IkiRJqj9fPQozHg/mG+zrm/9Cyw6Qckzxtva9gze/l+zTUmfh28H/8WO7RDbeA0HRh6zCNZuPUKjrCGgeV732RltXwL8OL11RIklSI1BpIuHcc8/l2muvJT09nUcffZQTTjiBq6++ui5ik1RThZ+sWfkpFORCh30qEjoPCvqBrpsFebtgw3xY8CZkWqEgSZIk1YlwGJZNDr6eObHkvt3bYfG7MODMkq13QiHoMz5oy5O3K9iWtR7WzYC+p9VJ2I1es9bFCYT9qUiIjoGexwUDlwtbxu5Mh6fOhA/uKPuctTNg04Lg91aSpEam0maAP/vZz5g0aRKxsbEsWrSIu+66ixNPPLEuYpNUUy3aQpNWxZ+O6XBIyf1NWgQlvV/8Ez67H8L5wfbm8fDdB+2tKkmSJEXa5iWQsSaYZ7ZkEqSvKa4sXvQO5O6AQ88ufV6fE2H6o7BqKvQ6LjgW/D98dXQcELSB3Z+KBAjaG81/DTbOh1YJ8PRZsGFe0JKqLJnrgnXlZzD62v27tyRJdazSioT09HTi4+M599xz+e1vf2sSQWoMQqHgP8XbVgaP921tBDDmx3DIyXD0LXDWY3DpG9A2GV64AN79FeTtrtOQJUmSpINK4Yd+zvx3sM56qnjfN/+FNonQ/YjS56UcDdHNguQDwKK3g0/WF/b+V+U69g/W/U4kHB+sMyfChFOCtrKJQyBjbdnHFyYSVk0trmKQJKmRKDeRsGvXLi6//HJSUlK49tprufrqq0lJSeHKK69k927fYJQavMJPM7XuBC3iS+8ffC6c+ySM+w0M/j70PBaumgSjroUv/w1PjIcdW+s0ZEmSJOmgsezDYOZBypigymD208HQ5ZyMYJjywO9BVBk/sjdtGZyzdBLsygqG/fY7Pfgwkaom5Who2hoS+u3fdWK7QMeB8NUjkL0JLn0t+L3Yvqm49dTeMlODdcdm2LRo/+4tSVIdKzeR8Ic//IHc3FzWrFnDrFmzmDNnDqtXryYvL4/f/e53dRmjpJoo/HTNvm2NKhLTDE79M5wzIRjEPO/lyMQmSZIkHcxyc2Dl59Brzyfah18OWWmw5H1Y+Bbk74aBZ5V/fp/xsHkxzJgQHGtbo+rpfTzcugZatd//aw05D2K7wuVvQvfDg6+huPpgbxlroV2v4OtVn+//vSVJqkPlJhL++9//8uijj9KmTZuibW3atOHf//43r776ap0EJ2k/xO2pSKhOIqHQwO8F/wFe/WXtxiRJkiQJVk+FvJ3FrXH6nAStOwctcr75D8R1h24jyj+/956Wwx/fE8xHSzo84iEfcMqq9qiJI38MN38LiYODx3HdgrWs9kaZqUE1SZtEEwmSpEan3H85o6KiaNmyZantrVu3JmTJpNTwFVYkJPSt/rmhUNCPdfUX9u6UJEmSatvSDyG6KaQcFTyOjoFhlwQVCcumwKFnVdyqqH2vYEjz7uxg7ll0TJ2ErTKEQiV/r4oSCftUJOTtgu0bIbYbJI8JKlL8WUuS1IiUm0gIhUJs27aNrVu3lvoVVVuZe0mR03kQRMVAt5E1O7/74UF5dfqq2o1LkiRJOtgtmxx8cKdpq+Jtwy4N1nB+kEioSCgUtDcC6GtbowYltkuw7luRUDgfIa5rUJWQvR62Lq/b2CRJ2g/lfmwhIyODYcOGlbnPigSpEejQJ+j72bR0ZVGVdD8iWFd/GXzaSZIkSdL+y0yFjfPhxLtKbo/vHiQFtq2AzoMrv87wyyFrPfQ+ISJhqoaatICWHSCznERCbJegKgFg5WdBdYkkSY1AuYmEJUuW0KRJk7qMRVJtq2kSAaBjf2gWF7Q3GnJ+7cUkSZIkHcyWTQ7WwkHLezv7MSjIrbitUaFOA+G8p2s3NtWOuK6lWxsVDl+O7RZ86KtVx2BOwvDL6j4+SZJqoNxEwhFHHEG3bt04+eSTOfnkk0lJSanDsCTVu6hoSBrlwGVJkiSpNi39MBis3Glg6X3780EgNRxxSbBlWcltRYmELkGiKPnI4jkJdn2QJDUC5Q47mDFjBn/7298AuOmmmxg5ciQ333wz77//Prt27aqr+CTVp+QjYNNC2LG1viORJEmSGr+CfFg+BXqN883jA1ls1+LEQaGMddA8Dpq1Dh4njwnaH5U3ky4cDtoh5edFNlZJkqqowqnJKSkpXHfddbz22mtMnTqV73znO3zwwQccffTRnHbaaXUVo6T6svecBEmSJEn7Z9VU2LkNepfR1kgHjriusCsTcjKKt2WmBgmGQiljgnXl58Xbtm+BuS/CazfA/YfCX/vDF/+om5glSapEua2N9tWkSRPGjRvHuHHjAFi3bl0lZ0hq9LoMg+imwZyEfqfWdzSSJElS4/blv6Fle+jnB/MOaHF7hikXViFAUH2wdyIhoT+0aBvMSejQB756FOa/Bvm7g+0pR0Pudti4oM7DlySpLOUmEgYNGkSoglLLr7/+OiIBSWpAmjSHLodZkSBJkiTtr81LYdE7cOwvoEmL+o5GkRS7J5GQuQ46DdjzdWrws1WhqKigvdGc52DOs9C0DQy/HIZcAIlDg/0TToX0NXUdvSRJZSo3kfDmm2/WZRySGqruR8AX/4Lcnf7AI0mSJNXUl/8Oqn1H/qC+I1GkFVUk7EkC5O2C7ZtKViQAHHYx7NgCg74Pg88rnp+w93VWTY18vJIkVUG5iYTk5OS6jENSQ9X9CPj8b7BuJqQcVd/RSJIkSY3Pjq3BJ88HnwutO9Z3NIq0Np0hFB20NoKgGgFKJxL6nhL8Kk9cUvHA5egqd6aWJCkiKhy2DPDll18ycuRIWrduTdOmTYmOjiY2NrYuYpPUECSNCtbVX9RvHJIkSVJjNeNxyNsJR/ywviNRXYiKhjaJkLE2eJy5J6EQ26V614lPgnA+ZKXVbnySJNVApYmEG2+8keeff54+ffqwc+dOHnvsMX74Q//zIx00WrYLBoE5J0GSJEmqvrxdwSDd3idAx/71HY3qSly34gRCYUVCYcuj6lwDilskSZJUjypNJAD07t2b/Px8oqOjueKKK3j33XcjHZekhiT5CFjzFRTk13ckkiRJUuMy7xXI3mA1wsEmrmtxRULhWt2KhLjuJc+XJFVPQT6snVHfURwwKk0ktGzZkt27dzN06FB+8YtfcP/991NQUFAXsUlqKLqNhF2ZsGVpfUciSZIkNXwFBZA2Fz7/O3z0J+g4EHoeV99RqS4VViQUFAQVCc3joWmr6l8DIH11rYcnSQeF+a/DY8cHcz+13ypNJDz99NMUFBTwz3/+k1atWrFmzRr+85//1EVskhqKwhLsjQvqNw5JkiSpofvyQfhLL3j4GJj0f8Gbx6fcA6FQfUemuhTbDfJ3w47NQUJh30HLVdG0JbRsb2sjSQeeNdNhUR10vFk/L1iXfhj5ex0EYio7IDk5GYDmzZtz++23RzwgSQ1Qh75ACDYtrO9IJEmSpIZr81J4/zeQNBqGXQY9joHYxPqOSvUhbk/iIGNNkEiIq0EiASAuydZGkg48H98Da7+CX6wIBtRHSuH7WEs/hGN/Ebn7HCQqTSR8/vnn3HHHHaxatYq8vLyi7cuXL49oYJIakKYtoW2KFQmSJElSRT68A2KawzkToE2n+o5G9aloUPK64FeXw2p2nfgk2LS49uKSpIYgMxVyMiB1NnQbEbn7FL6PtXZ6cL/mcZG710Gg0kTCVVddxf3338/w4cOJjo5ghkhSw9axv4kESZIkqTyrvoAF/4PjbjOJoKC1EcDWZUF7o8LH1RWXFHySNhy2PZakA0fmumBdNjlyiYTcnbBtJaQcDSs/hRWfQv/TSx4z5Y/QsgOMviYyMRxgKp2REBcXxymnnELHjh1p37590S9JB5mO/YP/BOftru9IJEmSpIYlHIb3b4M2iXDED+s7GjUELdtBTAtYOyN4vD+tjXJ3wM5ttRebJNWn3dshJz34etnkyN1n82IgHLQabNq69L12boPPH4AN30QuhgNMpYmE4447jp///Od88cUXzJo1q+iXpINMQn8oyIMtS+s7EkmSJKn+LJsCfx0A7/8WdmwNtn37X1g3E8b9JhiuLIVCQfJgzbTgcWyXml0nPilY01fXTlySVN8y04I1LgnWfAU5mZG5z8Y98xE6DwqqEvZNJMx+FvJ2wqirI3P/A1ClrY2mTQv+0ZsxY0bRtlAoxOTJEcwYSWp4OvYL1o3zodOA+o1FkiRJqg8bF8BLlwZzEKb+A2Y+CWN+BLOeho4DYcgF9R2hGpLYrsUfxKpxa6PCWQtroMvQWglLkupVVmqwDr0IPr47aDvU77Tav8+mBRAVA+16Qq9xsPgd2Lo8eFxQADMeh6TDg0SDqqTSRMKUKVPqIg5JDV37PhCKLp54L0mSJB1MsjfCs+dCkxbwgw9hVxZM/h1M/n2w/+L/QpRzBbWXuKTir2takRDXPVgz1u5/PJLUEGTuSSQM/C588c9gDkxEEgmLoH1viGkaJBIgqCps1xOWTw6SCmN/Xfv3PYBV2tooIyODW265hREjRjBixAh++tOfkpGRURexSWpImjQPvtk6cFmSJEkHm9yd8PwFsH0TXPBC0G6m0wC44Hm48n0489/Q+/j6jlINTeFchBZtoWnLml2jZTto0hLS19ReXJJUnwoHLcd3L7vlUG3ZuAAS9nTXaN8rSMwW3uurx6BVAgw4IzL3PkBVmki48soradOmDS+99BIvvfQSsbGxXHHFFXURm6SGpmM/EwmSJEk6+Lx2QzAD4ezHoOuwkvu6j4bDLqqfuNSwFbYliq3hoGXYM2uhG2RUc0bCpkXFMzwkqSHJTIPm8cFMoV7jYNuKoDqgNu3eAdtWQsf+weNQCHodBys+gS3LYPG7wRDmmGa1e98DXKWJhGXLlnHnnXfSs2dPevbsye23387y5bX8myupceg4IPgGn7uzviORJEmS6kbqnGCY8thbof/p9R2NGpPCBML+JBIgaJFUndZG+Xnw2Inw8Z/3776SFAmZqcXt3vZuOVSbtiwBwpDQt3hbr3GwKxPe+HGQWBjhB+Wrq9JEQosWLfjss8+KHn/++ee0aNEiokFJaqAS+kG4ADYvru9IJEmSpLox+xmIbgajr63vSNTYFFUk1HA+QqH4pOq1Ntr4LezKKB70LEkNSea64u+L+7Ycqi0b98z3TOhfvK3nsRCKglWfQd9Ti79Hq8oqHbb84IMPctlll5GRkUE4HKZdu3ZMnDixDkKT1OB0HBCsGxdC4pD6jUWSJEmKtNwcmPcS9P9O0Odeqo64bkESqn2v/b/Ojs1Bq46qzFpY81WwplezHZIk1YXMVEgcHHxd2HLo21eDaqroSt+qrppNCyAqpuT33xZtoetwWDsdRv6gdu5zkKn0d2fo0KHMnTuXzMxMAGJjYyMelKQGqn0viGoCG+fXdySSJElS5C18E3Iy4LCL6zsSNUZNW8G1n0Db5P27Tlz3YM1cBx36VH58YSIhYw2Ew8EbdZLUEOTthu2bSrZ86zUOZj0J62ZA98Nr5z6bFkH73hDdpOT24ZdDyw7Qc2zt3OcgU2lro7///e9kZmbSpk0bbrnlFoYNG8b7779fF7FJamiimwTfiDctrO9IJEmSpMib/XTwJm6PY+s7EjVWHftBk/1sDx2fFKxVrTBYuyeRkLsDdmzZv3tLUm3KXg+EoU1i8bbClkO1OSdh44KgPfe+DrsYLnzBBGsNVZpIeOKJJ4iNjeX9999ny5YtPP3009x66611EZukhqhj/+AbsiRJknQg27YKln8Mh10EUZX+6CxFTmEf74wqzEnI3gTbVkL3I4PH6asiFpYkVVtmarDuXZHQoi206xW0I6oNu3cE3wc79q/0UFVPpf8bCofDALz99ttceumlDBw4sGibpINQx/7Bf0Z3Zdd3JJIkSVLkzH0+WIdeWL9xSG26QCi6agOXC6sRDj0rWKtyzuYlsPKzmscnSVVVlEjYZwh9dYfKV2TzYiAMCX1r53oqUmkiYfjw4YwfP563336bk046iaysLKL8NIZ08CosDdu8qH7jkCRJkiKloABmPxv0UI7vXt/R6GAXHRO86ZaxtvJj13wVzLUbcGbwuCrtkD64A579PuxM358oJalyRYmExJLb47vX3oD4TXver0qwIqG2VThsORwOc9ddd7Fp0yZ69uxJy5Yt2bJlCxMmTKir+CQ1NB0HBOvGBcG0e0mSJOlAs+JjyFgNJ9xe35FIgbhuVWtttHY6JA6G1h2hWVzV3pjb8G0wT2Hu83D49fsfqySVJzMVmrSE5vElt8clwY7NQVuipi337x6bFgQJ1fa99u86KqXC0oJQKMSpp57KsGHDiI+PB6B9+/YMHjy4LmKT1BC16wHRzZyTIEmSpAPX7GegeRz0O72+I5ECcVVo+5GfC+tmQbdRweP47pUnHwp7iQNMfwxsZS0pkjLXBRVW+w47jk8O1qokTCuzcSG07w3RTfb/Wiqh0h5Fw4YNY/r06XURi6TGICoaEg6BTQvrOxJJkiSp9u3cBgv+B4POhSbN6zsaKRCfFLwBV5Bf/jEbvoG8nZA0cs85VWgVUthLvO+psGUpLP+otiKWpNKy0krPR4DgexzUzpyETQudjxAhlSYSpk2bxuGHH06vXr0YPHgwgwYNsiJBOth1HhKUzObm1HckkiRJUu2a9wrk74Jhl9R3JFKxuG4Qzg/ehCvPmj0fAi2qSEgKEgkVVRkUfkBs7K+gZfugKkGSIiUzNRggv6+4wkTCqv27/u7tQZVVR+cjREKFMxIA3nvvvbqIQ1JjMuhsmPMMLHobDj2rvqORJEmSas/sp6HzIEgcUt+RSMXi9gz9XvAmjL62dFsQgLVfQZvEIOkAQUXC7uygyqZlu7Kvu3FPL/GO/eGwS2DqA8FQ58JrSFJtKSgovyKhTefge9H+tjb65r9AGFKO2r/rqEyVViQkJyezZs0aJk+eTHJyMi1btqSgoKAuYpPUUPUYG2SLZz9d35FIkiRJtSfta0ibG7yhKjUk3Q+HxKHw7i/hiZODWQj7WvMVdBtZnGSI35N8qKi90aaF0KFP0Et8xJVB9cKMCbUeviSxfRMU5JWdSIiKhriu+9faKByGrx6GjgMgeUzNr6NyVZpIuPPOO7nnnnv405/+BEBubi4XX3xxxAOT1IBFRcHQi2DZlNrpXydJkiQ1BHOeheimMOj79R2JVFKz1nD1ZPjOA7B1GTw6Dl67AbLWB/uzNwYtQZJGFZ9T1CqkgkTCxgWQ0C/4um0yHHISzHoS8nZF5nlIOnhlrgvWshIJULW5LhVZ/SWsnwejri67akv7rdJEwquvvsobb7xBq1atAOjSpQtZWVkRD0xSAzf0QiAMc5+v70gkSZKk/Ze3C75+EfqdXn4bGKk+RUXD8MvgR7PgyB/B1y/BP4bDp/fByk+DY7rtlUgorEgor1XI7u1B8mHvXuIjrw4+Nbzgf5F5DpIOXpmpwVpeIiGu+/61NvrqYWgeB4PPq/k1VKFKEwlNmzYlFAoR2pPJ2b59e8SDktQItE2GHscG7Y1sdyZJkqTGbuFbQS/5w6zAVwPXPBbG/w5+OC34mezDu+A/Vwf9xfee7dGiLTRtU/4nfDctCtbCigSAXuMgthvMfz1y8UtqnPJ2wdYVNT+/KJHQtez98d2DGQo1qYjKTIX5bwStCZu2qnmMqlCliYRzzz2Xa6+9lvT0dB599FFOOOEErr766rqITVJDN+zS4D+lhZ9+kSRJkhqr2c8ErWB6jq3vSKSqad8LLngOLn0dOg0I2hI1aV68PxSC+KQKEgkLg3XvioSoKOh6GGz4JnJxS2qcPv0r/PsI2JVds/OzUoOEZ8sOZe+P39OOLWNt9a894wkIF8DIH9QsNlVJTGUH/OxnP2PSpEnExsayaNEi7rrrLk488cS6iE1SQ9fvtKBsbPYz0PPYqp2z8G1YMw1OvDOysUmSJElVlb4Glk2GY38RtI+RGpOeY+G6z8reF9+9/Ll2GxcEM0Ha9ii5vdMgWPBm8GZhs9a1GqqkRmzhm5C3M5hDkHxE9c/PTIU2iUHCsix7D4hv36vq183bBTMnwiEnQ7selR6umis3kbBkyRJ+9rOfsWzZMgYNGsS9995L167llJ5IOjg1aREMopv9DOz8C7SIr/ycrx6G5R/BqGsgzu8pkiRJagDmvQyE98wBkw4g8d1h1Rdl79u4ADocAtH7vDXUeRAQho3zSw5vlnTwylhXXKmUNqfmiYTy5iNA8YD46s5J+PbVYLbL6GuqH5OqpdzWRldeeSWnn346//nPfxg+fDg/+tGP6jIuSY3FYRdDXg58+WDlsxIK8mHtjODrRW9HPjZJkiSpKtbOgPZ9oG1KfUci1a64JNiVATvTS+/btLBkW6NCnQ8N1vXzIhqapEZk6aRgjW4GqbNrdo3KEgmxXSAUVX47tvLMmBAkRXseV7O4VGXlJhKysrK4+uqr6du3Lz/72c9YuXJlHYYlqdFIHBoM5Pr4bnh0LCz9EMLhso/dOB927+mlt/DNuopQkiRJqtiGecVvnkoHksJWIft+wndXVrBt70HLheKSgha2zkmQVGjJpOB7Q69xNUskhMOVJxKimwSDmMtrx1aeTQsh5ehgLowiqtxEQk5ODrNnz2bWrFnMmjWLnTt3lnisxm/mqq089ulytmTXYBq6VCgUgotege89DDu3wTNnwZPfgeyNpY9d/WWwHno2rPwsOF6SJEmqTzkZwacfO5lI0AFo757je9u0KFjLqkgIhYK/D1YkSIJgBsGyKdBnPHQ5DDYvCZKR1bFzWzBfoaJEAgTJiupUJOTtgpx0aNO5evGoRsqdkZCYmMgtt9xS9Lhz585Fj0OhEJMnT458dIqYzJxcrntmFpuydvHndxdx+pBELj8yhcHd4us7NDVGUdEw5HwY+L1gwM27t8JXj8C435Q8bs1X0LozHH4DfPMfWPw+DDmvXkKWJEmSANgwP1g7D6rfOKRIKC+RsHFBsJZVkQDB34dZTwfta8sbjCrp4LBqKuRuDxIJoSggDGlfQ8qYql8jMzVYK0skxHeHVZ9X/bqFH2Jt3anq56jGyk0kTJkypS7jUB27f9JiNmfv4h8XHMb0lVv5z8y1/HfWOs4bkcTdZw8iZDmQaiKmGYy+Fua/DoveLSORMC0Y1tVlGLRJDNobmUiQJElSfSps39JpYP3GIUVCy/bQpGXpViGbFkJM8/LngnQ6NHjjcNsKaN8r4mFKasCWTApmI/Q4GnZvD7alzq5eIiErLVhju1Z8XHwSzEuF/LzSg+DLYiKhTplWPgh9m5rBk1NXcuGo7nxnSBfuOvNQvvj18Vx1VA9enLGGf0xeWqv3y8svYMrCjezYnVer11UD1veUoM/s3p96yVoP6asgaXTwiZa+pwbzFHJ31l+ckiRJ0vp50Dy+8jc3pMYoFAo+4Zu+quT2jQuC4aRR0WWf58BlSYWWvBckEZq2gtYdg38v0+ZU7xoZa4O1TWLFx8V3h3A+ZK6r2nWzNwRr647Vi0c1YiLhIFNQEOa3r31D25ZN+cVJxSWMsc2b8JvT+nPWYV3566TFvD6n9F/YnNx8Zq7ayuOfreBHz8/m/17/hl15+ZXe8+FPlnPFxOkcdc8U/jl5CRk7c2v1OakBOuSUYF30bvG2NV8Fa9LoYO13WvAJl+Uf1WlokiRJUgkbvgnauFiVrQNVWT3HNy0sez5CoYT+EIp24LJ0sNuyDLYsDdoaFepyWPUHLm9cAE1aVW1GApQeEF+e7PXBakVCnahCjYgOJK/MXMus1en85ZzBxLVsUmJfKBTiT2cPYm36Tn7+8td0jW/B4G7xTF64kf/MWstHizaSmx8GoHNsc9Zn5rAhM4d/XTiMmOiyc1IbM3P415SlHNGzPc2bRHHv+4t5+OPlXHV0D340rg/RUf5n/YDUoTe07wOL34HR1wTb1kwLSuESBwePU46GZnFBe6O+p9RfrJIkSTp4FeQHb24Mu6y+I5EiJ747rJtR/DgnI/i0b3nzEQCaNA8qFqxIkA5uSz8I1j4nFm/rMjR4LycnA5rHVe06qbMhcUj5VVCFyprrsnUFzHgCTrij9PmFrY1aJVQtDu2XchMJs2bNqvDEYcOG1Xowiqxlm7L50zsLGJnSlrOHdSvzmGYx0Tx88XDOenAqVz05g6gQbNuRS0KbZlx6RAqjerTjsKR4OsY2Z8LnK7jzf/P5xX++5t5zhhBVRlLgL+8tIje/gLvPHkRy+1Z8m5rBPycv5W8fLGHR+izuP28ozZtU8k1EjVPfU+DLByEnE5rHBhUJXQ4L5igAxDSFQ8bDoneCH+Aq+8dEkiRJqm1bV0DuDucj6MAW3x12biv+2WzTomB7RRUJELQ3WvVF5OOT1HAtfi/4oGi7nsXbEg8L1rSvg5ZHlcnPg/Vfw4irKj82bs/7lXvPdXnvNlj0Fgy5ADoNKHl89oZgFkxM08qvrf1WbiLhpz/9abknhUIhJk+eHJGAtH8yduayPiOn6PH23Xl8vGgT7327noXrs2gWE8VdZx5a5pv+hdq2asoTl4/k2qdncEinNpw9vBtH9+5QqurgijE9yMrJ46+TFtOmWQx3nDGwxJDmeWszeGXWWq45uifJ7VsBMLBLHA9ePJzHP1vB796cz9btX/HoZSOIbV6yOkIHgL6nwNQHYNmHQaujtDkw+rqSx/Q7Dea9DKu/hLiusHZG8J/a4ZcHjyVJkqRI2rDn09aF/eClA1H8nlYh374a/Ly14H/B444Dyj8HgoHL816GHVuhZbvIxgjwwZ1BD/Zjfhb5e0mq3O7tsPIzGPmDktu7DA3W1NlVSyRsWgh5OcGHSysT0wxady6uSEidEyQRIKikKpVI2GhbozpUbiJhypQp+3XhNWvWcOmll7JhwwZCoRDXXHMNP/nJT9i6dSvnnXceK1euJCUlhZdeeom2bdvu170UWLg+k3Mf+oLMnJJDjUMhGJnSjv87fQAnH9qZLvEtKr1Wjw6teP/mYys97kfjepOVk8ujn65gZ24+Pz+pHwltmhEOh/ndm/Np17IpPxzXu9R5Vx3Vgw6tm/LTl+Zy7kNf8OSVo+gU27zqT1YNX7dR0KJdUHHQpgvk7y6ej1Co9wkQ3RSeOhMK9pqdEdMUjvl53cYrSZKkg8/6b4I+8AmVfDJbaszik4P1fz8O2s32HAvjfgNtkys+rzDBtuHbqr1ZuL/mPh98sthEglT/wmH44A7I31W6HXWrDhDXvepzEgqPq0oiAYIqqow9iYSP7oaY5kEioqy5CdkbHLRch6o0I+Gbb75h/vz55OQUf9L90ksvrfjCMTHcd999DBs2jKysLIYPH86JJ57IxIkTOf7447n11lu5++67ufvuu7nnnnv271mI1PSdXP7EdFo0jeb33xtEzJ6Kg6hQiOHJbUlo0ywi9w2FQvz61P5ERYV47NMVvPl1Glcd1YOkti35auVW/vi9QeVWG5w5tCttWzblumdmcunjX/H6jWNsc3QgiY6BQ06Cxe8W995MGlXymGZtYNxvg+x01+HQbQQ8cw5sW1nn4UqSJOkgtOEb6NAn6AcvHai6HBb83NW+N/Q+Pvg5rCo675lvt+GbyCcSdqZDVhrsyg7ewHT4uVS/PrkXvnoEjrgRUo4qvb/LkKDzRFWkzgpmZO7dHqki8UmwbiasmxXM3hz7K/j4z5CxrvSx2Rug+xEVXm53XgGL1mcxd206c9ek06pZDP93+oAKu7WobJUmEu68804++ugj5s+fz6mnnso777zDUUcdVWkiITExkcTERADatGlD//79WbduHa+//jofffQRAJdddhljx441kbCf0nfs5tInvmL7rjxevv4I+nWOrdP7h0IhfnVKf84bkcR9kxbzj8lLAejXuQ3njUyq8NxjDkngXxcN44oJ0/nj2wu468ySJcW5+QVMX7mVI3q2L9E2SY3EIScHnyr56lFo26PsLPGYH5d83K4HbFtVN/FJkiTp4Lbh29JVs9KBJiq6Zp/yb90RWnWsm4HLmxcH6+6sYJ5DXbRSklS2GU/AlN8HMwlO/F3Zib0uhwVt0nZugxaVdJpJnR0kHqKiKj6uUHx3mP8GTPljcO3Db4DZz0DG2pLHhcOQVXFFwsxVW7n08a/YvjsfgNjmMWTm5JHQphk/PK50BxVVrNLfwVdeeYUPP/yQzp07M2HCBObOnUtGRka1brJy5Upmz57N6NGj2bBhQ1GCoXPnzmzYsKFmkQuAnNx8fvDkDFZv2cEjl46o8yTC3nomtOZfFw7jfzcexVnDuvLncwYTXYXs3nF9O3LVUT146otVvP/t+qLtO3bncc1TM7jw0Wn8d1YZWUc1fL2PD1oXZaVW/Qe0tilWJEiSJCnydm4L2iQ4aFkqX+dD6yaRsGlh8df+PChFzpzn4fGToKCg7P3fvgZv3gJ9ToIz/lH+m/+FbYrS5lZ8v7xdQRvBqrY1AohLCtpfL50UVEQ0j4XYrsGMhL3lZAStl1p3LvdSf/9wKS2bxfCvC4fx6S+OY+7t4zl9cCJ/nbSYGSu3Vj0mAVVIJLRo0YKoqChiYmLIzMykY8eOrFlTRk+qcmRnZ3P22Wfzt7/9jdjYkm9yh0Khcj9l/sgjjzBixAhGjBjBpk2bqny/g81tr37DzNXb+Ot5QziiV/v6DgeAQd3i+Ou5QxncLb7K5/zi5L4M7BLLL/7zNeszcti6fTcXPjqNjxdvom3LJjwzzU+oN0rN2kDKnhLYfdsaladtSvCPQ97uiIUlSZIkseHbYO08qH7jkBqyTocGb/Ln51Z+7P7YtKj463R//pciZtXnsObLoN3QvnIy4NXrgvdvvj8RostuVQ5A4tBgTZ1T8f02zg+SAtVJJBTOdWnRDkZfG3wd1630jITsjcFazrDlReuz+GTxJi4/MoXTBieS1K4loVCIP501iK7xLfjJC3NI3+F7T9VRaSJhxIgRpKenc/XVVzN8+HCGDRvGEUdU3HuqUG5uLmeffTYXXXQRZ511FgCdOnUiLS0NgLS0NDp2LLv85JprrmHGjBnMmDGDhISEqj6fg8r0lVv5z6y1XH9sL04f3KW+w9kvzWKieeCCw9iVW8CNz83inIemMj8tkwcvHs6PxvVh9up0vk2tXiWMGoj+pwdr8pFVOz4+GcIFZQ/RkSRJkmrL+m+CtdOhFR8nHcw6D4L83bB5SWTvs2lR0A4XrEiQIqnwzffF75bet/h9yNsJ438PTVtWfJ2W7YL3b8pKSOytuoOWAdr3CtYxPy6e6RLXFTJTS1ZSZO/pclNOa6MnPltB8yZRXDiqe4ntbZo34Z8XHsbGrBx+8crXhMPhqsd2kKs0kfDvf/+b+Ph4rrvuOiZNmsSTTz7JhAkTKr1wOBzmqquuon///txyyy1F28844wyefPJJAJ588knOPPPM/Qj/4JVfEOb2178lMa45N447MHp69UpozZ1nDmTGqm1sztrFM1eN5qSBnTl7eDeaN4nimS9X13eIqolhl8HVk6Fj/6od3zYlWP3PoyRJkiJpwzxo2R7alN8SQTroFVbsbPgmsvfZtAi6jQz6oTszT4qc7D0txReVkUhY8EbQJqjriKpdK2k0rPwM8vPKP2bdrKCyoLDKoCra9YDrPocjf1K8LS4pSGpu36trTVEioXRFwqasXbw6ex3fH55E21ZNS+0f3C2eX57cj/fnb+CpL/yeU1WVJhKOP/74oq9TUlIYPHhwiW3l+fzzz3n66aeZPHkyQ4cOZejQobz99tvceuutTJo0iT59+vDBBx9w66237t8zOEg9/9Vq5qdl8utT+9OyaaUzsxuN7w/vxn3fH8J/bxjDqB7BcKW4Fk04Y0gXXp+zjqycCJdTqvZFRUPX4VU/3kSCJEmS6sKGb4P5COW025UEtO8NUTElZxjUtl3ZkLEaEg4J3my0tZEUOdkbg7/TG+ZB+l6dIHJ3El76Ad/GHs301elVu1b/02HHFlj9RfnHpM4JqhGq+29t50NLzmeI7RqsmXsNXC5qbVS6IuHpL1eRW1DAFWNSyr3FVUf1YFy/jixIy6xebAexct+BzsnJYceOHWzevJlt27YVlXlkZmaybl3lg2+POuqocktDPvzwwxqGK4D0Hbu59/1FjO7RjtMHJ9Z3OLUqFApx9vBupbZfNDqZl2as5bXZ67jkiJS6D0x1p01iMKDZRIIkSZL2xytXBdUGJ/2h9L78PNi4AEZcVfdxSY1JdBNo16vkDIPatnlxsCb0C1qO1cVwZ+lgVJAfvPne77Sg+mDJezDyB8G+ZZMJ5e7gjyt7M/2xafzrwmGcOKDs2QNFep8AMc1hwf+gx9Gl9+fuDGYkHHJS6VAKwuTk5Vf9w9Fxe94rzFhb/GHV7PXB+0ct2pY4NCc3n2e+XMXx/TrRM6F1uZcMhUI8ePEwmsVEVy0GlV+R8PDDDzN8+HAWLlzIsGHDGD58OMOHD+fMM8/kxhtvrMsYtY/73l9M5s5c7jhjYLnDqg80Q5LiGdQ1jme+XF1ugionN5+zH5zKvz9aWsfRqVZFRQWfQjGRIEmSpJrKzw3e2PjyQdi6vPT+rcsgLyf4xKOkiiX0jWxFQmGSIqEftE0O5uXt3QddUsWmPwYL3678uB1bIZwPKUdBu54l2xst+B+7YmKZVtCf5HYtue6Zmbw+p+QHyQsKwuzO2+vvZtNW0Ov44N/bsv7Orv8muF8Z8xFueWkOA/7vPQ69/T2Ov+8jLn5sGp8u2VT6GoX2TiQUyt4YtDXa573RV2evY+v23fzg6B7lX28PkwjVU24i4Sc/+QkrVqzg3nvvZcWKFUW/5s6dayKhHs1PzeTZaau45PBk+ifG1nc4deqi0d1ZtCGLGau2lbn/mS9XMXPVNv7y3iKmLt1cx9GpVrVNMZEgSZKkmtu0CPJ3BW9gfHpf6f1zXwjW6rTglA5WCX1h6wrI2xWZ629aCFFNgmHL8clBH/SstMjcSzrQZG+Cd26Fz/9ehWP3zEdo3QkOORlWfAK7twfJ90VvM7P5aBLbteHVH45hRHJbbnpxDg9/vIynv1zF9c/MZNjvJ3HYXe/zxtzU4mv2/w5kpRYPVd5bOYOW127bwRtzUxnbN4FzhnfjkE5tWLYpm5+8MIeMHeW0NG/RFpq0hIy9khvZG0q1NcrLL+Dxz1ZwaNdYRu9pma7aU+mMhGuvvZYHHniAc845h3POOYd//vOf5Obap76+zFy1lXatmnHziYfUdyh17oyhXWjTPIZnvyzdLzEzJ5d/TlnKET3b07NDK256cQ5bt++uhyhVKwoTCeVUn0iSJEkVSpsbrL2OD5IGe39IZcN8mPoADLkweINUUsUS+gVJuS3LInP9TYugQx+IjgkqEsAPlklVNfc5KMgN5v5UVslTOJy4TecgkZC/C5Z/BCs/hZwMns8aytF9EmjdLIYnrxzFuL4d+dM7C/nta98wd006J/TvRL/EWH78/Gzu+t98cvMLgrZFUTFBq6R9pc6CVh0htkuJzU99sYpQKMQfvzeIO84YyIMXD+exy0aQvmM3900qp41aKBRUJWTsNdehsCJhj9z8An7ywhyWbszmhrG9D5ouLnWp0kTCDTfcwMyZM7nhhhuKvr7++uvrIjaV4ZIjUvjo52OJb1l64viBrmXTGM4e1o235qXx5fItJfY9/PEy0nfkcttp/fnHBcNI35HLL16ZW6INUl5+AZuzI/QJCtWutimwKxN2ll19IkmSJFUobQ40bQ1nPAChKPj0r8H2ggJ48yZoFgvjf1+fEUqNR4c9H2TcHKE5CZsWFif14lOC1YHLUuUKCmDmRAhFw+6sYGh5RfYeTtz9iODfwkXvwII3yY9pwfu7BnJ07w4ANG8SzUOXDGfiFSOZ8rOxfH7rOO79/hBeuOZwLj8yhSc+X8FFj05jY37LoFXSgv+V/jBo6mzoOqxE66Htu/J44avVnHxoZ7rEtyjaPrBLHJccnswzX67im3UZZccf2xUyy65IyM0v4MfPz+ateWncdmp/Th10YM2UbSjKTSTk5eUBMH36dJ588knGjRvHuHHjmDBhAtOnT6+zAFVa62ZVHERyALrphD50b9eSq5+awcL1wVT1jZk5PP7ZCs4Y0oVDu8YxoEsst57Sjw8WbOTpL1exIC2T3785n8P/NJkj757Mqi3b6/lZqFJtU4LVT6FIkiSpJtLmQudBwacXh10Gc56F9NUwayKsmRYMYG7Vvr6jVCMxbfkWdu7Or+8w6k+HPkAoMgOXc3cGP/cl9AsexycF99pmIkGq1MpPgzlAhQOTN3xb8fFZe7U2imkKvY+Hxe/BwrdYFnckuaGmHNmrQ9HhTaKjGNu3Iz06tCr6dH+T6CjuOGMgfz9/KPPWZXD6A5+xquPxweyhvWep7MoOvmfs09bov7PWkpmTx5VjUkqFd8v4vrRt2ZT/e/0bCgrK6FAR1614RkJ+HmzfDK07sTuvgBufm8U736znN6f15+pjelb8OqjGyk0kjBo1CoDo6GiWLSsuX1u+fDnR0Q6iUP2Ib9mUJ68cRcum0Vz+xHRS03fytw+XkF8Q5mfji8uSrxiTwnF9E7j9jW855e+f8uQXKzmsezwAD30coXJM1R4TCZIkSaqpgnxYPw8ShwSPj7o5qEp47zaYdMf/s3fXcVWe7wPHP+fQ3R2ClIiKgt05a+rCzZwxdXOb6+23/K67UxfqjM2cmx2zG0RQpJTu7q5zzu+PR0AEJAQx7vfr5euR5zxxP4DCua/7ui5wGgbeszp1iMLNC00p4Kk/A2sXmHWUqIwiZvzmx4p7+X2kho70Hq0jGi5nRwGquowEdS2pDIrISBCE5gWuAW1jGPk6IGs+kFCcCZoGUpNkAPeJUJIJxensqfKlp70xRroaLbr1tN52/PvMYHQ11Zh5wgwVMlThV8sbVVfCzmcBFXQZXHuOUqnijzPxeNsb4eNo0uCaRjoavD6xG0GJ+WwLSm7wOkb2UhZCdQWUZAEqlHpWvLD5AgfCMnh3SncWDxNBhI7UZCChpiTMV199xahRoxg5ciQjR45k9OjRfP11I82qBOEWsTfRZc3C/pRUVDP7dz82ByQxZ0AXHM10a4+RyWR8+Yg307xteW9Kd/zfHMvv8/oyo68Dfwcmk5pf1olPIDSrpi6m+OVREARBEARBaK2caKgqBZve0sdGdtBnrlS/uboM7v+uXpkF4c60+nQc+0LTmfLjKX4+Gk21opna4G2062pT0Z0XU+qVzr3nWHhAVuRNXcIvNocn158nq+iaksM1WQ41GQkgNVxuZUZCUXlV001a4d7+2gl3p+IsqZxQ79mgawqmzlIQ/YbnpINBXU8B3MaBTI5KrsGabI/askYt1c3akB3LhuLl4U6g0o2Us1vwu5xE1srpEPYPwZ4vk2c5sPb441FZxGaVsHCIc5P9Cx72scfH0ZjP9l1u+G/ayF7aFqbW9ns4kKBib0g6b07qxsIhzq0av9B6TQYSsrKy+Oabb7h48SJPPvlkbWmjJUuWcOFCI524BeEW8rQx5Ld5fUnNL0dbXc6y0a4NjjHX1+K7mX1YMMQZUz2pp8STI7qiUsFvJ2Jv9ZCF1tAyAF1zkZEgCIIgCIIgtF5No+WajASAoS9JqzZHvQnmDd87CLdGUm4pj63yJym39KauU6VQcig8g3HdrRjX3YovD1xh+i9nickqbqeRSlQqFbsupaGlLic+p5SQpup23wssPCAnSion0ga7glOZt+ocB8IyWH06ru6FrMtSfXdTl7p9Jl1avajs6b+CeHD5aSqqG5agCkkuYOjnRzkbk9PImYLQdmvPxPPCpgvEZ3dsCe3yKgVbzyex9XwS+0LSOBmVReyh30FZxZ9Vo3h7ewiZuq4ty0i4pjkxuqbgOo4M27EUKHUY6ta6QAJIWQS/PdaXCtdJ2FdEo7thCmZpJ3i9ajHTLvgy/IujfH8oiuKKav44HY+lgdYN+xfI5TI+mNaDvNJKPj9wXRaUoZ20LUyp7ffw+4ViJveyYYnIRLglmgwkKBQKiouLKSoqorq6GpVKhUqlorq6mqKiols5RkFo1CAXM/5aMoDf5/fFXF+rRefYm+jyYB87Np5LrL8KQrj9mDiJQIIgCIIgCILQeqkXQV27rkEsSHXXX4mUyhwJHeqHw1F8vr/xEjjv7gzjZFQ26/1uLvPYLzaHwvJqHu3rwM+zffhhVh/ic0qY9tNpTkdn39S1rxWWWkhcdgkvjXNHQ03Gjoup7XbtxhSUVVFY3vSq+k5l7gGKyjZlja88GcuzGy/Q28GYkR4W/OmXQHHF1YBE1mUwc5Hqtdcw7iKtOK5u2Xv2vJJKzsTkEJtdwsqTcfVeUyhVvPHvJVLyy/h0X4TITBDaTXmVgq//u8L2i6mM+/Y4n+6NoKiD/v2+vyucV/++xKt/X+Kpv4J4bJU/sqA1+Cu78fbpKrYEJLM1yRhVbixU3iCocU1z4lqzNrHC/E10NdUaLTfUEnK5jCH3LwCgh1oSKWN+5MkXP2DXsqEMcTXn20ORDPv8CCcis3hsYBc01ZucjpauYWfEoqHObPBPxD/2mgCgkYO0LUimMFsqfaRlYsPnD/dqMsNBaF9Ndu21sbHhnXfeuZVjEYRW6+dk2upznhrpwragZFadiuP1id2aP0HoHCZdICWws0chCIIgCIIg3GnSgsGqB6hd93ZXvWWLj4S2UypVrDoVR0FZFT1sjZjcq27V6aHwDI5czsRQW51tgcm8cp9Hs5NJTdkfmo6uphrD3MyRyWRM9baln5MJC1YHsOCPc3w53ZsH+tjd9PPsupSKulzGjH4OBMTnsftSKm9O8kRN3v4TViqVinmr/MkorGDHsiFYGWq3+z1uSk3poZqJ/xZQqVR8vCeClafimNTTmm8e7U1EWiEPLj/DpnOJUi3z7Mj6QT+4WupWBflJLcogOhaZiUKpwsPKgB+PRDGtty32JlLp4/Vn4wlNKeS+7lb8F57Bf+EZjPeybs2TC0KjDoSl82L1KiY4VfK12fv8eiKWbUHJfDG9F6O7WTV/gRYKTMhl47lEFgx2YtFQZ4orqpHFn8T5QAaG973N5X4TSC8o54vvA5CpqSAzAuz7Nn6xogxwHVd/n1zOyehcBjibtvn/ZEAqrTT+E+RWXjh0HVm7+5fHfLmUnM+XB64QkVbI7AGOLbrci+Pc2Reazhv/hLD3+WFoa6hJ/VMARV4iewJTmAV8MHs0+lpNTm8L7azZHgmCcLfpaqHP5F62rD8bT35pJSqVirDUAn46EkVAfG5nD0+oYeIk/eLYxtRZQRAEQRAE4R6kVEL6JbDt3dkjuSeFpxVSUFaFnqYab/xzqbY3XXmVgvd2heFmqc/Xj/Ymp6SSQxEZbbqHUqniv/AMRnlYShNLV9kY6bBl6SB8u5jwwuaLrDgWc1PzGiqVit3BaQxzM8dYV5OpvW3JKKzgXFzHvGcMSswnOLmA9MJynlh3nvKq+iV64rJLeG9nGDnFnZRZb+4mbVvRcPlsbA4rT8Uxd6AjP87yQVtDjT6OJvR3MuWP0/FUVZZDTkz9/gggZSQA5Me36D6HIjKxMNBi5Xxp8vSj3REAZBSW89V/kQx3t2D5HB+6muvxzX+RKJQdM99VpVDy7cFI1p6J77B7CM0rr1Iwd6U/h9v4f0xLbT2fzBCNSKyz/fjq4R7sXDYESwNtlv4Z1G5ltKoUSt76NxQbI21eGe+Bg6kunjaGdEv5B7SNMOv3CNoaajiZ69F/wDAArlw62/jFKkugsqhBRkJyXimx2SUMc7O4+QEPegauCSLU6GVvzPpFAwh4ayxmLawooqupzicP9iQ2u4Sfj0ZLOzV1UeqYcfbCJcrz0qjUMMTNrh3GLbRYk4GEw4cP38pxCMIt9cwoF0oqFTyxPpDhXx5l8g+n+Oq/SOavPkdI8j1c9/J2YuIEKgUUJnf2SARBEARBEIQ7RV4cVBTW748g3DI1k2erFvSjWqnipS0XUShVrDgWQ3JeGe9P82J0N0tsjLTZFJDUpntcSMojq6iC+7warvg10tFg7eP9meJty+f7L7P8WEybnyUoMZ+U/DKmeEsrYMd6WqKjocbO4I4pb7T+bDwGWup8P7M3l1IKePXvS7WBkIPhGUz98RRrzsSz7uzNlYWqUVndyubU2oZSffJWNFz+4XAUlgZavD25e70sjieGdyUlv4yTfn7Se77rAwkmTtK2BQ2XK6uVHL+SxVhPSxxMdXl2tBv7w9I5HpnFB7vDqVIo+XCaF+pqcl4Y586VjCJ2X2r71zA6s4jX/r5ERFphvf35pZUs+OMc3x+O4t2dYTzw82kxt9BJtp5P4lR0Nj8cjuqweyTllnI6Josu8kxk1WWQE0Mve2P+WjwAR1Ndlqw7T2g79FT543Qcl9OLeHeKV92q+7J8uLwbej4KGjq1x84aP5QSdAgNOtMgEAnUNifGoH5GzqkoqRzcsDb0R2it1pYfGu5uwUM+dqw4FkNEWiF/ByZzpcyQ6rwkhllXo2kksotutSYDCaamrS8ZIwh3im7WhkzuacOFxDxcLPT59KGe7H1uGCa6mixcc46EnI5tlCO0QO0vj/GdOQpBEARBEAThTtJYo2Xhljkbm0NXcz0GdjXjvSle+MXm8v6uMFYcj2GKty2DXcxRk8t4pK8DJ6OySM5rfdPl/aHpaKrJGd3NstHXtdTV+H5Gbyb3tOH7w1Ek5rStsfPuS6loqssZ110KWOhqqnOflxV7Q9LqTcLnllQSmXFzfSSziyvYG5LOw772TOttx6vjPdgVnMp3h6L46sAVlqw7TxdzXXo7GPN3YDLKm1ztvi0wmd4f/Nf6VdMWHi3OSPCPzcEvNpelI1zqZY4AjO5miYuFHn7+Z+uuey0DG1DTbFE/Bv+4HIorqhnrKX2dFg9zxtlcjxc3X2TPpTSeHe1KFzM9AO7vaUM3awO+OxRFtaKVgRSkfgsvbwlm8/kkJv9wkjf/DSGnuIKYrGIeXH6Gc3G5fPWINz/P9iG9sJxpP5/ig13hZHdWFskdQqlUcSY6mzf+CWHPpbSbulaVQskvx2PRVJcTnFzQYcGcbUHJGFOMluLq3FH6JQBM9DRZ93h/DLXVWfBHwE3NLaXkl/HtwSjGeloy/trAadi/UF0OvWfXO15LQwOFhSf2lbF1K/ivdbU58bUZCVlFFWwLSsbKUAtXS/02j7Uj/W9yd4x0NHhw+Wle2RpMkZY1g8zLcNUtrd84WrglbqL4lSDc2b6b2ZtL745nzcL+zOrvSHdbQ9Y+3p9qpYr5q8+JH/adTQQSBEEQBEEQhNZKuwhyDbDw7OyR3HOqFUrOxeUyyMUMgEf62jOxhzXrziagIZfx1qS6r8mjfe0BqTRIa6hUKvaHpTPE1QwDbY0mj5PLZfzv/u6oy2V8vDe81c+iUKrYcymNUR4W9e4z1duWgrIqTkZlAXA8Mov7vj3O5B9OEp5a2NTlmrU5IIlKhZK5A6WSPk+NcOGhPnZ8fziKn45GM6OvA38vHcyioc6k5Jdx5ibKpqhUKlYcj6G0UsGT688TndmKIIi5B2RHSSXEmvHjkWjM9bWY1b9hPXS5XMYTw7uiVxCJClld2aS6A6Smqi14L3goPANtDTlDXKXV1Frqarw7pTu5JZW4WOixZHjXevd9aZw7cdklbAuSvvcUShWZReUUlDXfJPcv/wSCkwv4cJoX8wY5sTkgiZFfHeOBn09TUFbFhiUDme5rz+ReNhx6aQSzBzjyx5k4BnxymMfXBLD7UmrjK8XvEZfTC3l8TQAvbbnIF/svs/ZMPJ/vv8zQz48we6U/G88l8v6uMKraEOSpseNiKin5ZXzxcC90NNTYcK59MniupVSq2Ho+makO18wZpYfU/tXWWId1iwagUCp5bNU5sopaP7ekUql4d0cYAO9N9aq/kv/iX9LPONs+Dc4z7NKbXurJ/HI8mq3nk8gsLK97sShd2upbkV9ayef7LzP8i6MEJebz5HCX27ZZsYmeJh8/2AMzPS0+frAH/Xr1QKskrfHG0UKHE90ohHuWhpqc6xZG4Gqpz6r5/Ziz0o/H1wSwYcnARpu2rD8bz5WMIv53f3e01NUavC60A0M7kKuLQIIgCIIgCILQcmnBYNUd1DU7eyT3nJCUAoorqmsDCTKZjE8f6klqQTmz+jlgbVTXPNjeRJdhbhZsPZ/Ec2PcWty8ODytkKTcMpaNar4Br7WRNs+McuXLA1c4HZ1dO9HcEgHxuWQWVdSWNaoxzM0CIx0N/glK4VxcLr+eiMXDygCQ8dKWi+xYNuSG7w+PXcnkg13hvDOlOyM9pAkwhVLFX34JDHYxq10RLJPJ+OShnmiqy/FxNOHRfg4AjOtuhZGOBpvPJzG0jWVITkfnEJ1ZzItj3Vnvl8D81QH8+8xgLA1a0NzZwgOqSqTys8ZNN0wNTMjlVHQ2b03yREez8c/HA33sCNsbQby6C07q2jT4DjDp0mxpI5VKxaGITIa5WdTLehjpYclXj3jT28G4wddjXHcrvO2N+HB3BN8diiKzqAKFUoWaXMYAZ1Pu627FOC9r7Ix16p2XWVjOl/uvMNTVnLkDuyCTyZg70JFP9l4mp7iCn2b74GCqW3u8kY4GHz3Qk/mDnNgWlML2CykcuZyJmZ4m254ajJO53g2f7W5TpVDy0uZgEnNLMdRWJ7Ooguqrn/fhbua8cbWJ+dN/BfFfWEa9Ru0tpVCqWH4sGk8bQ6b1tuVsTA7bL6TyxiRPDG8QeGyts7E5UtmznpWQCWjoQUZovWNcLfVZvaAfM3/z45WtwaxZ2K/FE/UV1Qre+CeEQxEZvDGxW23jcEAqLZYcAOM+hMauZ+WFjrKYXgbFvPr3pdqx+DgaMyg7iAeBZ3amcCI1leKKaqZ62/LCWHecb/Pvxwk9bJjQ4+r3xGkHqYRhVRm4T+jcgd2DRCBBEK7j28WEn2f78MT6QB795SyrFvTFxkj6JUKlUvHdoSi+v1prL72gnOVzfG+us73QOLma9MvpjQIJ258GDV2Y/NUtG5YgCIIgCIJwm1KppECC59TOHsk96WystEp+YFez2n3GuprseGZIo8fP7OfA038FcSIqi1EeLVtVeiA0HbmM2jI2zVk01JlNAdIq573PDUNdrfH3bdUKJWGphRRXVFNcUc3W80noaKg1KJ+kqS5nUk9rNp6T+jvMGeDI/+7vzunobBatPc/3h6L4vwndGrsFgQl5LP0zkMpqJU+sC+TXx3wZ1c2SwxEZpBaU886U7vWO19ZQ47OHezXY90BvWzYGJJFfWomxbusDZmvOxGOqp8mTI7oyqpsFM371Y9Ga8/y5eAAhyQUcuNpfoL+zKR890KN+WaKaEkRZkXWBBEUVpARCURoUpkFxOkcjrTDVc2fOwKaDDVrVxfQmiuVlk0nfEcoHU3sgvzagZNwFUi/c8Fki0opIyS/j+TFuDV6b7mvf6DkymYz3pnrx45FoTPU0sTLUwtpQm/TCcv4Ly+C9XeG8tyuccd2teG+qV21A4YPd4VQolHz4QI/aCWFXSwNWL+h3wzG6WRnw+sRuvDregzMx2Tz1ZxDv7QrjjwU3nlhWKFX8cTqOkR6WHV5yJj67hEqFEncrgw67x6pTcYSnFfLLXB8m9LBBqVSRXVKBppq89vtYoVRhb6LDurPxbQok7A9NJzarhJ9m90EmkzFnoCObzyex/UIK8wY5tduzbDmfhKG2Ot56+dIOt3GQ2LDBcR9HE96a7Mk7O8JYdzaB+YObH0N2cQVL1wdyPiGPF8a68cQ1GTUABG8AmRr0mtH4Bax6ArD1AUPCDQZzJiab09E5HI7IpDspKJCTWqnHKA99nhrpgqeNYSue/DZhdPXftrJKlDbqBCKQIAiNGONpxar5fVm24QLTfjrNqvn96GFnyKf7LvPbiVim+9rT086Id3eG8cyGIH6e7SOCCR3BxKnpVShleRC8CWRyGPEa6Fvc0qEJgiAIgiAIt5mCJOl3RNEfoVOcjcnBw8oAc32tFh0/1tMKUz1NNp1LbDSQkFlYzsZzSShVKlws9XGx0GNfaDr9nEwxa+E9tDXUeGtSd5b+Gchf/omNTuSpVCqeWB/IkcuZ9fY/7GOPrmbDKZO5A7twMamA50a7MrGnNNk5xtOKGX0d+OV4DGM8rfDtYlLvnKiMIh5fE4C1oTYr5/fjxc0XeXJ9IL885sN6vwRsjLRbHBx5tJ8Da88msDM4tcnJ0fzSSuau8meoqwWvT6wLbCTllnL4cgZPj5T6FvSyN+an2X1Ysu48Ph8eRKFUoa0hZUH8HZhMYm4pvz/WFyPdq6u5a5oiZ10Gt7FQXUHG8klY5Z6v+3zK5LykVDHI9SV0Ncc1/SBxJ5CrqjHuOYGv/BJRquCjadcEE0y6SP+eywulRs+NOBSRgUwGo5rol9GUPo4mjQYAXh3fjdisYnYGp/Lr8VjGfXOcl8a542Khz+5Labww1q3NK7fV5DKGuVnwwlg3PtoTwcHwDO7zarpR7DcHr/Dz0Rh+OR7D5icH4WJRP5hwPj6XiPQiHrtaDqutFEoVj68NIK+kkmOvjKr7Wrej+OwSvj0YyXgvq9pV5XK5rEEWjJpcxtyBXfhs32UiM4paFdhQqVT8fDSaruZ6TLx6j172xvSyN+Ivv0Qeu5pF0hqV1Up+OxHDH6fjcTbXY7CrOT6OxuwLTWdmPwc0CnZKE9kO/SF8u9SD4LpSO48N7MLRy5l8vDeCQS5mtc+kUqnYE5JGUEI+lleDWTqaanywK5yckgp+nu3TMJiiVEhzIG7jwKCJ/y8spRJy8sxQenSbSA87I54Y7iK9tmM7RFvx77Jhrfo83HYMrwkSikDCLScCCYLQhJEelmx7ajCPrwng0V/PMsTVnEMRGcwb1IX3pnjV/oLz7s4wnt0YxE+zfdBoYoWL0EYmTpC6vfHXIv8DlUL6c2kTDH72Vo5MEARBEARB6Gzxp+HvheA4CDyngKJS2m/Tu1OHdS+qrFYSEJ/LzH5Nr0C/nqa6nEf62vPr8VgmfX+Sh3zsmNrbltIKBb+eiGVbYDJVV2vxq67pLfzO/d2buGLjxntZMcTVjG8ORjLF2xZTvfqr+LcGJnPkciZPj3RhhLsFelrq6GupY2+i0+j1vGyN2Pd8w4m4t+/35FR0Ni9vucje54fVBiFS8suYt/ocmupy1i8agIOpLn8uGsBjq/15cn0gVQoVL49zbzJborH7e9kasuV8UqOBBIVSxbMbLxCaUkhoSiEuFno80lcqjbTeLwG5TFbbiwGkIMg3j/bGLzaHMZ5WDHU1R0dTjR0XU3hlazDTfznD2sf7Y2usA7qmoGchBRKUSqJ+m4db7nm+kj/OwTJ3MlQmlKPJz9orGBPzNRyokEqwyBt5tujDoGnAnIenk2IUy4pjMahUKj5+oKf0XrumZ15+Alj3bPRzcTgigz4OxlgYtCyw1BJdLfR5Yaw7D/vY886OUD7aE4FMBl3N9XhqpMtNX3/+YCe2nE/i/V3hDHOzaLT0076QNH4+GsPEHtYExOcy53d/ti4dhIOpLiqVipUn4/hs/2UUShU9bA3p42jSyJ1aZl9oGrFZUkPgbw9F8t5UrzZfqzEqlYo3/w1BU03OB9N6NHv8o30d+OZgJOvPJvDhA80fX+PYlSzC0wr5YnqveqXS5gxw5LVtIZxPyKOfkykA0ZnFJOSUMLqbZZPBhYD4XN78J4SozGKGu1tQUFbFT0eiqOlz/mhfBziYIH2f1nx/poeA65h615HJZHwx3ZsJ353guY0X2LFsCOkF5by9PZSTUdloqsmpvKYnhJWhFlueHEQve+OGg4o5KmX+TPy86U+EtqGUzZMR1vC1RgIddySjawMJd8Hz3GFEIEEQbsDD2oDtzwxhybrzHIrI4MnhXXl9YrfaHzbzBzuhVKl4f1c4i9ae59tHvVu8OkZoARMnKMuF8gLQNqr/2uXdYGAj/RAJWgeDljVeI1AQBEEQBEG4O51fDRXFkHBGWg0KUskHq9ZNNAtSSZDkvFIWD+va/MGNuJiUT3mVsrY/Qku9NM4dG0Nt/r2Qwkd7IvhkbwQA6mpSkOGJ4V2xMtQmPqeEmMwSMgrLmdnfoVX3kMlkvHO/F/f/eJLFawNYv2gAelf74KUXlPPh7nD6O5nyyn0e9UvrtJKBtgZfPeLNrN/9GPv18dp7ZBdLteC3PDmotoa+ka4G6xcNYN4qfy6nFzGjlc/0aF8H3t0ZRlhqAV629d8nfXngCiejsvnogR7sC03jre2huFsZ4G5lwOaAJCZ4WdeW7q3xQB87HuhjV2/ftN52WBho8eS6QB5cfpq3J3dnvJc1muYekB1J4JqX8M3czw7zJ3jhqc9ZUFbF2Zgc/GJzqHD5A5K/h7M/QWEqPPgLqF/zPlmlgpjD4Dwcmbom/zfeAzWZjJ+ORpOaX86Tw7syyLiL1Dchr/FAQkZhOcHJBbw63qNVn7uWcjDVZfWCfuwLTefX4zG83U79ETWuTqjP/M2PFceieem++uOPzCji5a3B9HE05ruZvYnNKmHmb37MXunHHwv68+3BSPaEpDHBy5ozMdn8diKWFXN92zQWaRV/DF0t9BjgbMZ6vwRmD3CslwkQnVnE+7vCeWmce5sCFlsDkzkTk8PHD/bAyrD5Phymeprc38uGf4KS+b8JHk02Vf87MJnlx6IpKq+mpKKa0koFdsY6PHjd9/EUb1s+2hPBX34JqMtl/HI8hv/CM1CpYFZ/B96f2qNedYmC0io+2x/BxnNJ2BnrsHpBX0Z3k1a9F5RV4R+bQ0llNV62hlIZ5i5DwOpqwKORQAKAhYEWXz7Si8fXnOexVecITsq/+n3gxZwBXSirUpBeUE5mUTme1oaY6DVRsuziX6Bj0nxfAOuejQcSitKlOZQ7nYG19LNepRAZCZ1ABBIEoRkWBlpsemIg4WmF9HEwbhCxXjjEGR0NNd7ZGcakH07yw8w+DOjaul+ghSaYXn0jk3oRuo6o219VBtGHwHsW2PnAjmcg0Q+6DOqUYQqCIAiCIAi3WGUpXNkHvR6Byd9IzScjdoG2MWg0vpL8XlfTUPZaeSWV/G9HKLsvpQFgY6TTptrkZ2NykMlgoHPr3gdpqauxYIgzC4Y4E51ZzI6LKciQygdZXjPp2M3akG7Wba/l7WFtwI+zfHhmQxCL1gawZmF/tNTlvPVvCFUKJV9M73VTQYQag1zM+OLhXhyLrCuT1M3GkMeHODWoRW6ko8HmJweRXVzRskbH15jW25aP90aw9XwyXlPrAgm7L6Xyy/EYZg9wZO7ALkzqacOUH0+x9M9A5gxwpKCsqkV12msMdjFn61ODeOrPIJ7deAELAy1+N7OiV/p2fPHntPEUJi/9DHU1Oeb6Wkzxtq1rUN3zCzC0g0PvgpkLjH677sI5MZCfCEOeB6Rgz8v3uWOsq8HPR6OZvdKfPuYK/gWqsmNpbCp547lEQGqe3FFkMhmTetowqWf7Tr4O7GrGtN62/HIilod87GsbLxeUVfHEuvPoaanzy1xftNTV8LQxZN3j/Zmz0p9x3x5HBrw5qRtLhnXliwNX+OV4DPHZJW1q3nz0SiYRaYV89Yg3o7tZsudSKh/sCmf9ov7IZDLis0uY/bs/mUUVXEkvYtezQ1sUDKiRW1LJx3si6O9kyqxWZCvNG+TEP1cbVD/WSNZNYEIer2+7RDcbAwY4m6KnqY6eljqTe9k0qBKhq6nOwz72rD0bz/aLqRjpaPDsKFcqFSp+OR5DbFYJv8z1xVhXg53BqXy4O5y80iqeGN6VF8a61StvZqSjUVeOqroCCpKlxY+6pmDk0KDh8rVGd7Ni3qAurDubwMQe1rw7xau2Ab2+ljqulvo37oVRlgeX94DvgvpBucZYecGVvdK8ybU/D4sz747Sf3I1MLSVyhmKQMItJwIJgtAC2hpq+Nwg+j6zvyM97Y1YtuECs37348Wx7jw9yrXBL+pCK7mMAR1T8P+lfiAh9hhUlUK3yeA4EPa9LmUliECCIAiCIAjCvSHqAFSVQI+HpUkFx4HSH6FR6QXljP3mOMa6GgxxMWewqxlqchnv7QynoKySV+5z57/wDN7ZEcrAri3vQVDjbGw2XraGN1Vf3dVSn5fv65jV5QATeljzzaPevHC1P8GkntYcvpzJ25M92zQJ25RH+znwaL+WZRhoa6hhb6Lb6nsY62oy3suazQFJJOeV4WKph62RDp/vv4xvFxPemyKVpzHV0+TXx3yZ/ssZvvovEk8bQ/o5tW5VeTdrQw6/NILjkVmsOxvP9mh9emsoCNcbwMBlf6DW1Cp9mQyGvgAp58H/N6kUbU2Wecxhaesy5prDZSwe1pW5A7uw51Ia687Gk11kyPkTJ/DwXFTbm0ClUrH8WAzfHYpiYg9r3Dq4EXFHeXOSJ4fCM1jwxzmsjbQpqVCQUVhOXmklG5cMrDdh7+1gzJqF/fjywBWeH+vGYBdzABYOdmLVyThWnYprVRkgkD6PPx2Jxs5Yh2m9bdFQk/PiOHfe3xXOwfAMvOyMmLPSnyqFkh9n9eG1bZd46s9ANj0xqMX9Ib89GElxRTWfPNSjVYG63g5Sb4N1ZxOYe11vg5ziCpZtCMLGWJu/Fg/ESKf5/3MeH+JMeGoh47pbMWuAI/pXs4W6WRvwf9su8cDy0zia6nIyKhtvB2PWPt6jQaZPA/lJgKquBJdVDykj4QbeneLFvEFdcLVsQ1PrcytBUQG9Zzd/rJUXqJSQGSEtvASpv0JJ1t0z8W5oJ2U76YpFvLeaKOguCO3Ey9aIXc8OZYq3LV8fjOT5TReouqbWndAGmrrQ/wkpmp51pW7/5d2gZQROw0BTD3pOh7B/pRJIgiAIgiAIwt0v9B9pQqTLkM4eyR3hT78ESiqr6WZtwL7QNJ7fdJFlG6QV5jueGcqy0W58Od2bwvIq3tsV3qprl1cpCErIr53cvJ1N623HZw/15HhkFq9tC8HH0ZiFQ5w7e1ht8up9Hoz2tCQxt4Q/TsXz7s4wDLTVWTHHp95Ebw87Iz5/uBcAS4Y5t7rhLEiNcUd1s+SPhf1Z/OQLRLotxmPZ36iptyBwNOxlqCiAgJV1+6IPS9nnpg0/99oaajzsa8+OZUOR2/TEsSqaqT+e4r+wdFQqFZ/tv8yXB67wYB87fpjVp03PczuwMtTmvale6Gqqo1SCub4m/Z1NWT7Hl75Xa/lfq6+TKZufHFTv35mloTYP9LFla2ASuSWVrbq/X2wuQYn5LB3RtXYV/9yBXXCz1OfDPeHM+d2PwvIq1i8awBRvW76c7k1QYj7v72qkZE4jojKK2HAukbkDHNs0cf7YwC5EZRaz+nQ8ldXSvIpCqeKFzRfJKalkxRzfFgURABzNdNmydBBLhnetDSKAVNJr45KBlFRUcyExnw+mefHPU4ObDyKAVNYI6gIJ1j0hO1LKAmiCmlzWtiBCXgKc/Bq6TwPb3s0ff22ppRqlOVIpIIOmG3zfUUycpKyExvqvCB1KZCQIQjvS11Lnuxm98bQx5LN9lymvUvLT7D5oa9x8LcV7Vv8lcPo7OPMjTPsJFNVSGrv7faB+tXagzzwI/ANCtkK/xdK+nBgI+Vs6X7fhL2KCIAiCIAjCHaqiCKL+A5/5UjaCcEPlVQo2nktkTDdLVs7vh0KpIiy1gKTcMsZ1t6qddPawNuDZ0W58czCSyT1tmNCjZRNOQQl5VCqUDLpDyrvO6OdIRbWSX4/H8sV07zs2i9zRTJefZ0urjasVSpLzyrAw0KrtzXCtab3tGOxi3i5Nie0du8Kcr1t+gm0fcB0LZ5fDgKekf7PxJ6H3nGZPNe3qi0lWAK7GWjyxPhAfR2OCEvOZO9CRD6Zet8o9/pS0dRrayifqPI/0dahthN1WS4Z1Zcv5ZNadjeeFse4tPu/no9GY62vVu7+Gmpx3p3gxd5U/uppqrF80gB520qT65F42hKS48MvxGHraGTGz/41LFX28NwJdTTWeb8WYrjXF25aN5xL5cHc4v5+IZfEwZ3JLKjkZlc2nD/WsHdfN8u1iwqGXRqBS0XRvgsbkxUnbmmCYdc+GWQDt5cCbUobP+E9adryJM+hbQ8wR8J0v7SvOkLZ3S3PiMf+DkuzOHsU9SYRuBKGdyWQylo5w4YNpXhyKyGDJuvOUVSo6e1h3Lj1z6DMXLm2WmgMl+UvR9G6T646x7SP94A5aJ72xPPgu/DwAjn0Cfz0i7RMEQRAEQRDuDlf2QXW5VNZIaNaeS2nklFTW1sZXk8voZW/M5F42DUqUPDXShe42hry9PZS8Fq5wPhaZhZpcRj/nO2fxzrxBTpx6bdSNa5LfQdTV5DiZ6zUaRKjRHkGENhv2CpRmQ9BaSDwrlaltpCltA9a9kCkq2fSQGbP6OxCUmM9TI134cNp1QYRzv8Oa+2HjLCjN7bjnuA25WRkwupsl684mtHjewS82h1PR2SwZ5txg0eNQN3M+ebAnfy0egG+X+mWwXh3vwTA3c97ZEUZ0ZtPvsY9HZnHsShbPjXbDtDWT89fQ1lBj21ODWft4f5zMdfloTwTLj8XwsI89M1tYOqyljHU1WxdEACkjQV27rlSQdSNZAO0h6pBUkWH4q2Bk37Jz5HLwmCBl/lRXSPuKagIJd0lGgpF9y7IzhHYnAgmC0EHmDXLii+m9OB2dzbzV/kRnFnf2kO5cg54BZbXUK+HyHlDTkla11JDJpBVpacHwvbeUwdDzEZj6E6RegE2zoaq804YvCIIgCIIgtKPQbWBoD/b9Onsktz2VSsXas/G4WOgx1LX50kMaanK+esSb/NJK3vgnBKVSdcPjK6oVbAtMZkw3y3olQ+4Ed2pJnDtSl0HgOBhO/wBX9oNcQypT2xzrngBoZYXy6UO9OPfWGF6b0K3ua6dUSovI9r4iZSJUFkslYO4xTwzvSm5JJX8HJt3wOJVKxfqz8cxbfQ4bI23mDOzS6HGzBzjSp5EekWpyGd/O6I2Ophpv/RuKStXw/4dqhZKP94TjaKrLvMGNX7+lZDIZI9wt2PTEIP55ejAvj3Pnowd63B7/dvPipfI6NWMxdgJNg/YNJFRXwL5XwcwVBi1r3bkek6CyqC5T527LSBA6jQgkCEIHerSvA9/P7ENISgHjvj3O038FEpoi6vi3mmlX8JwKAashfAd0HQla19UW7PkI6JiAcRdYfBgeXAE+j8EDKyDuBGxdAIqqzhi9IAiCIAiC0F7K8qRVlj0eFLWRW+BCUj6XkguYP9ipxZNv3W0NeX1iN/aHpfP5/ss3PHZ/aDo5JZXMbWJCUhBqDX8ZilIh4HepMbpWC7JBzFylVd9XJ2ctDeoaEFNdCf8+KS0i810Ij20H71lSdkJBcoc8wu1qgLMpPo7GfLg7gtWn4hqd4M8vrWTpn4H8b0cYg13M2PXs0DYF/8z1tXh9Yjf843L5JyilweubzycRmVHMGxO7odVUI+428HE04dkxbuho3ibl7GoCCTXkcikrISO0/e5x5gfIjYWJX9SVdW4p5+GgoStl8ME1gYS7pNmy0GnEb16C0MGmeNty6rXRPD3ShZOR2dz/4ykWrw0gKbe0s4d2ZxnynNSkqzC5flmjGjrG8FIELDkC9n3r9nvPgElfQeQ+2NHKKL4gCIIgCIJwe4nYDcoq8Hqos0fS4WKyinl24wWWH4tG0UxmgEqlYm9IGn/6JVBRXVfeZO2ZeAy01HnIp4UlMa5aNNSZxwZ24dcTsaz3S2jyuL/8E+liptuibAfhHucyBmx6S5nmLSlrBKCmDpbdIf1Sw9fO/gghW2D0/+D+b6VjR74BqODYp+058tueTCZj5fx+DHc354Pd4Sxee57ckkpUKqkfyrcHI5nw3UmOXM7k7cmerJ7fD3P9tpe6mtHXAR9HYz7eG0F+aV0JtKOXM/l072X6O5m2uMfKHUmlgtw4qRfBtax6QHqolClzszLC4cTX0oLKlv57uZaGDriMlgIJKpUUSNAyBE3dmx+bcE8TgQRBuAXM9bV4dXw3Tr8xmlfHe3A2Jof7vj3BypOxVCva4YfMvcDOF7oMBWTgMbHxYzR06lILr9V/CQx+Di5tgvwbp3sKgiAIgiAIt7HQbdLkjW2fzh5JhykoreKDXeGM//YEB0LT+WL/Feau9CejsPFSncFJ+Uz/5SxP/xXE29tDmfT9Sfxjc8gsKmdvSBrT+9q3euWxTCbj3SndGdPNknd3hHI4IqPBMZEZRZyLy2V2f8f69eoFoTEyGYx6E9Q0pbIrLWXdU8pIuH6V/ZV9YNcXhr9yTXkZB+i3BC5ugKwr7Tf2O4Cpnia/z+vLu1O6czIqm/HfnWDo50eZ/MMpfjwShaOZLv88NYTFw7re9L9XuVzGxw/2pKCsis/2XUalUrHyZCyL1gbQxUyX72f1vj3KD3WUkmyoKqmfkQDS92plEeTHS8GE0H/gr0el7IXWXn/jDNA2krIR2sp9grQQMz1ECiSIskZCO7izihgKwh3OUFuDZ0a58mAfO/63PZSP9kSw42IqXz/qjbuVQYPjC0qr+NM/gem+9lgZajdyxXvMlO+l1Sht+QHYa4aUGhh/EnrPbv+xCYIgCIIgCB2rOEsqWTn0hcYXj9zh8ksr2XI+iRXHYsgvq2JmP0devs+dI5czeXdHGBO+O8HnD/fCw9qA9IJyMooqOH4li21ByZjra/L5wz2xMNDinR1hzPjNDzdLfaoUKuYNcmrTeNTV5Pw4uw8zfvVj2YYLbHxiIL0djGtf3+CfiKaanOm+rct2EO5h7uPh9STQaMV7W+ueUpPmgmQpUABSQ+WUQBjxWsPjh70EQevgyIcw48/2GfcdQiaTsXCIM/2dTXl/VziG2uo8P8aN0Z6WN5WB0BhPG0MWD3Xm1xOxZBdXcCgikwle1nwzwxtdzbt8qrEmMNBYIAHA/zdIOFXXLyFqnLS4sSWqK2DzXCjOhIV7wdCm7eN0Hw/IpKBbUcbd02hZ6FR3+b9uQbg92RrrsHJ+X/aEpPHezjAeW+XPvueHY6pXV/dOpVLxxr+X2BuSzm8nYvnogR5M8batd52C0irU1GR3XGOzNjN3lf60hWV30DWT3nyKQIIgCIIgCMKdJ2IHqBTQ4+HOHkm7CkkuYN3ZeHYGp1JRrWSIqxlvTepOd1tDQOq75uNowrMbL/DE+sB652qqyXlyRFeWjXLFQFsDgEFdzfn+cBS/n4xlTDdLnM312jw2XU11Vi3oy8MrzvDYKn/WLxpAbwdjSiur2RaYzKSe1pi18wSlcJdrTRABwMZb2qaH1AUSYo+CSgmuYxser2cOg5+FY59A8vn6ZW/vEV62Rmx5clCH3+f5sW7svpTGoYhMlo1y5aVx7nd+dpJKBcsHQv8noN+ixo/Ji5O2pteVNrL0BJkc/FdIQYYHf4PdL7Q8I0Glgt0vQeJZmL5aqspwM/Qtwb4fXNkLFUV1/5YE4SbcI7OPgnD7kclk3N/LFmdzPR78+Qz/9/clfp/nW5sC+O+FFPaGpLNwiBMXEvN5duMF/gvP4NnRrvjF5rA/NB3/uFxsjbX5e+lgkbHQHLkcnIZJgQSV6q5cxSYIgiAIgnBXC/0XzD2kBSJ3iX8vJPPi5mB0NNR42NeexwZ2wdPGsMFxrpb6/Pv0YLZfSEFNLsPaSBtrQ21sjXXQu25RkY6mGq9P7Ma8QV3Q1775t/yWBtpsemIQs37z47GV/qxb1J/IjCKKKqqZI5osCx3NsjsgkwIJ3a6WRIo6BDomTZc4G/QMnP0ZAv+4JwMJt4qupjprFvYjs6iCIXdLn5TCFMi6DBG7bhBIiJe2xo7192vowITPpPJdfeaCmobUDDw3rmX3PvsTXPxTyrRpr4C5x0Q4/D7INcDtvva5pnBPE4EEQehkXrZGvDaxGx/uDudPvwQeG+REcl4p7+4Io7+TKW9P7o5KpWLFsRi+PxzFruBUAFws9Jg/yInNAYnMXenP5icH1ctoEBrhPBzCt0NuLJi5dPZoBEEQBEEQhJYqTIOE01Iz1btoQcj6swm4Wuqz7anBGOlo3PBYbQ01ZvZ3vOEx17I11rnZ4dWyM9Zh0xMDmfW7H4+tOoeZvibuVvr07WLSbvcQhEZp6Uvv3WoaLiuVEH1IaiQrV2v6HOdhEHfy1o3zHuVmZYBbI2Wa71jZkdI2OQAU1VIT7+vlxYOBjRQ4uN6AJ+t/bOJUl8FwI+mhcOg9qbnyiNdbOegb8JgkBRKUVWBg1X7XFe5ZotmyINwGHh/ixEgPCz7cE0F4aiEvbwlGBXz9qDdqchnqanKeHePGjmVDeHdKdw69NJzDL4/knSndWTm/Hwm5pSz44xxF5VWd/Si3N+cR0jbueOeOQxAEQRAEQWid8O2ACno81NkjaTeJOaUEJebzkI9ds0GE24Ht1WCChYEWCTmlzB3Y5e5uqCrcPqx71gUSMkKhJLPxskbXch4O+QmQl9Dx4xPuHtlR0rayWPpea0xuXMP+CE0xcZYCD9c3C7+WUgG7ngNtY6kvpLwdp2otPKQxAOiLQIJw80QgQRBuAzKZjK8e8cZQW4NHfz2Lf1wu707pjoOpbr3jvGyNWDjEGVfLuoj/IBczVszxITy1kEVrzxObVUxWUQXlVQpUN/phdS8ycwEDW6m8kSAIgiAIgnDnCN0mTSaau3X2SNrNjospAEy9rg/a7czGSAomvDreg0d8HTp7OMK9wron5CdCWb6UjQBSRsKNOA2TtvEiK0FohawrUmkigCT/xo/Ji6+bnG+OqTNUlUJxRtPHnPtNah4+8XPQNW3VcJslk0lZCSACCUK7EIEEQbhNmOtr8c2j3hRXVDPey4rpvvYtPneMpxXfzOhNQHwuo78+Tr+PD9Htf/vp8e4B/glK7sBR32FkMmllStxJKSVWEARBEARBuP3lJUhlJrzunmwElUrF9osp9HMywd5Et/kTbiNWhto8M8oVHc0mysoIQnuz7iVtM0Ih+rAUWDCwvvE5lp6gay4WkQmtkx0pNSU2cpCaHl+vqhyKUluXkQBNN1zOT4TDH4LruPbri3A975nSeK28Oub6wj1F9EgQhNvIcHcL9r8wDCczvVanCU/1tsXZTI+ozCKKK6oprqjm2OUsXtoSTHZxBU8Mv3FPgA3+iZRUVOPtYExPO6O7942B83C4tAmyIsQPUkEQBEEQhDtB2L/S9i4qaxSWWkhMVgkLh7RwVasg3Muse0rbhDOQ5AeDn2v+HJmsrk+CSnVX9VYROlB2FLiOkSbe4081/N7JT5S2LQ0kmF79Pz43DhwH1n9NpYLdL0l/v/+bjvsetekFzwd3zLWFe44IJAjCbaabtWGbz+1pb0RPe6PajxcNdeblLcF8svcymYUVvDnJE7m84Q+nMzHZvPlvSO3HanIZbpb6mOtroaelhr6WBs7mujw5wgUNtTs8kcn5aopr3AkRSBAEQRAEQbgThG4Du74tn7i5A+y4mIK6XMbknjadPRRBuP3pW4GeBZz7HZTVzfdHqOE0TApE5sZKZW4F4UbKC6A4XSqhp6kPIVulPhvX/uypaZxs2sIgsJEDyOSNN1wO3QbRB2HCZ2DseNPDF4RbQQQSBOEupqWuxg8z+2Cur8XKU3FkF1fw9aO9UbsmmFCtUPL+znDsTaR6p1fSi7iYlE9YaiH5pZVkFVVQVF7FtqBy8kurePv+7p34RO3A2FFKL4w7AQOf6uzRCIIgCIIgCDeSHS01WR3/SWePpN0olCp2Bqcy0sMCEz3Nzh6OINz+ZDIpKyHmCGgagEP/lp3nPELaxh0XgQShednR0tbcHYy7SH9P9KsfSMiMkLYtDWyra4KhvZSRcL2Lf4GZK/R/oq0jFoRbTgQSBOEuJ5fLeHdKdywMtPjywBXM9LX43zXBgD/9EriSUcQvc32xN9HF3kSXMZ4Nm/C8uyOUlafi8HYwZkozDeFyiisw0dVsNPshJb+MjMJyfBxNbv7h2sp5uLQyRVENauK/QUEQBEEQhNtW2D+ADLwe7OyRtBv/2BwyCit4e7JdZw9FEO4cNYGEriNATaNl55i5gIGNVN6o7+MdOz7hzpd9Rdqae0gZB1pGUp8E75nSfkU1nF8tZcjpW7b8uqZODTMSVCpIvQCeU0B+l5aVFu5Kd3iNEkEQWkImk/HMKFcWDnFi1ak41p+NB6QJ/28ORjLMzZzxXg2DB9d6a3J3fLuY8Nq2S0RmFDV53H9h6fT7+BDzVp8jNb+s3mu7L6Uy/tsTPLT8DMuPRaNSqW762drEeThUFEK6qBMoCIIgCIJw21Iq4dIWcBwEhjdeyHK7qqxWMvWnU8z49Sw7LqZQUa1g+8UU9DTVGNvI4h1BEJpQ03C5pWWN4GqfhOEQf7VPQo2oQ7BxFiiq2neMwp0tOxLkGmDSRZrcd+gPif51r4dvl0odDX2xddc1cW6YkZCfAGV5YNvnpoctCLeSCCQIwj3k7cndGetpybs7wzh6JZOv/rtCaaWCd6d0b7a5s6a6nOVzfNDTUmfp+kAKyxv+0hWSXMDzmy7iZK5HUGIe4787wfYLKZRXKXjz3xCWbbiAm5U+k3vZ8MX+K/zf35eorFZ21OM2zXm4tI07cevvLQiCIAiCILRM1AHIiQLfBZ09knqqFEr8YnNatChm96VULiUXEJtdwvObLjLo0yPsCk5jfA9rdDTFKlRBaDG3+2Dg061vuu40DEqyIOuy9HF+EmxbBFf2ShPHglAjOwpMu9ZlvDgOhKwIKM2VAlGnvpPKHnlMat11TZ2hNBsqrlmQmXpB2opAgnCHEYEEQbiHqMllfD+zD542hjzzVxCbApJYMNgJV0uDFp1vZajNz7N9SMgt5Yl154nJKq59LTW/jEVrAzDV02TTEwPZ9/ww3K0MeGHzRYZ8doQN/ok8OaIrW54cxE+z+vD8GDe2BiYzb7U/mYXlHfXIjdO3BAtPEUgQBEEQBEG4XalUcPIbqb9Vj4c7ezS1lEoVr2wNZuZvfuy4mHrDY1UqFb+fjMPNUh+/N8aw7vH+9HMyQalSMbu/aKwpCK2ibQgTPgVto9add+0iMkWVFESoLJH2ZYS17xiFO1t2pNRouYbjQGmbdA6iD0NGCAx5AeStnEqt6aeQF1+3LyUI1DTB8g7vQSncc0QgQRDuMXpa6qya3w9DbQ3M9DR5bqxb8yddo7+zKZ891JOQ5ALu+/YEr2+7RHRmEY+vCaCsUsHqBf2wNNCmi5keW54cxP9N8MBUT5M/FvTjjYmeaKjJkclkvDjOne9m9CYoIZ/+nxxmxJdHeX7TBdacjqO8StFBT38N5+GQcBaqKzv+XoIgCIIgCELrJJyB5HMw+LnbpqeVSqXi7R2h7LiYiq6mGuv9Em54/JmYHCLSClk8zBk1uYzh7hb8+lhfrnw0kb5Oprdo1IJwjzPpIgUk407A0U8gyR+m/SxN4maEdvbohNuFogpyY8HCo26frY9U6ijxLJz+DgztoOcjrb+2ibO0vba8UeoFsPICda2bGrYg3Gq3x29kgiDcUtZG2ux6diiVCiWG2i1sVHWNR/o6MKqbJT8dieYv/wQ2BSShJpfxx4J+eFjXZTeoyWU8PdKVp0e6NnqdB/rY0d3WkCOXMwlOyudcXC47LqYSn1PKe1O92vx8LeI8HM79Cinnocvgjr2XIAiCIAiC0DqnvgFdc+gzt1Nu/39/BxOWWsjcgV14oLcd2hpyPtt3mQ3+iTw10gUzPU0+2hNBRFohnjaGjV5j5clYzPU1mdZbNFUWhE7lNBxC/4bLe8BnHnjPgLM/ioyEu0lhqjTpr2/RtvNz40BZLZUuqqGpC7a9IXgjFGfA+E9AXbP11za9GkioabisVEJacNuCEoLQyUQgQRDuURYGNxf5NtfX4r2pXiwa6syvJ2Lo52TKcPfW/9B2tzLA3aou+PDK1mA2BSTy7GhXzPQ7MDrvNASQSStTRCBBEARBEATh9pF2CaIPwej/gYbOLb99aWU12y+koqEm441/Qvh0bwT9nEw5fDmTxwZ24f/Ge1BQVsWXB67wl38CHz3Qs8E1ojOLOHolixfHuqOtIXohCEKnch4OF/8Ei24w4XNpn1UPiD3WqcMS2tHGWZCfCHO3gZ1P68+v6Zdhfl3FBseBkBwA2sbgM79tY9M2Ah3TuoyE3FioKBT9EYQ7kihtJAjCTXEw1eWjB3q220qrpSO6UlGtZO2Z+Ha5XpN0TMDGW/RJEARBEARBuN2c/g40DaDf4k65vX9cLpUKJSvm+rJ16SCGuVlwLDKLh/rY8f5UL2QyGca6mtzfy5Z/g1IorqhucI1Vp+LQUpczd6DohSAInc79PvCcCo+slVaZg1RWpihNaqTbGioVlOW3+xDvCWV54P8bKNu5lHFlCaRfgrJcWDsV4k+1/ho1gQSz6wMJg6Rt/ydAS7/tYzRxquuRkBokbUUgQbgDiUCCIAi3FVdLA+7rbsXaswmNvilrV87DpcZJlaUdex9BEARBEAShZXJiIOxf6Pc46Bh3yhBORGahpS6nv7Mp/ZxM+XmOD8Hv3sfXj3ojl8tqj5sz0JGSSgXbL6TUOz+7uIJtQSk85GPfsRm2giC0jI4JzFgPlt3q9lldLaXb2vJGIX/DV+6Qd+MeKUIjQv6Gfa9C3PH2vW56CKiUMPkbMLSFPx+GyP9ad43sKDCwlZp6X8t1HIz7EAY/e3NjNHWuK22UegHUtaUMGUG4w4hAgiAIt52nRrpSUFbFRv/Ejr2R8whQVkGSX8feRxAEQRAEQWiZc79Jda4HPt1pQzgRmcWArmb1ShLpa6kjk8nqHdfHwZjuNob86ZeASqUCpIbMy4/GUFmtZNFQ51s6bkEQWsGyjYGE0G2gqICwf9p/THe7nGhpG76zfa+bekHaekyChfukCfpNsyDuZMuvkR3ZsKwRSD0RhjzXMMDQWibOkJ8kNXVOvQDWvUBNVJsX7jwikCAIwm2nt4Mxg13MWHkqlorqdk57vJbjQJCri/JGgiAIgiAIt4v4U+A0FAysO+X2KfllxGSVMNzNvNljZTIZcwd24XJ6EUGJecRllzDrdz9Wn47joT52uFreRBkMQRA6lr6l1NA9I7T+fpUKVk+Ek980PKeyFGKPSn8P3dbxY7zb1AQSLu9u3/JGKUFgYAOGNqBnBvN3gaae1GC7JVSqq4EE9+aPbStTZ1AppEyWtOC29XEQhNuACCQIgnBbemqkCxmFFfwblNL8wW2lpQ92fVu3UkEQBEEQBEHoGBXFkBkO9n07bQgnIrMAGO5u0aLjp/W2RV9Lnde3hTD+uxOEpRby6UM9+eoR744cpiAIN0smk8obXZ+RkBEGiWfA/xdQXFdqN/YYVJeD+wSpnE521C0b7l0hJwa0DKEkCxLbsSpA6oX6/Qa0DaWPUwJbdn5xhtT8uCMDCSZXM9SiDkBVqeiPINyxRCBBEITb0lBXc3raGfHriVjKKlu/WiEyo4hn/goiIafkxgc6D5eaHZUXtHGkgiAIgiAIQrtIuyjVubbz7bQhnIjMwtpQG7cWZhPoaanzsI8dUZnFjPW05PBLI5jV37FeLwVBEG5TVj0gM6L+6vgre6VtcYYUOLjWlb2gZQQTvwBkEHpdeSNFNfw2Cg681ZGjvjNVV0J+AvSZK/UHCN/RPtctL4ScKLC9boW/nS9khENVWfPXqGm0bNGRgQQnaVvzPSMCCcIdSgQSBEG4LclkMp4b40ZcdglDPj/Cz0ejKSiratG5CTklzFnpz56QNJ7+K4jyqhsEIpyHS29YE87W7VMqpHJH7ZluKQiCIAiCINxYzerRTgokVCuUnI7OZri7eYN+CDfyxiRPdj87lOVzfLE01O7AEQqC0K6svKC6DHLj6vZd3gM2vaUGzcEb6/YrlRC5H9zGgkkX6DJEKm90tT8KABf/lBapBa5t2QT2vSQ/QXrfbeMNLmMgYpf0Ob1ZacHS9vqJeVsfqZRQekjz16gJJHRkRoKBDahpQcp50NQHM9eOu5cgdCARSBAE4bY1rrsV254ahLe9EV8euMLQz47w9X9XKKmobvKctIIy5qz0p1qh5K1JnoSlFvLxnoimb2LfT1oRUdMnQaWC3S/A2ilw9uf2fSBBEARBEAShacnnpVWbes33J+gIwckFFJZXt7isUQ1tDTV62Bl10KgEQegwVjUNl6/2SShIljKjvB6AHg9LtfxrMtdTAqWSPO4TpY97PAjZV6RybCCVZjv6CehbQ2WRFJAQ6tT0RzB1ge5ToSi15aWHbqSm0bJt7/r7a3oQtOQe2VHS5L6Bzc2PpylyeV1Wgk1vkKt13L0EoQOJQIIgCLc13y6m/LGwP7ufHcowd3N+PBLN6K+Psf1CCqprV38AOcUVzF3pT35pFeseH8CS4V15YnhX1vslsCs4tfEbaGiDwwApkKBSwX9vQ9A60DGF099JvxAKgiAIgiAIHS8lUOpf1YSySgXP/BVESHLHlKQ8EZmFXCaV2BQE4R5g0Q1k8rpgwJV90tZjMnjPlvoh1JTgidwHMjUpIwHAc5r0cU3T5bM/S+WQHl0LRg71sxkEqT8CgJmL1GNCrgER7VDeKDUIjBwbBqANbaXAQEpQ89fIugzmblLfjI5kerVPwvVBD0G4g4hAgiAId4QedkYsn+PLP08PxspQmxc2X2T6L2dZeTKWj/eEs2xDENN+Pk1yXhmr5velp720KuzV8R74OBrzxj8hxGU30S/BeThkhEi1LM/+BP2fhNmboTQHzv12C59SEARBEAThHlWYBoUpNyxrtC80jT0haby89SKV1e1QEuM6J6Ky6GVvjLGuZrtfWxCE25CGNpi51TVcvrxHKjlj4S6taDdzg4tXAwJX9kGXwVLJIwB9C+g6QgokFGXA6e/Bcyo4DoReMyDmCBSld85z3Y5yoqXPna4p6BhD15EQvrN+aai2SL0Adk30G7D1kQINN6JUStew6X1z42iJmobLoj+CcAcTgQRBEO4oPo4mbH96CF883IuEnBI+2hPBurMJhKYUYG+iw6r5/RjQ1az2eA01OT/O9kFdTcb0FWcY/dUx+n98iO7v7OfxNQFS/wTnEdLBfj9LK08mfAYO/cHtPjjzg9TASRAEQRAEQeg4NeUn7JvOSPgnKAV9LXUiM4r5/WRsu96+oLSK4KR8hruJbARBuKdYeUmljcoLIP4UeEyS9stk4D0TEs9ITZczw+teq+H1EOTFw9b5oKiAMe9K+71nSv0ALm25lU9ye8uNkcoa1eg+VeqbkH6p7dcszZU+/01NzNv1kQIYZfk3Hld5wa3pzWPudnVcndMHSBDagwgkCIJwx5HLZTzaz4HTr4/m4jvjuPzhBI69OopNTwxiaCNv/uyMdfh1ri8+XUzobmvIGE9LpvW25cjlTF7cfBGFTW8pHbL7AzD1R6l+IcDIN6AsD/x/vaXPJwiCIAiCcFeLOQqKqvr7Us5LpS6sezV6Smp+Gadjslk01JmJPaz54XAU8U1lm7bBgfB0lCpa3R9BEIQ7nFV3aTI67F9QVkG3yXWv9ZoByGDHMuljjwn1z/W8X/p/K/Es+C4E86sNdM3dpDJtwRtvfsX93SIntn6DYY/JUmmo8J1tv2baRWnbZCDh6oR9TR+FxrQgiN1ues+BhfvrShwJwh1IvbMHIAiC0FZa6mpoqbesSdGArmb1MhUAXCz0+WhPBO/v0eL9Z88jU9eqf5Kdj7Tq5OyP0H+JlIIpCIIgCIIgtF1aMKx/AMa8A8NertuffB6se0ilRhqx/WIKKhU87GOPloacU1HZvL09lPWL+iO7Wtc6KqOIsioFveyNWzSUvJJKdgan8ndgMiEpBdgZ69DboWXnCoJwl7DqIW1PfQt6FmDfr+41YwdwHib107PwBNOu9c/VMZGy2ONOwIjX6r/WexbseRnSQ8Cm8QDpHaEgGdZOlXo/WPds2zUqS6EwWeqPUEPPDJyGQOAfYGgjTbJr6LTuujUBAhvvxl+vCTCkBoHLqMaPST4vNVo2d2/dvdtCQxu6DOr4+whCBxIZCYIg3LMWD+vKkmHOrDubwPKTSY0fNPINKdXRb/mtHZwgCIIgCMLdKO1qGQu/FVBVJv1dqYDUi02We1CpVGwLTKafkwmOZrpYGWrzfxM8OBWdzbagFPaHpjPrNz/GfXuC6b+cJSW/rNlhHAhLZ8Cnh3l3ZxgKpYp37u/OzmVDUFcTb5EF4Z5i5SVt8+KvNgG+bqGa92xp6zGx8fOnfA9Ljkg9E67l9ZCUrXCnN12+uFEq/xN3su3XyIuTttcGEgDGfyIFZ/a8DN/1hJNfQ0VRy6+bEiSdX9O34no6JlI5pRs1XE4JlAIO13/dBUFolMhIEAThnvbGRE8yiyr48sAVjkdmYaitgYG2Oub6miwd4YKZTS+padbZ5TDkedDU67SxXk4v5HJaEQ/0seu0MQiCIAiCINyUzHBABiVZcOFPKeszOxIqi6RSII24lFxATFYJS4bVrQaePaAL24JSeGVrMCCVsnxujBu/HI/hu4ORfPlIEytUgeCkfJ7fdAFPG0M+e6gnnjaG7fqIgiDcQYwcQMsQKgrrlzWq0X0aJPlD34WNn69v0TCIAFJTYY8JELIVxn0AahrtO+5bQaWCkKt9HnKi2n6dnGhpa3pdIMG6Jyw6CAmnpYyQwx9AZgQ8vLJl1029KDW3vhE7H4g/3fhrVeVSxsigZ1p2P0EQRCBBEIR7m1wu48vp3hjraBCRVkRKfhnFFVWk5ZcTklLAn4sGoN5vEUTshNjj0G1Ss9dMyS+jsKyu7q+ZniaWho2n6bdURbWCJ9cHkpBTShczXfo4NrHqQhAEQRAE4XaWEQq2vUGuDmd+kOqKJ5+XXmuiRvU/QcloqcuZ1Mumdp+aXMZXj3jz05EoJvSwYaynJepqckorqll9Oo4lw7vibmXQ4Fop+WUsXncec30tVs3vi7m+VoNjBEG4h8hkUlZCWjB0HdnwdU1dmPJd267tPRsidsGZH2Hoi9K9OkNFsbTaf+gLoG3U8vPSgqVAL0D2zQQSYqTt9RkJIH1OnIZKf3Y+B6HboLoCri87fL3iTKlcUlP9EWrY+kjBnMI0qYTStTJCpb4Yt6I/giDcJUQgQRCEe56mupz3p/Wot+/vwGRe2RrMlweu8MZ9g0HTAKIO3DCQoFKp+PFINN8cjKy3X10u44+F/Rjm1vbmfevOJJCQU4quphqf7I1gy5ODausBC4IgCIIg3BFUKsgIk0qEeEyGTbOkBqcp56XJretXqwKV1Up2Bqdyn5c1htr1V/S6Wurz3cz6k0jPjHJlc0ASX+y/wsr59SeHisqrePyPAMqrFGxYPEAEEQRBkAx9CYrTW1+jvzlu46QeCoffl/ooTPsJjOzb9x4tEfYvnPoGjB2bzqxoTMhWqTyT2311TYnbIicG9K1Aq2Fwt55ukyFoLcSfAtcxNz429aK0bS6QUNtwOQgMr8s4qQliN1FWTxCEhkQBSEEQhEZM97Vn7kBHfj0Ry96IHHAZCVEHpTfAjaioVvDSlmC+ORjJA71t+WWuD7/M9WHFHB9cLPR5buMFkvNKG5xXWllNaWX1DceSU1zBD4ejGOVhwduTuxMQn8eBsIz2eExBEARBEIRbpzgTSnOk5qbuE8Cim1TOIjlQWjUqb/j29OiVTPJKq3jIp2WlHU30NFk60oVDERkExOfW7s8tqeTpv4KIySpmxRxf3BrJVhAE4R7lfh/4zGv/66ppwOwtcP+3kHQOlg+Seg40pTANSnObfr2truyTtjFHWn6OUiFlB7jdBw79pEBLeUHb7p8bA2auzR/nPBzUdSByf/PHppwHZM03srbuCTK1xvskpASCgS0Y2jZ/P0EQABFIEARBaNI793vRx9GYV7cGk2E9EgpTpPTH6+SWVDJ3pT//Xkjh5XHufDujNxN62DChhw0Te9rwy2O+VCtUPPVnEOVVitrzdl9Kpf/Hh/H98BAvbbnImehslMqGgYpvDkZSWqXgrcndebSvPW6W+ny+/zJVCmVHPr4gCIIgCEL7ygyTtpbdpaDBkBekfRkhTZaW2Ho+CQsDLYa5mrf4No8PccbSQIvP912mWqFk7Zl4Rn55lDMxOXzyYE+GurX8WoIgCDdFJoO+j8NTp6Ug6valUmZWY/56BDY/1r73ryq7GkCQQdxxUNx4EVut+FNQlAa9HgFzd2lfdnTbxpATLTVFbo6GjlRe6sr+JhfwAdJrodvAYUDzWQ6autLPnNTGAgnnpR4KgiC0mAgkCIIgNEFTXc7yOT7oaKrxtL+ZtPO61RGX0wt54OfTBCcX8MOsPjw7xq1BySFncz2+mdGbkJQC3t0RRnmVgjf/DWHZhgu4W+nzQB9bDoZlMHulP8O+OMqvx2Morqiuvf7Gc4k8NrALrpb6qKvJeXOSJ3HZJWzwT+yQ507KLWXRmgBWHIshvaC83mvlVQpOR2dzOb2wQ+4tCIIgCMJdrGbyzMpL2vacLjU6hUYbLS8/Fs2hiEzmDuiCulrL37rqaKrxwlh3zifkMeLLY7y7M4ye9kbse34Yj/ZzuNmnEARBaD1TZ3joV+nvCWcavl6aKwVVE05BRnj73Tf2OFSXQZ+5UkZB6oWWnReyRSrv6z4BzNykfW1puFxeACVZjfdHaIzHBChIlJouNyXJXwpO9Jnbsmva+UgZCdcGJ0pzITdW9EcQhFYSPRIEQRBuwMZIhxVzfVm0JoBQlQu2F3djOvxVQMooeHVrMO9orGfg6HE4e09s8jrjuluxbJQrPx2N5mRUFqkF5Tw5oiuv3OeBhpqcd6d48V94BpvOJfLpvsssPxbDgsFOnIvLxUBbgxfGutVea6SHBUNczfjuUCQP+tg1qBd8M6oUSp7deIGw1AIOX87kywOXGepmgY+jMQHxuQTE51FZrcRAS53dzw2li5leu91bEARBEIS7XEa4VCdb72pGgJoGDH8V9r8BDv3rHbr+bDxf7L/CtN62PDu6BSUxrvNoX3vWnY2nuKKaX+b6Mt7LSvSXEgShcxk5gIENJPpB/yX1X0sOqPv7+dUw+av2ueeVvVJAYPTbcOFPKTvBod+Nz6kqh/Cd4DlFyhIwdQa5el3j5daobbTcwv/H3cZL28h9YNW98WMurAcNPfB6sGXXtPORei9kXQHLbtK+mlJHoj+CILSKyEgQBEFoRj8nU/Y+P4xQvQEY5wTz8daTfLovgmUbLrDI9BKzlHtwPvkSRP53w+u8OM6dUR4WlFcr+WNhP96Y6InG1dV12hpqTPW2ZcOSgWx/Zgj9nU35/nAUZ2NzeHGsG8a6mrXXkclkvDHRk/yyKuatOic1Xw5IIjAhr17ppLb49mAkF5Py+W5GH46+MpJnRrkSk1nMd4eiyCmu5LGBXfhhVh9kMnhmQxAV1Td3P0EQBEEQ7iEZoXXZCDV858Or0aBrWrvr3wvJ/G9HGGM9rfjqEW/k8tYHANTV5OxYNoTjr45iQg9rEUQQBKHzyWRSOZ6kcw1fS/KXavl7ToHgTVBRfPP3UyqljHrXMWBgLTUmjjnc/HlRB6CiUCprBFLQ18QZstuQkZAbK21NW5iRYGgDNr2l8kaNqSiG0H+hx4Ogpd+ya7qOBQ1d2Pd/0ucErjaPljXfrFkQhHpERoIgCEIL2JvoMn3WYuSrNpB1YS/blUNZ0N+KlxNeA0svkKvB3wvh8f1SQ6dGqMllrJzfj2qlEi11tSbv1dvBmN/n9eVyeiHn4nKZ1d+xwTE97Ix4a5Infwcms+ZMPJXV0i9EWupy+jubMtjFnAFdTbHQ10JfSx19bfXaoEVTzkRns+J4DDP7OTC5lw0AL9/nwYtj3SmurK6X+aCjocaSdef5eE8EH0zr0eznTxAEQRCEe5yiWloN6jy84WuaugAUlFaxNTCJT/ddZrCLGT/N7tPs7y83cqPftwRBEDqFwwAI3w6FqfWb/Cb6S42DBy2DiF0Q+jf4Lri5e6VegOIM8JgkfewyWmpwX5YPOsZ1xxWmSiWQagStk7LHnEfU7TN3a1sgIScGkElZDS3lMRGOfQYl2XUZbDXCt0NVCfRpRS8JI3uY8Bnseg78fobBz0r9ESy6Nd9jQRCEekQgQRAEoYXU7fqAniVvd0lgfN/nmJi/AS4lwfxdUqrm72NgwwxYfFhaSdEINbkMNXnL3tR2szakm7Vhk68vHtaVxcO6olCqSM4r5Up6EX6xuZyOzubz/ZcbHG+mp8kYT0sm9LBmiKt5vTfXuSWVvLjlIl3N9XhnSv0UUrlc1qB80rjuViwe6szKU3EMcDZjci8bKquVnI3NISAul8cGdcHKULtFzync3grLq0jILqWnvVFnD0UQBEG4k+XGgqJCajZ6DZVKxbErWfwdmMzBiAwqq5UM7GrKb/P6oq0hAgGCINxlHAZI2yT/utI8iipphbzvAul1Sy8IWAU+86Ushra6slfKcnAbJ33sOgZOfgXxJ6XMB5DKGK2eAPkJ9c8d8ry0WK6GuRtEHwKlov7+5uRESxP5GjotP8d9Ahz7FKL+g96z67924U+pZ0PN57GlfOZJ1zv0vhTQTgmUAhaCILSKCCQIgiC0lFwObvdhfnkXEx0VsOsb6HZ/3cq62ZulX8I2zoC5/4Ke2S0ZlppcRhczPbqY6XGflzUAmYXlXEjKp7CsiuKKaorLq4nKLGZfSDpbziejr6VOdxtD9LXV0dNSJz67hLySKlYv6IeuZst+NLw2sRuBiXm8tu0SB8LSOXolk6JyqUn03pA0Nj0xEEsRTKgnMaeUoooqvGxvblK+olrB3JX+GOtq8vEDPTr08/zylmAOR2SwdekgfLuYNn+CIAiCIDQmI1TaXlfz+uej0Xz1XyQmuhrM7u/IdF97vGwNRSkiQRDuTja9QF1HKm9UE0hID5EaIjv0lwIHfRfC3lcgNejmavhf2QeOg+pKx9n3A019qU9CTSDh7E9SEOGRtWDjLe2TyaR+DtcycwNFpXSsadeWjyE3puWNlmvYeEu9JK7sqx9IyI6CxLMw9v3WB1hkMpj6IywfBBtnQWmO6I8gCG0geiQIgiC0hvt9UF4AG2dCdQWM+6DuNZteMH01pIfCdz1g/5tSmmgnsDTUZryXNY/0dWDhEGeeHePGD7P6cP5/Y/ljYT+meNsil0NmUTmhKQVkF1fw0QM9WjXBraEm56fZPmiqyzkZlcXEHtasXtCXDYsHkF5Yzszf/cgsKu/Ap2y5grIqQlMKOvw+KpWKszE5taWmrpVVVMH0X84w5cdTfH8oCoVS1eb7fHcoioD4PI5HZjH+uxPsC0m7mWE3KSqjiIPhGaiAFzcHU1xR3SH3udVCUwqIzmyHurPNiM8uYb1fwk19rQVBEO50KpWKjecSyYgOklbGmnvUvpaQU8IPR6KZ4GWN/5tjeW+qFz3sjEQQQRCEu5eahtT8N9Gvbl+Sv7StWWXfa4bUTDhgddvvk5cAmWH1V92raUiL4GKOSB8XpsLJq4vjvB6Qyg+ZOoOJU8OsA3N3adua8kYqlZSR0NL+CDVkMnAfL42zuqJu/4U/pZ8j3jNbd70auqbw4AooTJE+tuvbtusIwj1MBBIEQRBao+sokGtIq0YGLm24usJjAjx1Bjyngv8v8L23FFBQ3R4TiVrqaozysOTTh3qy6YlB7H52GEdfGcnZN8bwaD+H5i9wHTtjHU69NoqAt8byxXRvRnezYrCrOWsW9ie9oJxZv/mRVVTR/IU62AubLjDt59MEJuQ2+npuSSXKdpjs/ScohVm/+/HC5gtUK+qCCQqlihc3X6SgrIqxnlZ8eyiSx1b5tynQciExj1+PxzCjrwN7nxuKvYkuT/0VxIubL7L7UipHr2RyPj6X5LzSm36eFcdj0NaQ88tcX5LySvlod/hNX7OzRWcW8fCKM4z79jgvbwlul89TU749FMn/tofy8paL9b4fOkJBaVWHXl8QhNtPQVkVH+wKZ+SXR2+bwH1jVp6M441/Qgi/eJZK466gIWXRqVQq3tsZhoZcxntTvdBUF29NBUG4RzgMgPRLUHn199AkfykDwMhO+ljbUGp0HLoNyvLado/Iq82Kry/f4zIa8uKlcnMH3wVlNdz3UfPXM3eTtq0JJJTmSIvwzFxbfk4N94lQWQx7X4WLGyH5PARvBLf7pMbRbeUyGoa+KGU8WHq2/TqCcI8Sv60JgiC0hrYhOA8DXXMY/mrjx1h2g4d+heeCoNtkqaFT5p0/AdsUXU111K9rhNjf2ZQ/FvQjNb+c2b/7UVTecJKztLKah5af5rmNFyjpwJXuoSkFHL2SBcBzG6XJ/Gsdu5LJgE8OMW/1uQavtYZCqeLnY9EY6WiwNySdN/4JqQ1O/HQkmlPR2bw/1YtfH/Pli+m9CErMY9L3J1nvl9DiCaDyKgWvbA3G2lCbt+73xNXSgH+eHszzY9zYGZzKsg0XWPhHANN/OcuwL46yLTC5zc+TnFfKzoupzOznyHgva5aOcGFTQBIHwzMAqbzSmtNxDP70MB/uDr8jVt1XVit5YfNF9LTUWTDYiV2XUhn91XE+2BVOYSPfozdDqVRxOjoba0Nttl+UvjaNZaq0h/2h6fT58D9WnoztkOsLgnB7UShVbDqXyOivjrH6dBzxOaUEJbRxoqmdbL+Qwogvj3I8Mqve/gNh6XyyL4KRHha4kciZYqva7Lb/wjM4eiWLF8e5Y20kSiEKgnAPcRggTeCnBkkLzhL9G9b877tIKnf0+xg49J40ka5sxe+SV/ZKWQTXL3xzGS1tj30OIVtg8LKWNULWNQVdM8iObPkY0i5K2+tK2rVI1xFSKaaLf8H2pbByjNQ4us/c1l/remPfgxdCpQwNQRBaRQQSBEEQWuuBX2DxIdBupgyQiRMM/z/p75kRHT6s282Armasmt+X2OwSXt8Wguq6rIwPdoVzISmf3ZdSeXD5aeKySzpkHD8fjcZAW50/FvQjo7Cct/6tG8u5uFyW/hmIrbEO/nE5PLziDIk59VeoR2cWcyYmu9n77A9NJzarhE8e7MnzY9zYGpjMh3vCOROdzXeHI3mwjx0z+jkgk8l4tK8DO5cNxdJAm/9tD2XAJ4eZvuIMK0/GkpTb9Ar5bw5GEpNVwufTe9U2wNZQk/PiOHcC3hrLfy8OZ9tTg1n3eH8GdTXj1b+D2R+a3qbP28qTcQAsGS7VQH1xrDvdbQx5fdsl/vRLYMzXx3lvVzi6WuqsOhXHknXnb6r0UUp+GQv/OMeHu8M5ejmzQ4JLPxyOIjSlkE8e7Mm7U7w49spIHuxjx5ozcTy0vOHX/mZcTi8iu7iSl+9z5537u7M/LJ0n1p+nvErRbvcASM0v47Vtl5DLZHy27zKBnTyZKAjCzSuvUjSZZVRQVsXDK87w+j8hOJvr8ffSQchlEJFWdItHWae8SsGn+yJIzC1l/upzfL7/MtUKJZeS83l+0wW87Y355RF37MkksMyWFzZdpLiimvd3huFhZcD8wU6dNnZBEIRO4dBf2ib5Q0EyFKU2DCTY9IKHVoKxA5z5UZpI/94bsqObv35xFsSfaryZsGlXMHaES5ukVflDX2r5uM3dpVJFLZUUAMja1otAQ0d6z/1WOjwTADP+ggdWgMek1l+rMWqiZawgtIX4lyMIgtBaBlYtP9bMFeTqd3VGwo0MdjXnlfs8+Hz/ZQb4mTJvkBNwtRlzQBJPjXRhiIs5z24MYupPp/hhZh9GdbNst/tHZRSxLzSdZ0e7MtzdghfHufPlgSsMd7egu40hi9YEYGusw5YnBxGVUczSPwN5YPlpvnnUm6TcUv4OSiE4KR+A1yZ046mRjdf3VKlU/HQ0mq4WekzoYc2kntYUlVez+nQcG/wT6Wqux0cP9KhX89ndyoA9zw0lMqOY/aHpHAhL56M9EXy0J4LuNoZM6GHNYBczqpUqisurSckv4/eTscwe4MgwN4sGYzDV08RUT7P2Y98uJsxd5c9zGy+wakHfRs9pSk5xBZsCEpnW2w47Yx0ANNXlfDezN/f/eIq3t4fiZWvIJw/2ZJibOX/6J/LezjCmrzjD6gX9sL16zvVKK6tRqkBfq/6vH+VVCpauDyQqs4jTMTmsOhWHulxGL3sj3K0McLXUx8VSH2czPayNtNHWUGv0+jcSmJDL8mPRPOJrz4QeUjq0rbEOn0/vxbQ+tjz1ZxAPLD/N7/N8m2wqXVBaxZf/XcbD2pDHBna54f1OR0vBp2FuFlgbaaOrqcYb/4Yw7Iuj+Dqa4O1gTE87I7KKywlOKuBCUj7x2SWM8bRkwWAnetkbN/tMNSWzqhRK/nl6MMs2XODZDUHseW4YJtd8LwiCcHsprqjm1a3BuFnq87CvPV3M9AApSPCnXwKrTsWhVKn4e+kgXC0Nas9TKlW8tPkioSkFfP2INw/52CGTyXAy1+NyemFnPY7U/6CwgtUL+nIwPIMVx2I4F5dLYm4p5vpa/D6vL9p5wQD09h3Mj/4ZTP3pFKkF5WyZ2QcNNbG2TRCEe4yuqTQpn+gPxld/p6wJLlyr1yPSn7I8iPwP9v0f7HgaFu5r2MPgWhf/kjIees9p+JpMJmUlBK6R+v1p6bd83GaudSWTWiI5ACy7g5ZB88c2RU0DLNylP4IgdDoRSBAEQehI6ppg5nZPZiTUeHJ4V87F5fDR7gj6OJhgoqfB69su4e1gzEvj3NFQk7Nz2VCeXB/I42sD8LQ2xNvBmD4Oxng7GONqqY+avG1NF5cfi0FHQ42FQ6R03aUjXDgVlc27O8LQ0VTDUEeDPxcNwFxfC3N9Lf59ejCL1p5nwR8BAHSzNuDtyZ4EJxfw+f7LlFVW8+I49wZNII9cziQirZCvH/GuHev/7vekrKqa3cFpLJ/ji55Wwx+5MpkMD2sDPKwNeH6sG4k5pRwIS2d/WDrfHorkm4P1j3c21+PNSS2r5amnpc6aBf2Z8dtZnlgXyJqF/RjQ1axF5649E095lZKnRnatt9/dyoBV8/tSUlHNfd2tkV991scGdsHRVJdlfwUx7efTfD+jN4NdzeudezEpn6XrA1GqVKya34+e9nUZPe/uCCMkpYDf5/VlmJs5gQl5nIzKJighj//CM9gUkFTvWkY6GlgbajPey4qlI13Q1bzxrzPFFdW8uDkYW2Md3pnSMLV6sIs5/zw9mMfXBDDrd38+f7gn07ztap8P4FRUNq9sDSa9sBwNNRmDuprWm+C73snobFwt9WvLdczs74iVoTbbL6ZwMSmf/WF1mSI6Gmr0tDdipIcF+0PT+ScohT6OxiwY7MTknjYNSofVWH40Gv+4XL56xJte9sb8PNuHh1ec4eWtwayc17d2/AVlVaACI907J327WqGksLy6XnBMEO4W2wKT2Reazn4Z/HAkmn5OJnS3MeSfoBSKKqoZ6WFBWGoh81cHsO2pwbX/j/x0NJrDlzN5b0p3Hva1r72ep7UhoakFnfIsZZUKlh+LYWBXU0Z3s2J0NysGdjXjzX9CkMtkbFg8AAsDLbgSCsDokaOYoShk8/kkHvaxp79z44FbQRCEu57DALi8W8o40NADqx5NH6tjAt4zABX8+yT4/wqDnm78WKUSgtaC42Cw8Gj8mEHPgokz9HykdWM2d4cL66XAho7JjY9VKqVyTD0ebN09BEG4rclU19eauA317duX8+fPd/YwBEEQ2mbrQkgJhBcudfZIOk1uSSWTfziJhpocCwMtrqQXsfe5YTia6dYeU1apYOXJWM7F5xKclE9huVTaRk9TmmT1djCmq7levUl8L1tDvGwbLzGVkFPCqK+OsWioM29Nrps8Ti8oZ+L3J1CTy9m6dBDO5nr1zssrqWT3pVR8upjUXluhVPHGP5fYcj6ZxUOdeWuyZ+04VCoVDy4/Q3ZxBUdfGdlgZWV5laJNK+gzC8u5lFyArqYa+trq6GupY2us0+prZRVV8OivZ4nLLsHZXI8hrmYMdTXHzcoAAy119LTU0dFQo6CsivTCctIKynhxczADnE35bV7fVt0rMqOIpesDic0u4fEhzvzfBA+0NdTYEpDE29tDpckkIKekgu9m9GFCD2s2nkvkjX9CWDbKlVfGN/5mJ7ekkujMYpJyS0kvLCe9oJz4nBJORmVjY6TNG5M8mdLLpkGAJ6e4gh0XU9kckERkZhFbnhxEP6emJ61ySypZuj6Qc/G5mOlpMtjVnKGuZkSkFbHmTDwuFnq8fX93nt94AS9bIzYsGdDgniB9zXt/8B8z+zny3lSvRu+VV1JJWGoh5gaauFro1wYLCsur2BaYzLqzCcRll+BoqsvSES487GuHlnrd1z4wIZdHf/Vjck8bvp/Zu3Yc687G886OMB4f4oyOppxT0TmEJOejribnEV97lo5wwcFUt9Ex3QyVSkVMVjFpBeUMcTGvF4Rpi6//u8LqU3Hsf2F4h4xXEDqLSqVi3Lcn0NNUY8VcX/69kMK2oGTiskuY1MOGp0a60MPOiNCUAmb+5oe9iQ6bnxxEUGIej68JYJq3Ld/O6F3v/54fD0fx9cFIwt4f32jQuiOtPBnLR3si2PzEwHrB6rSCMiqrlbXZFux5BYI3wRtJVCiU/BOUwqSeNhjp3DkBTkEQhHYVtB52LgMdU7DuAfN3NX+OSgUbZ0LscXjqdMP+ByC9tm4qPPjb1eBDO7qyT7r/okPg0O/Gx2ZdgZ/7w7Sf26evgSAIt8yN5uFFIEEQBKGjHf8Sjn4Eb6S0LnX0LlMz8alQqvhuRm8e6GPX5LFKpYr4nBKCk/O5mJjPxeQCIlILqVQ0bDDm28WE+YOdmNjDut4k/hv/XGJbUAqn/m8Ulob1mzgm55WiqSZvsP9GlEoVH+wOZ82ZeEZ5WPCgjz2jPCy4lFzAnJX+fPxgD+YMuHG5m85SM6F+Ojobv9gcSipvXKdfS10KsrSkvM71yioVfLYvgrVnE3C11Mfb3phtQckMdTXnh1l9UChVLFl3nuDkfOYN7MLGc0kM6GrKmoX9W515EhCfy3s7wwhLLcS3i7Sit0ZaQRnHrmRRrVTRw86QJ4a7MNXbttlrVlQr2HMpjVNR2ZyKziazqAKABYOdeH1iN7Q11Fjvl8D/tofy/czeTOvd8Pv4THQ2s1f6s3JeX8Z2b0UptGsolSoORWTw89FogpMLsDLUYmBXMzILK8goLCc5vwxLAy32Pj+stl8GSJOUyzZcYE9IGmpyGX0cjBnsak5WUTnbAlNQqFRM87blyREueFjfRJo5UFJRzcHwDE5EZXE6OpuMQulzNbOfA5882LPNwYQqhZJBnx4hu7iCkR4W/LGgX6MBG0G4E9X8//DVI95Mv5pVoFKpKK1UNAgCnIrKZuGac/SyNyY6sxgbI23+fXoIOpr1A8oHwzNYsu48/z49mD6OzawQvUZFtYKAuDwGu5i16d9raWU1wz4/iqeNIX8uHnDjg/+YJJXZWPRfq+8jCIJwV8qOgp+uLtoZ/n8w+q2WnVeYCj8PvBp82A3y6zJXty6AmKPw8hXQaOdG9jkx8KMPTFsOfRopm3StmkDJMwGiLJEg3GFuNA8vShsJgiB0NMurpWiyroB9GxpN3SV8u5jyzaPepOSX3TCIACCXy+hqoU9XC30e7CNNtFRUK8i6OqkLUpbAwfAM1vsl8NzGC1gYaOFqoV+7en/3pVRm9nNsNFhgb9L6Fc5yuYx3p3THwkCLP07Hc/TKBTTV5Bhoq2NlqFU7IXQ7MtPX4vGhzjw+1JkqhZLgpHxS8ssoKq+mpKKakkpFbbkgayMtupjpYa6v1aZ76Wiq8f60HozxtOLVv4PZFpTMk8O78up4j9pV95ueGMjLW4NZezYBO2MdfpjZp03lq/o5mbJz2VC2nE9ixbEY9mSn1b6mp6XG40OdedjHvlUT5lrqajzkY89DPvaoVCqiMotRqah3jdn9Hdl6PomP9kQwqptlvYl8kMoaqctlDHRpWSmpxsjlMu7zsmZcdytOR+ew4ng05+PzsDbSxtPWkFHdLJk9wLHBvWUyGV8/6s2cAY70tDfC4JrXnx/jzu8nY9ngn8g/F1IY2NWUBYOdGOtp1WT5pOsplSr8YnP4OyiZ/aHplFYqMNXTZLCLlOkSl1PCr8djkcng4wfaFkw4diWL7OIKRnlYcPRKFntC0ri/V/NBIKFlAuJzcbXQF300Wik1v4wv9l9mvJc1E3vatPk6684mYKKrwf296q4hk8kazSQY6mbOV4948/ymixhoq/PrY74NggggleEDqcl7SwMJReVVLP0zkNPROXwwzau2h1FrnyWnpJIXxzUzQVSQDKkXwHtWq+8hCIJw1zJzlbIRynIbNlq+EUNbmPAJ7HgGAlbCgCfqXivOgojd0H9J+wcRQOrnINeAnKjmj00OAG0j6TkFQbhriECCIAhCR7O6WlYnM7zlgYSyPDj6qZQ+OmcrWHbruPHdQo2t3m4pLXW1BgGAxcO68vgQZ45HZvF3YDIZheUk5ZZSXFGNnbEOS5tojtxWMpmMZ0a5snSECxcS89gfms7xyCyeHOFSr+zM7UxDTU5fJ1NaV7So9Ya7W/DfiyNIyClpkNmgraHGjzP7MMrDEh9H45ua0FSTy5jV35FZ/R1vcsQNyWQy3K0aBiHU5DI+eqAH034+zbcHI3l3Sv3yRaeisunjaNygqXRbxzDUzZyhbubNH3yVtoZagx4VANZG2vzv/u4sG+XK5vNJrD+bwNI/g7Az1uHrR70Z2EwPjbySSuatPkdISgEGWupM9bblYV97fB1NagMGKpUKdbmMn4/GIJdJn6fC8mqOXs7kYHgG/Z1NmT/Y6Yb32XI+CXN9LVbM9eWRX87y/q5whrlZiBIoLfRPUDI/Honmnfu712teX6VQ8vGeCNaciWeAsymbnhgoMj1aQKVSseNiKv/bEUpReTUHwjJwu9oEvrXSCso4GJHB4mHOLS5TN623HXqa6lgZateVCbqOvYkO+lrqXE5rWcPlrKIKFvxxjsvpRTib6/HNwUimedu1qo9KQVkVvx6PYaSHBb5dbhC8UCrh36WADAYva/H1BUEQ7noymRRAiNwP9q38zbz3HAj7F/57GwxtwHOKtD94AyirwHdBuw8XADV1MO0qZVM0JzkA7Ps1zJgQBOGOJgIJgiAIHc3YCdR1WtZwWamQmmMd/hDK86Xztj8Fiw5Kv7gJDcjlMkZ1s6w3YdbR1OQyaTLeyZS3b9ld7zxGOhpNlkeSy2W3dRZHc3rZGzNngCNrz8TzUB/72ubReSWVhKYW8MKY2zeF20RPk6UjXFgyrCuHIzL4fP9lFv4RcMOG3PmllcxZ6U90VjFfPNyLqb1tG50IlclkvHKfBwol/HI8hsCEPGKyiqlSqNBUk3MwIoNx3a2wNdZp9D6ZReUcuZxZO9H66UM9mfrTKb7Yf5mPH+zZrp+HGtnFFZjpad4Vk+pKpYofDkcRn1PKwjUBzOrvyNuTPSmrUvD0X0Gci8tlgLMp/nG5bA1M5tG+Djd1v5ziCkw7+XNXVqngdHQ2w9zNbzqgG51ZzNbAJEx0NbEx0sbCQIu//BLZE5KGbxcTXpvQjSfXn+e5jRf495nBrb7fBv9ElCoVc1tZBq+5EmkymQwPawMi0ouavVZ8dgnzVp8jq6iClfP7Ym2ozeQfTvL94ahGm9E3pqJawZPrz1NcUc0r9zXRyLOG/wqIPwlTfpAmnwRBEIQ6g56RFprpGLfuPJkMHvodNjwKmx+DiV9IWQiBa27cZLk9mLs1H0goL5Te+3af1nHjEAShU4hZKUEQhI4ml0sZBZlhNz6uqgzWTJYaM3cZAhM/h5xoqc7l6e9g+Cu3YrSCILTQq/d141B4Jo+vDWDrk4NwMtfjTEwOKhUMdWt7WaNbRe1q+aQ+jibM+t2PhWsCWLOwP/2d6zekvjaI8Pu8voxwt7jhdWUyGa9N8EBdLuNAWDqPD3VmvJc1FvpajP76GD8eieLTh3o1eu6/QSkolCoe8ZUmuHvYGfH4EGdWnorjwT529L1Bs+y22HQukdf/CWG8lxVfPOzdqhXZ7am8SoFfbA7D3CzaVOarxsnobOJzSvlyei+iMov5/WQsZ2KyqaxWkltSyXczejPV25YZv53lk70RjOlmiVkby5hFpBUy5cdTeDsY894Ur9pgWkeIyiiiolpJD7v69whOyufFLReJzSrB1VKfzx7q2ebvkfSCcuas9COzqIJrO8hpqMl4dbwHS0e4oCaX8eV0bxavO8/n+660eOIdoLJaycZzSYz2sOyQBuLdrA3YFZyKSqWqF9iRGqGXcDpa6vtyJjobTXU5G5YMqC2DNKOfI+vOxjNnoCMuFjfOtFAqVby0ORi/2Fy+n9m7wdeknoxwOPQ+eEwCn3nt8pyCIAh3Fedh0p+20DWFeTth22LY9yrEHoXcWBjxevuO8XrmblIWRdwJ6DK08YyD1CBA1fpMC0EQbnsix0gQBOFWsOzefEbClX1SEGHy17BgD1j3BK8HpT/HPoOMZgIRgiDcUka6Gqxf1J9qhZI5K/1JKyjjVHQWBlrqeLehUXVnsTDQYsOSAVgbabPwj3Ocj8+ltLKazMJyIjOKeGzVOaIyivn1Md9mgwg1ZDIZr4z34OBLI3hjoic+jiY4mOoyZ0AXtpxPJi67pME5KpWKLeeT8O1iUq9szIvj3LEz1mHW734sXR/IwfAMqhppvN5au4JTeePfEDxtDDkckcmkH04SlJh309dtrayiCmb+5seCPwL4cHc4qmtnsVtp/dl4zPW1mNbbjjcnebJpyUAUShVymYxtTw3mgT52yOUyPnmwJyUV1Xy8pwWZck1YeyYedTUZCTklTP35FK9vu0RmYTlpBWVXS7+lcTo6G6Wy7c8DUj+cx1ad4/4fT/HAz6f590IypZXVfHswkodWnKGsUsE793enrFLB9F/O8vb2EIrKq1p1j5KKahatDaCkQsHe54YR8t59HHppOH8uGsDBF0fwzCjX2gDP2O5WzB/UhdWn4zh6ObPJa5ZXKYjPLqHsanP7faFpZBdX8Nig1mUjtFQ3G0MKy6tJKyivt/+5TRcZ+81x3t0ZJgV/vG355+kh9XopvHyfO9oaanzSzPeDSqXig93h7AlJ481J3W5crrC6Av55ArQMpGyEuyDjRxAE4bajqQsz1kPfRXBlL2gbQ/epHXtPz6mgoQtrp8D3vaSAcV58/WOSAqStnQgkCMLdRmQkCIIg3AqWnnDxLyjJAb0mViqHbgN9a/BdWP8N96SvIf6UVGN4yRFQE3XCBeF24WZlwLrHBzD7dz/mrvSntFLBQBezFjcvvl1YGmizcclAZv7mx/RfztZ7TUNNxq+P+TLK4+bLhz09yoVNAYl8dyiS72f2qfdaUGIeMVklfPFw/d4melrqbHpiIGvOxLPjYgr7w9Ix09NkWm87Hva1w8u29Svhj1zO4MXNF+nXxZS1j/fnSkYRyzYE8egvZ/m/CR4sHtq1TY2im6JSqfh4TwQllQrmDeqCp40hAFfSi3h8TQA5JRWM627FmjPxWBlq81Qb+rsk5ZZy+HImy0a5oqkuff8N6GrG0VdGolSp6pXhcbMyYOkIF348Es3DvvYMaaSnxo0UlFax/WIKD/S2483JnvxwKIo1Z+LZFJDU4FgnM10eG+TEI33tGzQHbwn/uBzSC8t5yMeOi4n5vLg5GA21S1QpVDzYx473pnphpKPBjH4OfP1fJGvOxLE/NIMnhjsze0CXZnuVKJQqnt90gYi0QlYt6Ff7tTHQ1sDVsvFG7W9M8sQ/LpdXtgbz+/y++FzX4Pi/sHT+tyOUjMIKAAy11VGppM/FcLeWBeNay7O24XJhbemwxJxSdgWn8mhfe5aNcsPRrPFMCHN9LZ4d7cqn+y5zIjKL4Y0EDIsrqvntRCxrzsSzaKgzS4Y1U6bo+OeQEQKzNoF+xzyzIAiCAMjVpIVoNr1AxwQ0Gi8f2W7sfODlK1LgIngTnP5eKs37tB/oX/1dMTkAzD1aX7JJEITbnkx1M8uebpG+ffty/vz5zh6GIAhC20Ufhj8fkjINnIY2fL0sH75yg36LYcKnDV+P2AWb58LIN2BkB6erCoLQauficpm32p/yKiUfTPNi3iCnzh5Sm2QWlrM1MBk1uQx9LXUMtNXxtDFstOl0W32+/zK/HI9h73PDaidtAV77+xK7LqVy7q2xTU7+VimUnLjaXP1wRCaVCiXdrA2kng3qahRXVFNSUY2BtjqPD3VGV7Phdfxic5i/+hxuVvpsWDKwdnK7oKyK//s7mANhGQzqasZXj3pj10Qvh9b68XAUXx+MRF0uo1qpor+zKWO6WfLjkWh0NdVYNb8fXraGvLD5IjuDU/n6EW8e9rVHpVIRlJjPBv9EDHXUeXa0G6ZNNCf/bN9lfj8Zy6nXRmFj1Py4y6sUTPjuBABbnhyEpaF2i59n5clYPtoTwZ7nhtYGcqIzi9kfmoaJnibWhtpYGWoTm13C2jPxBCbkoaupxvNj3HhieNdW9VR4459L7LiYSuDb49BSl3MqOps9l9IY4WHBpJ42DY4PTsrnywNXOBWdjZGOBguHOLFwsHOTZave3xXGH6fjW/3vNiqjiBm/+ZFbUslgFzOeGeWKm6U+7+4MY19oOt2sDZg/2InckkoyCsvJKCznEV+HZvsdtFVheRW93vuP/5vgwdMjXQH49mAkPxyJ4tRro5v9Xq6oVjDumxNUVisZ7WmJq4U+rpb6pBeWcyA0nZPRUomsqd62fDej940DbflJ8KMveD0AD/3Wjk8pCIIg3HYywuC3UeA6BmZukPZ90RW6TYJpP3fu2ARBaJMbzcOLQIIgCMKtUJgG33SDSV9JjbCuF7Qedi6DxUekhluN+ftxiNgNL1wCA+uOHa8gCK12PDKL7w5FsmKOL9ZGLZ+Uvdfkl1Yy7IujDHA2Y+X8vlQplFxOK2Lmb2eZ3MuGL6Z7t/g6u4JT+TsoheCk/Nr92hpyyquUuFnq8/Mcn9ogSGW1kl+Px/Dj0WgcTXXZ8uSgBpPyKpWKzQFJfLg7HLlMxntTvXjIx67BxLdSqSI2u5jozBIGuZhhpNP0Svv/wtJ5Yn0gD/ax4537u7PlfBLr/RJIzivD08aQ1Qv61k78V1QreHxNAP6xuTw9ypUjlzMITSlEX0udsioFeppqvHyfB3MGONbLeimvUjDo08P0dzbl18daXkbgTHQ2j60+h0qlYoS7BQ/72jPW06rRRtrXPvvor49hpq/FtqcGt+g+oSkFfH84ioPhGTw10oX/G+/RomBCZbWSfh8fYpSHBd9dl8HSnItJ+Sw/Gs1/4RlYGWrxy1zfeuV8KquVfLg7nPV+CSwc4sS7U7xadX2QSiJt8E/k95OxZBZVoKEmQyaT1QZMNG5xZtLQz4/g42jCD7P6oFSqGP7lUZzM9Phz8YAWnX8+PpfP9l0mKrOYgrK68lB2xjqM97JmvJcV/ZxMm8/W2f4MhGyFZwPB+OYaeguCIAh3gDM/wX9vwbTl4DgQfvSBKd+D74LOHpkgCG0gAgmCIAidTaWCz52kfgdTvmv4+rppkJcAz11ouo5wTgz81BcGPwfj3u/I0QqCIHSon45E8dV/kfR2MCYirZCKaiUaajL+XjoYbwfjVl8vp7gCdbkcPS011NXknIzK4sXNFymuqOaDaT1wtdTnjW0hXMkoYnJPG96f5oX5DZoMJ+aU8tKWi5xPyMPL1hALAy30tNTR11QnOb+US0kFFFVUA2BrpM1Xj3gzuJHyQFfSi3ho+WlcrQzY/MTA2gl6hVJFYEIePewMG2RNFJVXMeNXP8LTCnGz1GfeYCce6mNHSn4Z7+8K43R0Dh5WBrww1o1x3a1QV5OzLTCZl7cG89fiAa0uUxSbVczfgcn8eyGFtIJyLAy0+GvxgCazUI5HZjF/9Tm+n9n7xjXyr6NUqvjfjlD+8k9kwWAn3rm/e7MT0ofCM1i87jyrF/RldLe2reQPSS7g6Q2BZBRU8ME0L2b2dySzqJyn/wzifEIeTwzvymsTut1Uk+vyKgXbgpIJSy1kybCuOJvrtflaN2Px2vMk5pbw34sjOBOTzezf/Vv9dQIpoJZTUkl0ZjH6Wup42Rq2PIskMwJWDIaBT8P4j9vwFIIgCMIdR6mUeiakX5Leqx79CJ46C1bdO3tkgiC0gQgkCIIg3A5WTwSVEhYdqL+/KEPKVhj6Eoz5342vsXUhRB2EF0NFzck7wZV9cPQT0dtCEK5TUlHN7N/9UFeT09vBGG8HY/p2Mamt7d4eMgvLeWHzRc7E5ABgY6TNh9N6tLi0jEKp4o/TcRyOyKSkspri8mqKK6qxMNCit4MxvR2MMdPX5KPdEcRml7BwiBOvTeiGtoYaVQolyXllzFvtT0WVkl3PDsWqFaWDCsqqiMkqpo+Dcb0JXJVKxYGwDD7ZG0Fibim2RtrMGdiF/aHplFZWc+ilEa0qG3T9856OzuaVrcEA/L10cKM19RevDeBiUj6nXx9dr+9CS9T0ilh5Ko4ZfR345KGeN5zAf27jBU5EZXHuzbG1fR/aIr+0kmc3XuBkVDbTetviF5tDYVk1X0zvxRRv2zZf93bz9X9XWH4shvAPxvPGPyEcDMvg3Ftj0dFs3dfppmycJfV1ej4YdE1v3X0FQRCEzpUXDyuGQGUJaOrD6wlS/wZBEO44N5qHF82WBUEQbhVLTwj5W8pOuHaiJ3y7FGDoOb35awx9EcL+gfOrYNjLHTZUoZ3EHpdW5hSmgkmXzh6NINw29LTU2bGskX4x7cjSUJv1iwbw+8lY8koqWTbaFYNWNPtVk8tYPKwri5tpKjuoqzmf7Yvgj9Px7L6UhkoFOSUVqFSgqS5n8xMDWxVEADDS0WjQwBdAJpMxoYc147pbcSgig7Vn4vnywBUA3pvSvc1BBJCed7i7BX8uHsCjv55l9ko//l46uF6ZrpqGzs+MdG11EKFm/G9N9kRXU40fjkRjoK3O2/c3vlqxtLKag+EZPOhjd1NBBABjXU3WLOzPlweu8MvxGBxNdfnn6f71enTcDTysG0YT/gAAP5pJREFUDVAoVQQnFbAvJJ0H+tje2iBCwlmp+eaYd0QQQRAE4V5j4gTjP4Fdz0kNmUUQQRDuSiKQIAiCcKtYekJFgTSpbHRNmYGQv8Gqh/R6c2x6getY8FshlQ3QaL/Vu0IHyE+QtiKQIAidQk0uY+kIlw69h46mGu9fzXTY4J+IkY4GVobaWBtp4+Nogod1+zWqrqEml12tWW9NVEYRJ6OymdnfsV2u7W5lwNqF/Zmz0p+5q/zZuGQgmupySiqqWXkyFrlMxuwBbb+XTCbjpfs8yC+rYuWpOHo7GnN/r4ZZAYciMimrUjC1nTIG1OQyXp/Yjft72eBoplvbZPtu0s1aCox8/d8VyqoUTPe9hf0JVCo49B7oW8OAp27dfQVBEITbh888yI2V+iQIgnBXEoEEQRCEW8XqaiPHzIi6QEJeAiSfgzHvtvw6Q1+CNZPgwp+NN24Wbh95VwMJRamdOw5BEDrcMDcLhrlZ3PL7ulkZ4NZEP4O28nYwZuX8vsxffY5+Hx+q99oEL+t2KUH19uTuhKUW8n9/X8LdyqBBT4adF1OxNtSmv1P7rmzvYWfUrte7nTiZ6aKlLsc/LpeuFnr4OBrfuptH7IIkP7j/O9BsWBJLEARBuAfIZKKXnyDc5UQgQRAE4Vax6CZtM8PAbaz099Bt0rbHwy2/TpfBYN8fzvwAvgtBTfxXfltSqSD//9u77/CsyvOB498Mwt4QCAFlhb2HKCqoiFvcSkWLilLraGtrq7/aaYfa5Wy1zlK3oIK7bgVREQRZDmQKsvcII+T8/ngMSSAvJPAmb0K+n+vKdfKe8ZznhBzEc5/7vheF7zccxIGELWugWl3Tl6WDzOGtG/LkyMN5/6uV1KqaGr6qpdK/TcmaOceSlprMv4b14tS7JnDlo1MYe82Ru7IE1m3ZzntfrWD4ES332ZBZ+VJTkmnXpDYzlqzn3N7ND6jUVYlsWAov/QSadoWeF5fNOSVJklTmfPokSWWlRgOonQFLp8O8d+Hzl2DGMyEoUJKyN0lJoVfCU9+DN3+bH6BIToEOp4aHukq87LWwfWP4fsPSxM6ltGzdAHf2gGN/CYdfmejZSIqzXofUL7JXQ7w0qVONf17Ykwsf/JirH/+Uge0as2lbDl8s3ciOnRFn9Mjc9yAqpEPT2sz6dj1n92xeNifMzYXnfwA7suGch325QZIk6SDmv/QkqSyld4SZY8JXanVoOwiO+b+Sj9PupPDm34f3FF4/8IbwUFeJt3ZB/vcbliRsGqVq7tuh78fiTwADCZJKrl/rhvzq1I7c/NJsxs9ZBUCNtBSOzmpEl8yDqxlyWbj62LYM6pheqEl2qZp4J8x/D4bcDY3blc05JUmSlBAGEiSpLPW7EupkQrsToc2g/a8jnJwMI96EzSvz1z1zcch0KM1Awo7s8OZhtbrhoYFiy2u0XL0BbDxIMxK+ei0sV36R2HlIqtAuPbIVZ/bIJDk5iVpVU0mxnNF+a9moJi0b1Sybky2eAm//ETqdaUkjSZKkSiA50ROQpEql3Ylwxj3Q8fQDb0ZYpRrUa5H/1eY4WDIFtm2Mz1x3t2MrPDUMZo+Dz54OQYXSNO89uKsnZK8r3fOUlrz+CC36HZw9EnJ3wpzXw/ervoKdOYmdj6QKrX7NNOpWr2IQoaLYthGevQxqN4PT7wxlFyVJknRQM5AgSQeLVgMgNwcWToz/2Dnb4OmLYO5b0PV82LkNvpkU//MUNOl+WDMPls8q3fOUlrULoVo9SO8QMhJycxM9o/haPBm2rIasE2Dndlg7P9EzkiSVlXdvDf+dO/t+qF4v0bORJElSGSi1QMJll11Geno6Xbp02bVuzZo1DB48mKysLAYPHszatWtL6/SSVPm06AcpVcOb/PGUsw2evhi+fgNOvwtO/TskpcD89+N7noKy1+a/7b56TumdpzStWxiaaNfJDAGegmWoDgZfvQbJqXDE1eHzis8TOx9JUtlYPgs+uhd6D4dDj0j0bCRJklRGSi2QcMkll/Daa68VWnfrrbcyaNAg5syZw6BBg7j11ltL6/SSVPlUqQ6H9Iv/A/6Jd8Gc/8Fpt4eHBtXqQGav0g0kzH4hvOUOsPrr0jtPaVq7EOodCrUzwueNFaS80c4c+Op/+y5d9dVrcMgR0Lxv+GyfBEk6+EURvPyz0Ctp0G8TPRtJkiSVoVILJAwYMIAGDRoUWjdu3DiGDx8OwPDhwxk7dmxpnV6SKqdWA2H5DNi8Kj7jRRFMfwYOPQr6XFbgPANKtx/DjNHQsC2kd4JVFTCQEEWw/huodwjUaRbWxbtPwhu/hWlPxndMgA/vgSfOh7t6wZRRRfc+WLsQVsyGdidBWs0QMDEjQZIOfp89CYs+hME3Q40G+95fkiRJB40y7ZGwfPlyMjLCm5lNmzZl+fLlZXl6STr4tT4mLOOVLbB8Vmik2+XswutbDYBoJyz8cO/Hr18ME+8JD9aLa/0SWDAh9GJo2LZiljbatBxytkL9lqUTSJj3LnxwB4y7GhZ9HL9xt2+GiXdDZm+omwkv/gj+dTh8+Wrh/b76X1i2Pzks0zuakSBJB7vstfD6r6H5YdBjWKJnI0mSpDKWsGbLSUlJJCUlxdx+//3306dPH/r06cPKlQdZXWlJKi0ZPaBqHZgfpz4JM58N/RA6nVF4fYt+kJK27/O8/Sd4/SZYPrME5xwDRND1XGiUBWsXwM4dJZ15Yq1dGJb1DoWajUMvgXgFEqII3vpD6L1QrwWMuRQ2r47P2JMfhi2r4MRbYMQbMPQJSE6BJ4fC5Efy9/vqtRDkadgmfG7cAVbN2fef0/YtIVghSap43v4jZK8JvZKSE/a/kZIkSUqQMv0XYJMmTVi6dCkAS5cuJT09Pea+I0eOZPLkyUyePJnGjRuX1RQlqWJLSYVDj4xPw+UoglnPQeuBULNR4W1Vqodgwt4yH7asCcdDyTIkpo+GzD7hIXXDtqFRcd6D+Ypi3XfzrX9oeBBfqylsXBqfsb98FZZMhoE3wHmjQhPn538Aubn5+2xcHrIWSmL7FvjgzpDVckg/SEqCDqfCD96HrBPgpZ+EUkfbNsKC8aGsUZ70jpC7A1bP3fs5nrsiBCUkSRXL6rkh2Nz3CsjolujZSJIkKQHKNJAwZMgQRo0aBcCoUaM444wz9nGEJKnEWg+EtfNh3aIDG+fbT0M2QJdzit7eagAsmxECBkX57MlQ3qda3eIHElZ8Hno8dDs/fG6YFZYVreFyXuCjbouwrNMMNiw58HFzc8MboQ3aQI8LoVkPOPHP8PUbodTRN5NgzAi4vTP89wxY+VXxx57ySAhKDLyx8PrUqnD+o9B2cCh19MKPQiPsgoGExh3CcuVe+iREUairveAD2Lqh+POSJCXexLsguQoc/dNEz0SSJEkJUmqBhO9973scccQRfPnllzRv3pyHHnqIG2+8kTfeeIOsrCzefPNNbrzxxn0PJEkqmVYDw/JA+yTMfC48NOhwaozzDACi0M9gd1EU3lxsflgIRCz4oOimvbubMTqUUup8VvicVzqnovVJWLcQaqZDWo3wuU4GbIhDRsKs52DFLDj2l5BSJazrezl0OhPe+j08NBjmvA4dTgnbitu3YEd2yEZoNQAOPWLP7VWqwQWPQZtBYQ7V6sIhh+dvb9QOSIIVeznfxmWwZfV3vTU+KN68JEmJt3EZTHsiBLBrN030bCRJkpQgqaU18JNPPlnk+rfeequ0TilJglBmpmZ6KG/U86J9778jGx4+CdoeD8f9KpS0yc2FWc+HddXrF31cs15QpWYIWHQaUnjb/PdCFsFZ/w5vtE9+GJZOg+Z9Ys8jikIgofUxUOu70nc1GkCNhhUvI2HdwlDWKE+dTJjzZrjGvfQH2qudO+CdP0GTLtC5QPPrpCQYcjek1YLMntBtKES5MHtc8X9uU/4TGkSf+3DsfapUg6GPwwvXhoyIvEAGhIBJ/ZZ7z0hYNiP/+3nv5TdqliSVbx/9K5QZPPJHiZ6JJEmSEqjUAgmSpARJSgpvls9/r3gPrmeMCQ/5l04LDwqO/x1883EoxXP872Mfl5oW3l4vKvNh8sMhANHpTNi+Kayb/97eAwmfPRXKMR33m8LrG7aFVRUskLB2ITTvm/+5dgbs2AzbNoS3+UsqisKDnDXz4HtP7dnkslodOPOfhdfVagJr9tGzAGDHVphwBxx6FLQ8au/7VqkO5zxY9Lb0jnvPSFg2PSwze8evGbgkqXRlr4NPHg6Zgg1aJ3o2kiRJSqAy7ZEgSSojrQeGN8znvLH3/aIIPv43pHeGPpeFOvtv3Qwzn4XUatD+pL0f32oArPoylD3Is3EZfPEy9BgW3mKv2Si8Rb+3UkubVsBrN0KLw/fsydAwK/4ZCc9eAU8NCw/R421nDqxfDPUOyV9Xp1lYbvi25OOtXxwaFL/xm1BaqN0+/kzyNGy77+bHANOfhk3LYMD1JZ9bQY07hMBFzvaity+fGbIWOpwGK2aHP3NJUvn2yYOwfSMcdV2iZyJJkqQEM5AgSQejzmeFh/ejh8Oij2Pvt+jD0Ny430g45e/Q+xKY8I/QeLfdiVC19t7P02pAWM4YE0rvAHz635DZ0Oeywvst+ghythU9zis/DyWWzrhnz7ftG7YJD7rj1aA3Nxe+fAW+eAmeuTj2nPbXxm9DH4BCpY3yAgklaLicmxuCPP/sF4IwJ/4Zho0ufmmkhm32HYDJzYWJd0NG91BS6kCkdwx/7rHOuWxG+J1sHaceHpKk0rUjGz66F9oOhqZdEz0bSZIkJZiBBEk6GFWtDRc/H5oiPn4eLJ1e9H4f/xuq1YOu54cH+KfeDr2+Hx4Idz1v3+dp2g3qt4LXb4LbWsETQ8Pbi62PzW+UDCGQkLMVFn+y5xifvwizx8IxN0CjrD23562LV1bCmnmh3FKbQaEx8dNxDiasXRiW9YoKJJSg4fKk++HVX4Smxld9BEdcDckpxT++YVvYvDKUpYjlq1dDI+v+P9r/3g15GncIy6L6JGzbFLIjmnaDjB6hvNO8dw/sfJKk0jX1MdiyymwESZIkAQYSJOngVSsdvj8uBBUePQtWzSm8ff3i8BC/1/dDs1wIwYTT7oQrJ4QSNPuSnAIj34XzRkHXc2HlF6Gk0uE/LLzfof0hKXnPt9Cz18LLPwtvOvaP0cSxYduwLE6ZnuJY9llYHv9bOO12mPM/eGZ47JI8e5ObC/8eAB/dl79u3XeBhIIZCbUzwrK4pY1yd4aeCIccAcPGFB6ruBp8F8jZW5+ED+4KJZg6nVny8XfXqF34My6qT8KK2UAU/pyTU6Dl0fZJkKTybEc2TLgdWvQL/w2XJElSpWcgQZIOZvUOge+PDd//5zRYODF/2+SHgQj6Xl74mOTk8MC3uG+oV68Hnc+E0++AH0+DG78JZZEKqlYXmvUsHEiIInj1Rti8CobcAylVih6/QWsgKbw5Hw9Lp0NyFWjcMZRfOvXv4c38Sf8u+VjrF8HSz+Ct34fADHyXkZAEdZrn75daFWo0CmWPCnr5epg1ds9x57weAhL9frD/mQL7CsAs+hi++QiOuAZSUvfvHAVVqRb+rIrKSFg2IyybdgnLVgNDY+018w/8vJKk+Jt0fyjHN+g3B56xJkmSpIOCgQRJOtg1yoLhL4asg/+cBu//DbZvgSn/gfan7N/b7ntTrU7R61sNCKWNtm8Ob/K/cj1Mfyo0+W3WI/Z4qVVDQCRepY2WTYf0DpCaFj73vTw0m/76rZKPtXxWWO7YAq//Ony/bhHUycwfP0+djMIZCSs+h08egBd/DFvWFN734/vCGMXJComlQStCACbGz23iXVC9PvS8aP/PsbvGHYrOSFg2IwST6rYIn3f1STArQZLKney1MP4foTdCy6MSPRtJkiSVEwYSJKkyaNIJRr4XMgfe/gPcewRsWQ2HjSy7ObQaEHovLPgAXrgm9FLo/yM45v/2fWyjrD1LM+2PKAoZCU277zm3vTWDjiUvkHDENTDrOVgwIWQSFBWcqZNZuEfCjDGhFNC2jeHPJM/KL0P/gD6Xxc7SKI69BWBWzYEvXoa+V0Bazf0/x+7SO4YeFLv/HJfNCP0R8t5qbdQOajWFebsFEqIolNPYtCJkUmxaGb+5SZKKZ8IdsHV9KAEoSZIkfcdAgiRVFtXqwDkPwel3wsZlkN4pPEAvKy0ODyWFnh8J0x6HY34Jg28uXsmEhm3Dg+UoOrA5bPg2NI7MKCKQkJMNiyeXbLzlM0Oz6eN+BXUPgVd+Ecr11CsikFA7I5SJgHAdM8eE8x52BUx+JJRIglBOIqUq9L6kxJe3h4Ztiw4kTLw7BBriHUhq3AGinaFXRp7cnaFHQtOu+euSksK1z38/ZKfsyIZ3b4NbWsCfmsLfsuDuXnB7pxDgkSSVjfVLQlZct/ML/70tSZKkSs9AgiRVJklJ4QH1NZPhoufKtu5xWg1ocVgomTD4D3DMDcU/f8O2sGMzbFy67333Ztn0sMzoVnh9rGbQ+7J8FjTpDFWqw4l/hBWzYNOykAmwuzqZkL0GdmyFJZ/C2gXQ9Tw45kao0SAEIbLXwbQnQ+Pqmo325woLKyoAs3MHzHoeupwDtRof+DkKOvTIECyaMip/3Zp5ofRTky6F9209MAR1PrgD7jkM3v1zWDfot3DK3+Csf0Pd5qER9sbl8Z2nJKlo790KUS4ce1OiZyJJkqRyxkCCJFVG9VqEmv1l7ZS/wbBn4cgfley4Rllhubc+CQsn7tlrYHdLpwNJez7Url4PMnqULJCwfUt4SJ43VschoYkwxCht1CwsN34bshFS0kIPhOr1w8Pzbz6Cpy8KAZN4ZQo0bAvbN8GmAg/iF0+GbRsg64T4nKOgOhnQ40KY+lh+Gae84M3ub7bm/aze+j1UrQ3DX4Khj8PRPw1ZGt2HwgWPhbmOviQEQCRJpWfJp+Hv7z4j4t8/SZIkSRWegQRJUtlp0gmyji/5cQ3bhmWsPgkrvoBHToZ7+sD0Z2KXQFo2HRq2gaq19txWsBl0caz8Iry12aRz+JyUBKf8NTwwb9Fvz/3zAjfrF8PM58KD/Or1wrqeF0OznrBgfCgBtbfm0yXRsE1YFgzAzH07ZF/kNTyOt6OuC70wPrwnfF42M2QpNO5QeL96LWDAL+DUv8MP3odWR+85VpPOMORuWDQxv5m1JCl+cnNhzhvw2LnwwLFQrS4MuD7Rs5IkSVI5ZCBBklT+1W4GVWrEzkj44sWwrNsCnrsCHj8X1i7cc7+l00PT36K0GgC5O4pfkz+v0XJeIAGgcXu4ckL+A/yC6mSG5YwxofxRl3PytyUnw8l/DVkKJc3W2Ju8AMzqufnr5r4FmX1CJkRpaNAqlGaa/DBsXh0aLTduD6lpe+573E3Q93JISY09Xtdzod8P4eN7w89OUtl57y8w9qpEz0KlZcO38K9+4b+Zy6bDMf8HV30Un9J6kiRJOugYSJAklX/JydCgzV4CCS+Hh+NXvA0n3QYLP4R7+xd+gL5lDaxftGd/hDyHfNcMurjljZbPCsGN+q2Kt3/t7zISPnsK0mpBu5MKb2/RF25YAB1OLd54xVG3eWjcnPdz27ImlK5oOyh+5yjKUT8NDZQ/+lcIJBxow84T/gDN+8Jr/wc7c+IzR0n7tvADmD8+0bNQaZn6WMj0O+t++MnM0LOndtNEz0qSJEnllIEESVLF0KgtLJ8dyjAUtH4xfDsVOp4GySlw+JXwww8gdye8/9f8/ZbNCMuM7kWPn1YzPKwudiBhJqR3DEGO4qhWB9Jqw85tIViQVqPoOcRTcgo0aJ0fUJn3DhBBm1IOJKR3gI6nw0f3huyLAw0kpFSB/tfC5hUw/72SH78zB7Zu2L9zz34BXvtl7HJZ0sEse2340sFp9rgQRO9+QdFZY5IkSVIBBhIkSRVDu5Nhw2KY93bh9V+8EpYdTstf16AV9Lks9EvIe4i+q+lvjEAChPJGS6dB9rq9zyWKQkZCwbJGxZHXJ6HLuSU77kA0LJDJ8fXbof51s56lf94B14fG0bBnc+v9kXUiVK1b8vJGW9bAg8fBvUfCjq0lO3bdIhj7Q/jon/D1myU7VjoYZK+D7RvNBDoYrfo6BMQ7nZHomUiSJKmCMJAgSaoYOp8FtZqEt9wL+uIlaNQOGmUVXn/kj8Ob7OP/Hj4vnR76FNRsGPscrQaEBsoLJ+59LpuWQ/aakj8gr5MJ1RtAm2NLdtyBaNgW1swLDwLnvg2tj9l7T4J4yegeGkrDgWckAFSpBp1Oh89fDGWTiiN7LTx6Vmj4vH4RfPrf4p8viuCl68KyTia88yezElT5bF333XJ9QqehUjB7bFh2HJLQaUiSJKniMJAgSaoYUtOg7xXhzfCVX4Z12WthwYTC2Qh5ajeB3peGngRr5sPSz2I3Ws7TvA+kVt93eaPlM8OypBkJx/8Ozv9vCHCUlYZtQxPpr9+Ajd+Wflmjgk79B5zzENRoEJ/xup4X3o7+8tV975u9LgQRls+C7z0Jh/SHCbdDzrbineuzp8Lv2vG/Cw1Iv51avPNKB4vc3PySYJY3OvjMHgvND4O6mYmeiSRJkioIAwmSpIqjz6WhefDH94XPX70O0c6iAwkQshKSU+HtP8LqObEbLedJrRrqRe8zkDArLNM7lWz+zXpAq6NLdsyBatg2LD/+d1iWdqPlguq1gK5xLOPU8mio1RRmjC68PorCQ/5PH83/euzskIlwwaPQ7kQ45oYQSClOVsKmFfDajdDicOh7OXQfGppqv/PnPXt0FLRlDbz3l+JnTEjl2bb1wHdZOHmZCap4tm/es6zb6rmhb1DnMxMyJUmSJFVMZVDbQJKkOKnZCLqdD9OehON+DV+8CLUzYtf8r5MBvYfDpPvD531lJEAob/TW72HMiPAAZvsmqH8onHZHfibB8lmh3E283rQvTQ3bhOW8d6BRe6jbPLHzORDJKSEw8fG/w0P7vJ//+3+Dd/5YeN+UNDh/FLQ/OXxuNRBa9AtZCb2+H4JGsbzyc9ixBYbc/V0z7WQ45kZ4/gehlFanGKVAXrkeZj4b5tX38gO+XCmhCmYh7KtvjMqnjcvgweOhWj0Y8T9IqxnWzx4XlpY1kiRJUgmYkSBJqlgO/yHkZIeHyV+/Be1P+e5hbwxH/iQ8VIZQt39fOg6BeofCkimhuXPOVpj6GHxwR/4++9NoOVFqNoaqdcL3bY5L7Fzioet5oVRTXn3vz18KQYSu58NPZuZ//fxr6HBq/nFJSTDwBtiwBKY9vue4UQQLPoCnLw5jD7wBGrfL397lXGiYBe/eUnRWwhevhCBCchX45OGi+ylMuB0+uu9Arl4qOwWDB5Y2qni2b4Ynh8LmVaEc34s/zv97afY4yOwTssYkSZKkYjIjQZJUsTTpHN4uH/83yM2BjjHKGuWpmwmHjQxNeovzNn6jtvCT6YXXjb4klKzpOCSUuFn5JWQN3u9LKFNJSSEr4dupZVvWqLRkdA/NtaePDqWHnv8BNOsFQ+6CKtX3fmyb46B5Xxj/D+hxUSh7tXpO6LMx+RFYPiO8uXvUdaEsVkEpqSEr4dkRMOu5wiWbtq6Hl38K6Z1D+a1XrodvJsEh/fL3WT0X3vpDeCO49yWhebRUnhUsZ2Rpo4olNxeeGxl6Aw19IpR5e+eP4e+/rBNg6TQY/IdEz1KSJEkVjBkJkqSK5/CrQhChal049Kh97z/4D3DNJ+Gh+v44+S/hAfC4a2DVl+GN+CZd9m+sRGiYFXpLHHpkomdy4JKSQvbBoonw+HmQVguGPr7vIELesQNvgPXfwAPHwW2Hwj8PC0EAIjj9Lvjp56HBclENsTufBU26wvNXhmBE7s6w/o3fwKblcMbd0P17kFYbJj9U+Nj3/gJRLmzbAF+9dqA/hRC8KCrrQYqXQhkJ62LtpfLozd+EMmwn/jmUdzv6Z9DuZPjfL+HN34Z9Op2R2DlKkiSpwjGQIEmqeLJOCG9/dz4TUtP2vX9y8t5r4u9LrXQ46VZYPAle+UVYV9JGy4k08Beh6XBajUTPJD7ysgE2rwxBhDrNin9s2+Oh4+nhd6LreXDGv+DqSXDlhNBPY28/o+QU+P446HBK6KPxyCkw9XGY8h844mrI7A1Va4XmzLOeh82rw3Erv4IZz4QAWFHNoiG8QfzV6/nBib3Ztgnu7gNPX2QwQaWnYBaCpY0qjumjYeLd0PcK6HdlWJecDGfdB/UOCWWNmvUMvX8kSZKkErC0kSSp4klOhpHvhNI0ZaXbBTBjDHz9RqiD3yir7M59oBplVaz57kuDViFroHFHaN6nZMcmJcEFj+3/uWs2hPNGwfRnQlPmcVeFclfH/DJ/n74j4JMHQi+GI38E790KqdXh6J+G7Z88EB7MVq+ff8yUR0JmxJC7QzPovZn+NGxeEd44/vCf0P+a/b8eKZa8LITqDSxtVJF89M8QaD/p1sJZeNXrhb/7HjkFeg1P2PQkSZJUcZmRIEmqmFKrhjfEy0pSEpx2eyil07hD0aVvVHaOug7an5SYcyclQfcL4KqJ4YHcuQ8VzmRI7wiH9IfJD4fG3DOfg34/gJqNoNt5sHN7eCs4z45seP+v4fuP7t17lkEUwScPQtNu0OG0UKbkm09K5zpVuWWvDY3qa2dY2qiiWD039MPpPjT0ddldk85w/ZzQy0WSJEkqIQMJkiQVV70WcOEzcOrfEj0TlQd1m4cmz5m999zW5zJYOz+UH0qrBf2vDeszekDDtqH8SJ5PHoSNS6HnxbBiNsx/L/Y5F04M+xx2BZxxTyjrNOZS2LImrpcmsXVdyJqpXt/SRhXFzGfDssvZsfcpTjlASZIkqQgGEiRJKomWR8Ihhyd6FirvOg2BGo1gzTw4/IdQo0FYn9cseuEHsH4xbN0QGje3GQSn/h1qNg5ZCbF88gBUqwddzg0PeM/7D2xcBmN/aL8ExVf2uvC7Vr2epY0qgigK5fcO6R+CnJIkSVKcGUiQJEmKt9SqIWugZmM44qrC27qeC0Th7eGP/gXZa2DQr8MxfS+Hr14LJUp2t3EZfP4i9Lwov5RSZm848U/hmGcvh+1bSv3SVElsXReCCNXrWdqoIlg+E1Z9md+MXpIkSYozAwmSJEmlYcAv4CczCjdVBmjYBjL7wKf/hYn3QMfToVnPsK3PZaEu/cf37TnelP9Abk7Yp6DDRsKg34TAxEMnwNoF+du2rIFJD4Q+DVJJ5GUkVKtnaaOKYMZoSE6FTmcmeiaSJEk6SBlIkCRJKg3JyVCletHbup0Pq7+G7Zvg2F/lr6+VDl3Pg6mPF34LfOcOmPwItD0+BCIKSkqCo38Gw8bA+kVw/zHw8b9Df4a/tYNXrofnr4TNq+N9hTqYZa/Lz0jIyYacbQmeUCU2+lIYdw3k7ix6e25uCBa2PhZqNizbuUmSJKnSMJAgSZJU1jqfBclVoPtQSO9QeFu/K2HH5pCxALBjK3z2FGxaBn2viD1m1vEw8l2onQGv/gIWfhjKK533H9i5DaY+WlpXE3+fPR0CIrm5iZ5J5VWw2TJY3ihRNq+GWc+H+/e1G4vuhbJ4Eqz/xrJGkiRJKlWpiZ6AJElSpVMrHX7wHtRvuee2jG7Q8mh49xaYcHvooQBQvxVkDd77uA1aw+VvwYrPwzgpVcL6SQ/C5Ieg/7WQnBLXSykVn78A306FNXOhUVaiZ1P55O6EbRvySxtBCCzUbpLASVVSC94HotCQfdL9IVB49E8L7zNjDKRWgw6nJmSKkiRJqhwMJEiSJCVCk86xtx3/O/jgjtCsuXYzqJMBbY4rXhAgrQY071143WGXw+hLYM4b0P6kA5h0GVkyJSy/nWYgIRG2rg/LvNJGYJ+ERJn3LlStAxc+HUqUvfV7qN0UelwYtu/MCRkL7U6EqrUTOlVJkiQd3AwkSJIklTfN+8AFj8VvvA6nhTeZP3mg/AcSNnwLG5eG77+dCt3OS+x8KqO8oEG1epY2SrR574YMpZQqcOa/YPPK0C9hwh2hx8rWDbB9I3SxrJEkSZJKlz0SJEmSDnYpVaD3JfD1m7B6bnzG/PpNuLM7fPW/+IyXJy8bIa0WLJ0W37FVPHlBg+r1C5c2UtlauyB8tR4YPqdWDQHGnsOgcfvQXLnnRXD876H9KYmcqSRJkioBMxIkSZIqg96XwPt/hckPw4l/2v9xoij0bnjrZiCCD+8JZVXiZckUSE4NDalnjQ0Nl5N996VMbf0uI6F6vQIZCZY2KnPz3gvL1sfkr6tWB4bcnZDpSJIkqXLz/8okSZIqg9pNoePpMPVR2L5l/8bYtglGDw912rucDf1/BPPHw7pv4jfPJVOgSRc45PBQsmVNnDIoVHx5GQnV6kG1uoXXqezMezeUJGvULtEzkSRJkgwkSJIkVRp9rwiNdF+5HmY+B8tnwY6txTs2ey08chJ8/iKc8Cc45yHocxkQwYxn4jO/3FxYMjX0iGjWM6z7dmp8xlbx5ZUxql4vNPiuWtfSRmUtNxfmvxeyEZKSEj0bSZIkyUCCJElSpXFo/9B4edoTMOZSuLc/3NoCZo/b+3HbNsHj58HKL+HCZ6D/NeHhZoNWcEh/mPZkKHl0oFbPCVkImb2hUXtIrQ7fTjvwcVUyBTMSAKrXtbRRWVs+E7asLlzWSJIkSUogAwmSJEmVRVISDH0cfvktXDkhZBWkd4IXroX1S4o+ZsdWeOpCWPIpnPswZA0uvL370BAAWPLpgc8vr9FyZm9ISYWmXWy4nAjZa0MQp0q18Ll6fUsblbV574Zlq4EJnYYkSZKUx0CCJElSZZNWA5p2ha7nhuDAzhwY+8NQTqWgnTkw5rJQYuWMf4YeC7vrfCakVoPPnjjweS2eDGm1oWFW+JzRA5Z+tue8VLq2rgtljfJUq2dpo7I2792QlVMnI9EzkSRJkgADCZIkSZVbwzZw0p9DsGDSv/PXr10Ij58LX74Mp/wNenyv6OOr1YUOp8LMZyFnW+zzfP5i/lvWsSyZApk9Ifm7f6I26wHbN8Hqr0tyRTpQ2evyyxpBCCpY2qj0bN0AX78J2zeHzznbYNGHljWSJElSuZKa6AlIkiQpwXoNhy9fhTd+Cy2PDg/83/kTJCXD6XdC70v2fnz3C0MgYc7rRWctzH8fnvk+VKkBV30E9Vrsuc+OraEufP9r89flNVxeOg0at9vPi1OJbV1fOCPB0kalZ+VXoXTY6jmhqXXPi6BJZ9ixxUCCJEmSyhUzEiRJkiq7pCQYcjdUrQ33HwOv3wStBsDVH+87iADhgWetJqHp8u42rYBnL4f6LUND5peuK7ox87IZkJsT+iPkseFyYmSvC8GDPHmljeLRUFv5vngZHjguZHsMuQfaDgpZQeOugqQUaHlkomcoSZIk7WJGgiRJkqBWOpx1H7z5Ozj6Z9D5rBBgKI6UVOh2Pnx0L8x5E7KOD+tzd8KzI0LploufhwUT4NVfwPRnoPsFhcco2Gi54Lg2XC572WtDD4081evBzu3hLfm0mgmb1kEjiuDdW+G9W6FZL7jgUajbHHpdDBuWwpT/hEbX1eomeqaSJEnSLgYSJEmSFGQNDl/747AfwBevwOPnQLuT4cQ/hYDB/PfD29ZNOkPjDqEE0ms3QJvjoFbj/OOXTIHaGVCnWeFxM3rAZ0+GhsvJJtOWiaKaLUPIVDCQcODmvRuCCN2/B6fdEYIGeepkwLH/l6iZSZIkSTH5f2OSJEk6cPVahP4Hg2+GBePhX4fDe7eFh6U9Lwr7JKeEEkrbN4fMhIKWTCmcjZCnWU8bLpelnTvCz7tQs+XvyhxtXZeIGR18PrwnlAI7/c7CQQRJkiSpHDMjQZIkSfGRmgZH/hi6XQBv/h42LIZT/164RFLj9jDwBnj7D5CzFdI7hf4Ja+bmBxwKatYjLG24XDa2rg/LQs2Wv/s+e21Zz6biyN0Jm1dB7SZ732/F5/D1m3DcryC1atnMTZIkSYoDAwmSJEmKr9pN4ax7Y28/8sew/pvQM+Gr/0G0M6xv0W/PfQs2XO52fqlMVwVkrwvL3ZstF9ymfFEEX7wEb/0hZM2cPwo6nh57/w/vCb/PfUaU3RwlSZKkOLC0kSRJkspWSpVQ1uXaKXDT0lAS6ZJX4ND+ReybGrISZo+DjctLd16fPgr/6AzTR4cHxJVRXvkiSxvt2/zx8ODx8PRFEOWGxuBjLoO5bxe9/6YVoW9IjwuhRoOynaskSZJ0gAwkSJIkKXFSq0J6R2h5ZOESSAWd+CfIXgNPnAfbNpbOPBZPhpeuCw/Ln7scxlwKW9aUzrnKs7zyRZY22rspo2DUabBxaWgmftVH8P1x0KgdPDUMFn285zGTHgg9KI64uuznK0mSJB0gAwmSJEkq3zJ7w/n/hWUz4emLIWd7fMfftDKMW6cZ/PgzGPQb+Pwl+NcRMO/dvRy34uDLXMgrX1QwIyGtNiQlW9ooz5evwks/gTaDQlZNr4tD5kz1+nDx81A7Ax4/D76dmn/M9i3wyYPQ/hRo2CZhU5ckSZL2l4EESZIklX9Zg2HI3TDvHRh3NSyZAuP/DqNOh9tawpw39m/cnTkh+yB7DVzwKNRsBEf/DK54G6rVgWeGw46tex636mv4RyeY9vgBXVa5k1e+qGBGQnJyCCxY2gi+mQSjL4WM7iG4VaV64e210kNmQtXacP8xofTRhDvggzvD75jZCJIkSaqgDCRIkiSpYug5DI77Ncx4Bh44Dt66OZTbqV4fnh0Ba+YXb5ycbbB5ddj/9V/BgvFw2h3h4XCejG5w8m3h4fmXr+w5xtRHIXcHTH0sHldWfhSVkQAhsFDZMxJWfgVPnA91MuDC0VC1VtH71WsBl78Jx/0qlDJ687fw3q3QrGfRfUAkSZKkCiA10ROQJEmSiu3on4XSMalVodVAqNU4BATuPyaUJxrxOqTVKPrY+ePhhWth7W4Bhz4joMf39ty/1UCo0xymPQFdzs5fvzMHPnsSkqvAog9h3SKod0jcLjGhtq6DKjUhNa3w+mr1Ds4eCTu2wvKZoUfGkimwaRk07QbN+4SSWrk5obzV3HfCMrUqXPRs+L3bmzoZMODn4WvdIvjqfyGIEKsPiCRJklTOGUiQJElSxZGUFDITCmrQCs55MNSlf/mncOa9hR/Y7tgKb/8BPvwnNGgd3hSvWje8UV6zMbQ+tuhzJadA96Ew4R+w4dvQQwHg6zdg03I46VZ47UaYMToEOA4G2WsLlzXKU73+wVXaaO3CUG5o2uOQ813pqlpNoXbT0BT5w3sK718nEzqeDv2vDb9DJVHvEDjsivjMW5IkSUoQAwmSJEmq+LIGwzE3wru3QMO20OIw2LYxlOOZeDes/Bz6Xg6Db4a0msUft8eFMP5vMP1pOOq6sG7qY1AzPYw363mYMeYgCiSs27OsEYTgwtoFZTuX0rBqTuitMf2ZECjqdgG0OzFkH+QFinK2hyyFJVNCQKrVMaFBstkEkiRJqsQMJEiSJOngMOAX4eHv238ovL5WUxj2LGQdX/IxG7aBQ46AqY/DkT+BzSvhq9fg8KsgpQp0PQ9euR6WzYSmXeJyGQm1dV3IPtjdwVDaaOPyUAIryoV+V0L/a/KDBwWlpkFmr/AlSZIkCTCQIEmSpINFcjKc/ygsnAApVaFq7fBVJxOqVNv/cXtcGHorLJ4ceiLk5kDPi8K2zmd/V97omcQEEua8CS9fB2f8C1odfeDjZa8LpaJ2V70+bF0PUVS8N/N3bIUdW6BGgwOfU0nk5sK29UUHQybeBTuy4eqPoVFW2c5LkiRJquCSEz0BSZIkKW6qVIO2x4eH6s16hIyCAwkiAHQ6E1Krw7THQlmj5odB4/ZhW82G0GYQzHg2PMSOZcuaUGopnpbNhNHDQzPfZ0fAphX7PmbBhFDeJ5at62KXNop2Fu8aVn4J9x0Jd/aABR/se/94yc2FZy6G27uGBtwFbVoBnzwE3c43iCBJkiTtBwMJkiRJ0t5UqwOdzgjljVZ9Cb0uLry963mwYTEsmlj08QsmwN294G/t4aWfwoovwvooCqWY3vwdPHEBLPyw+HPauCwcU7V2KNu0dQM8eznk7ox9zPRn4D+nwj194L9nwpev7rl/rGbLecGFfZU3+vwleOC4kL1QsxE8ehZ8/mLxr+tAvPMn+OKl0Dx53NWFAzsT74Kd2+Do68tmLpIkSdJBxtJGkiRJ0r70uBCmPwVVakDnswpv63AKVKkZHtS3PKrwtmlPhrJIDVpBZp+Q0TD5odB3Yd03IQCRlBIe3j9yMhz5Izj2JkitGnsu2zeHIEL2WrjsVcjoDqf8FV64Bt7/a2g6vbu5b8PYq6Dl0dB6IHzyMDw5FOq3ggufDhkWOdtDOaIiMxK+KxW0dR1w6J7bc3NDo+v3/wLNesEFj0GV6vDE+fDM9+HUv0Ofy0KAYeVXsPrrMP/tm2DbhlAKKa3Gd+Wo6kCt9DBOvUPySylt2xgyHBZ/En7ObY7NP//M50JT7J4XQ4t+4Wcx6X44/ErYvCpkI3Q5Fxq1jf1zlSRJkhSTgQRJkiRpX1oeDY3ah5JJVWsX3pZWEzqcCrPHQpPO0KhdeDA/+eHwYL/VADj/v+Fh/Al/gE9HwfTRIQBw3K+g3YmhcfP/boIP7oSv34Kz/l10z4UogudGwrLpMPSJMAaEng0LJsC7t8Ihh0PrY/KP+XYaPH1xmNPQx6Fa3dA4+ouXQobE2KtgxOvfBQkoOiMhb132uj23rfgcXvgRLJ4U5nHK3/PLSX1/HIy+FF66Dt65BTYXUX4ptXoInOzYAju3F95Ws3EIKGxdD0smh/4UEIIGrY+BQb+B5NRwDS36hYBFShp8/kLI9MgaDJ/+N/RGGPDzPc8tSZIkqViSoiiKEj2JfenTpw+TJ09O9DQkSZJUmeVsh+SU8LW7JZ/C4+fBllWF1/f6Ppz6jxAoKI4vXwsZDDu2wMh396znP+kBeOV6OOFP0P+awtu2b4b7j4V1C6F5X8jsDemd4PVfhQf1I96AOhmFj5k+Gp67HE68JfSW+GdfOOch6Hpu4f2WzQx9D84bBZ3P/O7nsQ3G/x3G/yMEV066BbpdsGcz5p074L2/wPrF0LhdCMg0ygqlj9JqQ0qBd5tytsG2TbB+USj7tOTT8JVWIwQOWh8TgifTnghBmi2rwxjV6oSfV630MM6Gb+Ffh0ODNqFnQ/uT4dyHivdnIEmSJFVSe3sObyBBkiRJiocogk3Lw4PrVV9BjQbQ+ew9H6zvy/rF8O8BUKspXP5meIgOoUnyfUdDyyNh2Jiix127ACbeE97eXzYTcneEUkUjXs9vEL37nJ+4ABaMh9PvhOeuCD0Xso7fbU5L4PZOYZ/el4R+Di/+KFxn1/NDEKFmo5Jd54HathE+/CfMHgdn3huaaxf02VPw/A+AJLj646KvX5IkSdIuBhIkSZKkimTOm/D4OSGjYcjd4a3+hwbD2oVw1YdQu+m+x9ixFZbPhLotoHaT2PutXwz/PDxkBmSvhcvfguZ9Cu+zfTP8uRkc/bOwz+SHoe4hcPrtIZOhPIqikL2RVhMG35zo2UiSJEnl3t6ew9sjQZIkSSpvso4PD+3H/x0OPSo0J/52Kpz/aPGCCBD6FOweEChK3eZwws2hjwHkN1YuNFYNSK4S5pOUDEdcA8f+MjykL6+SkkLPBEmSJEkHzECCJEmSVB4d80tY9BG89BPI2QrdL4ROQ0rnXL0ugRnPwsIJRQcSkpIgvWN4y3/IXZDZq3TmIUmSJKlcMpAgSZIklUcpqaHx8X1HQY1GcPJtpXeu5OTQjHjuO6G3Q1FGvhuyEUra80GSJElShWcgQZIkSSqv6mTAleNDWaFqdUr3XLWbQo/vxd6enFK655ckSZJUbhlIkCRJksqzOs0SPQNJkiRJlVxyoicgSZIkSZIkSZLKLwMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQpJgMJkiRJkiRJkiQppqQoiqJET2JfGjVqRMuWLRM9jXJj5cqVNG7cONHTkCoV7zup/PG+lMoX70mp/PM+lcoX70mp/Kns9+WCBQtYtWpVkdsqRCBBhfXp04fJkycnehpSpeJ9J5U/3pdS+eI9KZV/3qdS+eI9KZU/3pexWdpIkiRJkiRJkiTFZCBBkiRJkiRJkiTFZCChAho5cmSipyBVOt53UvnjfSmVL96TUvnnfSqVL96TUvnjfRmbPRIkSZIkSZIkSVJMZiRIkiRJkiRJkqSYDCSUgW+++YZjjz2WTp060blzZ+68804A1qxZw+DBg8nKymLw4MGsXbsWgMcff5xu3brRtWtX+vfvz2effbZrrMsuu4z09HS6dOmy13O+9tprtG/fnrZt23LrrbfuWn/PPffQtm1bkpKSWLVqVSlcrVQ+lKf7bsSIEXTv3p1u3bpx7rnnsmnTplK4Yqn8K0/35SWXXEKrVq3o0aMHPXr0YNq0afG/YKmcK0/35NFHH73rfmzWrBlnnnlm/C9YqoDK03369ttv06tXL7p06cLw4cPJyckphSuWyrdE3JOx9hs9ejSdO3cmOTmZyZMnx/lKpYojXvdlrHGKUmmfu0Yqdd9++200ZcqUKIqiaMOGDVFWVlY0a9as6Oc//3l0yy23RFEURbfcckv0i1/8IoqiKPrggw+iNWvWRFEURa+88kp02GGH7Rrrvffei6ZMmRJ17tw55vlycnKi1q1bR3Pnzo22bdsWdevWLZo1a1YURVH06aefRvPnz48OPfTQaOXKlaVyvVJ5UJ7uu/Xr1+/a77rrrtt1fqmyKU/35fDhw6PRo0eXynVKFUV5uicLOvvss6NRo0bF7Tqliqy83Kc7d+6MmjdvHn355ZdRFEXRr3/96+jBBx8slWuWyrOyvif3tt/s2bOjL774Iho4cGD0ySefxO0apYomXvdlrHF2V5mfu5qRUAYyMjLo1asXALVr16Zjx44sWbKEcePGMXz4cACGDx/O2LFjAejfvz/169cH4PDDD2fx4sW7xhowYAANGjTY6/kmTZpE27Ztad26NWlpaQwdOpRx48YB0LNnT1q2bBnnK5TKn/J039WpUweAKIrIzs4mKSkprtcqVRTl6b6UVD7vyQ0bNvD222+bkSB9p7zcp6tXryYtLY127doBMHjwYJ599tl4X65U7pX1Pbm3/Tp27Ej79u0P9JKkCi9e92WscXZXmZ+7GkgoYwsWLGDq1Kn069eP5cuXk5GRAUDTpk1Zvnz5Hvs/9NBDnHzyySU6x5IlS2jRosWuz82bNy/yF1+qLMrDfXfppZfStGlTvvjiC6699tr9vBLp4FEe7subbrqJbt26cd1117Ft27b9vBLp4FAe7kmAsWPHMmjQoF1BeEn5EnmfNmrUiJycnF3lU8aMGcM333xzAFcjVXxlcU9KKpl43ZcFx9ldZX7umproCVQmmzZt4pxzzuGOO+7Y43+OkpKS9nhL+Z133uGhhx5iwoQJZTlN6aBSXu67Rx55hJ07d3Lttdfy9NNPc+mll8Z1fKkiKQ/35S233ELTpk3Zvn07I0eO5LbbbuM3v/lN3MaXKpLycE/mefLJJ7n88svjPq5U0SX6Pk1KSuKpp57aFXw/4YQTSElJicvYUkWU6HtS0p7idV/ubZzKzoyEMrJjxw7OOecchg0bxtlnnw1AkyZNWLp0KQBLly4lPT191/7Tp0/n8ssvZ9y4cTRs2HCvY3/zzTe7mtPdd999ZGZmFno7ZPHixWRmZpbCVUnlW3m771JSUhg6dKhp4KrUyst9mZGRQVJSElWrVuXSSy9l0qRJ8b5UqUIoL/ckwKpVq5g0aRKnnnpqPC9RqvDKy316xBFHMH78eCZNmsSAAQN2lTmSKpuyvCclFU+87suixvG5az4zEspAFEWMGDGCjh078tOf/nTX+iFDhjBq1ChuvPFGRo0axRlnnAHAokWLOPvss3n00UeL9Y+zFi1aMG3atF2fc3JymDNnDvPnzyczM5OnnnqKJ554Iu7XJZVn5eW+i6KIuXPn0rZtW6Io4oUXXqBDhw5xv16pIigv9yWEf0hmZGQQRRFjx46lS5cu8b1YqQIoT/ckhFIpp512GtWqVYvfRUoVXHm6T1esWEF6ejrbtm3jtttu46abborvxUoVQFnfk5L2LV73ZaxxfO5aQGJ6PFcu48ePj4Coa9euUffu3aPu3btHL7/8crRq1arouOOOi9q2bRsNGjQoWr16dRRFUTRixIioXr16u/bt3bv3rrGGDh0aNW3aNEpNTY0yMzOjBx98sMhzvvzyy1FWVlbUunXr6I9//OOu9XfeeWeUmZkZpaSkRBkZGdGIESNK9+KlBCkv993OnTuj/v37R126dIk6d+4cXXjhhdH69etL/wcglUPl5b6Moig69thjd92Xw4YNizZu3Fi6Fy+VQ+XpnoyiKBo4cGD06quvlt4FSxVQebpPr7/++qhDhw5Ru3btottvv71Ur1sqrxJxT8ba77nnnosyMzOjtLS0KD09PTrhhBNK/wcglUPxui9jjVOUyvrcNSmKoihxYQxJkiRJkiRJklSe2SNBkiRJkiRJkiTFZCBBkiRJkiRJkiTFZCBBkiRJkiRJkiTFZCBBkiRJkiRJkiTFZCBBkiRJkiRJkiTFZCBBkiRJUkwpKSn06NFj19eCBQtKdPy7777LaaedVjqTkyRJklQmUhM9AUmSJEnlV/Xq1Zk2bVqipyFJkiQpgcxIkCRJklQiU6ZMYeDAgfTu3ZsTTzyRpUuXAvD1119z/PHH0717d3r16sXcuXMB2LRpE+eeey4dOnRg2LBhRFEEwM0330zfvn3p0qULI0eO3LVekiRJUvliIEGSJElSTNnZ2bvKGp111lns2LGDa6+9ljFjxjBlyhQuu+wybrrpJgCGDRvG1VdfzWeffcbEiRPJyMgAYOrUqdxxxx3Mnj2befPm8cEHHwBwzTXX8MknnzBz5kyys7N56aWXEnadkiRJkmKztJEkSZKkmHYvbTRz5kxmzpzJ4MGDAdi5cycZGRls3LiRJUuWcNZZZwFQrVq1XcccdthhNG/eHGBXn4WjjjqKd955h7/85S9s2bKFNWvW0LlzZ04//fSyuzhJkiRJxWIgQZIkSVKxRVFE586d+fDDDwut37hxY8xjqlatuuv7lJQUcnJy2Lp1K1dddRWTJ0+mRYsW/O53v2Pr1q2lNm9JkiRJ+8/SRpIkSZKKrX379qxcuXJXIGHHjh3MmjWL2rVr07x5c8aOHQvAtm3b2LJlS8xx8oIGjRo1YtOmTYwZM6bU5y5JkiRp/xhIkCRJklRsaWlpjBkzhhtuuIHu3bvTo0cPJk6cCMCjjz7KXXfdRbdu3ejfvz/Lli2LOU69evW44oor6NKlCyeeeCJ9+/Ytq0uQJEmSVEJJURRFiZ6EJEmSJEmSJEkqn8xIkCRJkiRJkiRJMRlIkCRJkiRJkiRJMRlIkCRJkiRJkiRJMRlIkCRJkiRJkiRJMRlIkCRJkiRJkiRJMRlIkCRJkiRJkiRJMRlIkCRJkiRJkiRJMRlIkCRJkiRJkiRJMf0/jB/mDCLmI7UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(27,9), facecolor='white')\n", + "sns.lineplot(data=df07_b, x=\"date\", y='critical_staffing_shortage_today_yes', palette='pastel')\n", + "sns.lineplot(data=df07_a, x=\"date\", y='deaths_covid', palette='pastel')\n", + "plt.title('Relación entre falta de personal médico y decesos, 2021')\n", + "plt.xlabel('Fecha')\n", + "plt.ylabel('Total Personal/Desesos')\n", + "plt.legend(['Falta personal', 'Deceso covid'], loc='upper right')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8 - Siguiendo las respuestas anteriores, ¿cuál fue el peor mes de la pandemia para USA en su conjunto? Puede utilizar otras medidas que considere necesarias." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "df07 = df.loc[:,['date', 'Year', 'deaths_covid', 'critical_staffing_shortage_today_yes']]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "df07_a = df07.groupby('date')['deaths_covid'].sum()\n", + "df07_a = df07_a.reset_index()\n", + "df07_b = df07.groupby('date')['critical_staffing_shortage_today_yes'].sum()\n", + "df07_b = df07_b.reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABh8AAAImCAYAAABD8Zs2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hb5dnH8Z+894yTOI6zd0hiMtgQdlhNyyh7hjILlFLal5a2jC5aoBNadgIUymohlBUohBkICSQhJGTHiWMndrz3lN4/Hh1JtiXbsa1h6/u5rlyPdM7ROY9lRZbOfe77tjkcDocAAAAAAAAAAAD6SUSwJwAAAAAAAAAAAAYXgg8AAAAAAAAAAKBfEXwAAAAAAAAAAAD9iuADAAAAAAAAAADoVwQfAAAAAAAAAABAvyL4AAAAAAAAAAAA+hXBBwAAAHTp2GOP1WOPPdanfTzzzDM6+eSTOy3funWrZs2apV27dvVp/6HC4XDoiiuuUHp6ug455JBut++P57YrNptN27Zt89v+Q9nll1+un//85/2+3+9///u6/fbbu9zG83m/9tpr9atf/arf59FbS5Ys0VFHHRXsaQAAACAMEHwAAAAIA2PGjFF8fLySkpI0fPhwXX755aqtrQ3Y8S+66CK9/fbb7ZZVVVXp6quv1ksvvaTRo0cHbC6W999/XyNHjuzXfX788cd65513tGfPHn3++ecH9FhOCoe+Rx55RDExMfrNb37T48c89NBD+sUvfuHHWYW3LVu26Nvf/raysrKUkZGhBQsWaPPmze22+dOf/qThw4crJSVFixYtUlNTkySppKREF1xwgUaMGKHU1FQdeeSRWrlypetxe/fu1cKFCzVixAjZbDbl5+cH8kcDAAAY8Ag+AAAAhIn//ve/qq2t1dq1a7VmzRr97ne/C+p8UlNTtXz5ck2cODGo8+hKa2vrAW2/a9cujRkzRomJiX6a0cBzoM9hKLv66qv1pz/9KdjTgIfKykotXLhQmzdvVnFxsQ455BB9+9vfdq1ftmyZ7rnnHr377rvatWuXduzYoTvuuEOSVFtbq3nz5umLL75QeXm5LrvsMp1++umuwGxERIROOeUU/fvf/w7KzwYAADDQEXwAAAAIM8OHD9eCBQu0du1a17LPPvtMRxxxhNLS0jRr1iy9//77Xh+7fft2HX/88crMzNSQIUN00UUXqbKy0rW+oKBAZ511lrKyspSZmakbbrhBUuer+lesWKF58+YpNTVV8+bN04oVK1zrjj32WP3iF7/QkUceqeTkZJ188skqLS31+fO89tprysvLU1pamo444gh99dVXrnVjxozRfffdp5kzZyo1NVXnnXeeGhsbVVdXp1NPPVVFRUVKSkpSUlKSioqKdOedd+qcc87RxRdfrJSUFC1ZskRVVVW68sorlZ2drZycHP385z9XW1tbp3k8/vjj+t73vqdPP/1USUlJuuOOO1RRUaEzzjhDWVlZSk9P1xlnnKE9e/Z0euw333yja6+91vXYtLQ0SdLrr7+ugw8+WCkpKcrNzdWdd97p83mQpHvvvVfZ2dkaMWKEnnjiiXbrmpqadOutt2rUqFEaNmyYrr32WjU0NHjdz5IlS3TkkUfqhhtuUGpqqqZMmaJ3333Xtb6r58R67A9/+ENlZmbqzjvv1LZt2zR//nylpqZqyJAhOu+881z76str4bvf/a6GDx+u1NRUHXPMMdqwYUOXz0/Hn++HP/yh0tLSNG7cOK1YsUJLlixRbm6uhg4dqieffLLHz11Xz3vH8k9Lly5VXl6eUlJSNH78eL311luSpKKiIi1cuFAZGRmaMGGCHn30Ua9zX7VqlYYNG9buNfif//xHs2bN8rp9WVmZFi5cqJSUFB1yyCHavn17u/WbNm3SSSedpIyMDE2ePFkvvPCCa11DQ4N+9KMfafTo0UpNTdVRRx3l+rm7es9YsmSJxo0bp+TkZI0dO1bPPPOMJMlut+vXv/61Ro8eraFDh+rSSy9VVVWVJKmxsVEXX3yxMjMzlZaWpnnz5qm4uNjrz+TpkEMO0ZVXXqmMjAxFR0frhz/8oTZv3qyysjJJ0pNPPqkrr7xS06dPV3p6un7xi19oyZIlkqRx48bplltuUXZ2tiIjI3X11VerubnZlTkxbNgwXX/99Zo3b1638wAAAEBnBB8AAADCzJ49e/Tmm29qwoQJkqTCwkKdfvrp+vnPf67y8nLdd999Ovvss7V///5Oj3U4HPrpT3+qoqIiffPNNyooKHCdEG9ra9MZZ5yh0aNHKz8/X4WFhTr//PM77aO8vFynn366brrpJpWVlemWW27R6aef7jpZKEnPPvusFi9erJKSEjU3N+u+++7z+rOsWbNGixYt0sMPP6yysjJdc801WrhwoausiiS98MILeuutt7Rz50599dVXWrJkiRITE/Xmm29qxIgRqq2tVW1trUaMGCHJnBw+55xzVFlZqYsuukiXX365oqKitG3bNq1Zs0Zvv/221z4NV155pR566CEdfvjhqq2t1V133SW73a4rrrhCu3bt0u7duxUfH+8KyHiaOnVqu8daAZ3ExEQ99dRTqqys1Ouvv65//OMfeuWVV7w+F2+99Zbuu+8+vfPOO9q6dav+97//tVt/2223acuWLVq7dq22bdumwsJC3X333V73JUkrV67U+PHjVVpaqrvuuktnnXWWysvLJanb52TlypUaN26ciouLdfvtt+sXv/iFTj75ZFVUVGjPnj268cYbJfX9tXDqqadq69atKikp0ezZs3XRRRf5/Hm8/XwzZ85UWVmZLrzwQp1//vlatWqVtm3bpn/+85+64YYbXFfAd/Xcdfe8e/r888916aWX6t5771VlZaU+/PBDjRkzRpJ0/vnna+TIkSoqKtJLL72kn/3sZ3rvvfc67WPevHnKzMxsV8bs6aef1qWXXur1mN///vcVFxenvXv36oknnmgXHKmrq9NJJ52kCy+8UCUlJXruued0/fXXa+PGjZKkW2+9VV988YVWrFih8vJy/eEPf1BERESX7xl1dXW66aab9Oabb6qmpkYrVqxQXl6eJBOUWLJkiZYvX64dO3aotrbW9f/hySefVFVVlQoKClRWVqaHHnpI8fHxPfxtun344YcaPny4MjMzJUkbNmxoF5iZNWuWiouL273GLGvXrlVzc7PrvREAAAB95AAAAMCgN3r0aEdiYqIjKSnJIclx/PHHOyoqKhwOh8Nxzz33OC6++OJ225988smOJUuWOBwOh2P+/PmORx991Ot+X375ZUdeXp7D4XA4VqxY4RgyZIijpaWl03aLFy92HHnkkQ6Hw+F46qmnHPPmzWu3/rDDDnMsXrzYdbxf/epXrnUPPvigY8GCBV6Pf+211zp+/vOft1s2adIkx/vvv+/6uZ9++mnXuh//+MeOa665xuFwOBzLly935OTktHvsHXfc4Tj66KNd9/ft2+eIiYlx1NfXu5Y9++yzjmOPPdbrfDx/Tm/WrFnjSEtLc933fG67e6zD4XD84Ac/cNx8881e111xxRWO//u//3Pd37x5s0OSY+vWrQ673e5ISEhwbNu2zbV+xYoVjjFjxvj8ObKzsx12u921bN68eY6nnnqq2+dk8eLFjtzc3Hb7u+SSSxxXXXWVo6CgoN3y/nwtVFRUOCQ5KisrHQ6Hw3HZZZc5br/9dp8/34QJE1z3v/rqK4ckx759+1zLMjIyHGvWrOn2uevqee84j6uvvtrr72/37t2OiIgIR3V1tWvZbbfd5rjsssu8zv+ee+5xXHjhhQ6Hw+EoKytzxMfHO4qKijpt19ra6oiKinJ88803rmU//elPXa+z5557znHUUUe1e8zVV1/tuPPOOx1tbW2OuLg4x9q1a70e39d7Rm1trSM1NdXx0ksvtXuNOBwOx/HHH+948MEHXfc3bdrkiIqKcrS0tDgef/xxx+GHH+5Yt26d15+5JwoKChwjRoxwPPvss65l48aNc7z55puu+83NzQ5Jjp07d7Z7bFVVleOggw5y/Pa3v+2035aWFq+PAQAAQNfIfAAAAAgTr7zyimpqavT+++9r06ZNrvI1u3bt0osvvqi0tDTXv48//lh79+7ttI/i4mKdf/75ysnJUUpKii6++GLXfgoKCjR69GhFRUV1OY+ioqJODaZHjx6twsJC1/3hw4e7bickJPhsjr1r1y7df//97eZeUFCgoqKiA96XJTc3t93+W1palJ2d7dr/Nddco5KSki73Yamvr9c111yj0aNHKyUlRcccc4wqKyu9lm3yZuXKlTruuOOUlZWl1NRUPfTQQz5LUBUVFbWbu+dzvH//ftXX12vOnDmun+OUU07xmt1iycnJkc1ma7e/oqKiHj0nnvOQpD/84Q9yOBw65JBDNH36dNfV9315LbS1tem2227T+PHjlZKS4sog6KpEl6dhw4a5bltX2HdcVltb2+1z19Xz3lFBQYHGjx/faXlRUZEyMjKUnJzs83nwdPHFF+u///2v6urq9MILL+joo49WdnZ2p+3279+v1tZWn/PbtWuXVq5c2e7/zzPPPKN9+/aptLRUjY2NXufb1XtGYmKinn/+eT300EPKzs7W6aefrk2bNrl+Ts/jjx49Wq2trSouLtYll1yiBQsW6Pzzz9eIESP0k5/8RC0tLT6fS28/68knn6zrr79eF1xwgWt5UlKSqqurXfet257PdUNDg771rW/psMMO009/+tMeHxMAAABdI/gAAAAQZubPn6/LL79ct956qyRzoviSSy5RZWWl619dXZ1uu+22To/92c9+JpvNpvXr16u6ulr//Oc/5XA4XPvZvXt3tw2GR4wYoV27drVbtnv3buXk5Bzwz5Kbm6vbb7+93dzr6+vbnXz0xfPEuq/lubm5io2NVWlpqWv/1dXVPe4tcP/992vz5s1auXKlqqur9eGHH0qS6znrbj4XXnihFi5cqIKCAlVVVenaa6/1+lhJys7OVkFBgev+7t27XbeHDBmi+Ph4bdiwwfVzVFVVdRmIKSwsbHes3bt3a8SIET16Tjr+LMOHD9ejjz6qoqIiPfzww7r++uu1bdu2Pr0Wnn32WS1dulT/+9//VFVVpfz8fEnen9u+6O656+p57yg3N7dTzwXJ/J8oLy9XTU1Nu/34eh5ycnJ0+OGH6z//+Y+efvppXXLJJV63y8rKUlRUlM/55ebmav78+e3+/9TW1uof//iHhgwZori4OK/z7e49Y8GCBXrnnXe0d+9eTZkyRVdddZXr5/T8fe/evVtRUVEaNmyYoqOjdccdd2jjxo1asWKFXnvtNT311FM+n0tPFRUVOvnkk7Vw4ULdfvvt7dZNnz5d69atc91ft26dhg0b5irL1NTUpO985zsaOXKkHn744R4dDwAAAD1D8AEAACAM3XzzzXrnnXe0bt0611XUy5YtU1tbmxobG/X+++97bYxcU1OjpKQkpaamqrCwUPfee69r3SGHHKLs7GzddtttqqurU2Njoz755JNO+zjttNO0ZcsWPfvss2ptbdXzzz+vjRs36owzzjjgn+Oqq67SQw89pJUrV8rhcKiurk6vv/56u5O4vgwbNkxlZWWuhrfeZGdn6+STT9aPfvQjVVdXy263a/v27frggw96NL+amhrFx8crLS1N5eXluuuuu7qcz549e9Tc3Nzu8RkZGYqLi9Pnn3+uZ5991ufjzz33XC1ZskQbN25UfX19u2NFREToqquu0g9/+ENXhkJhYaGWLVvmc38lJSX661//qpaWFr344ov65ptvdNppp/XqOXnxxRddr6f09HTZbDZFRET06bVQU1Oj2NhYZWZmqr6+Xj/72c+6fUxvdPfcdfW8d3TllVdq8eLFevfdd2W321VYWKhNmzYpNzdXRxxxhH7605+qsbFRX331lR5//HFdfPHFPvd16aWX6g9/+IPWr1+vs846y+s2kZGROuuss3TnnXeqvr5eGzdubNdI+4wzztCWLVv09NNPq6WlRS0tLVq1apW++eYbRUREaNGiRbrllltUVFSktrY2ffrpp2pqauryPaO4uFhLly5VXV2dYmNjlZSUpIgI87Xzggsu0J/+9Cft3LlTtbW1+tnPfqbzzjtPUVFRWr58udavX6+2tjalpKQoOjra9bg777xTxx57rNefsbq6WgsWLNCRRx6pe+65x+vz9Pjjj2vjxo2qrKzUr3/9a11++eWSpJaWFp1zzjmKj4/Xk08+6Tqep8bGRlcPmaamJjU2Nvr8nQAAAKA9gg8AAABhKCsrS5deeqnuvvtu5ebmaunSpfrtb3+rrKws5ebm6t5775Xdbu/0uDvuuENffvmlUlNTdfrpp7c76RkZGan//ve/2rZtm0aNGqWRI0fq+eef77SPzMxMvfbaa7r//vuVmZmpP/zhD3rttdc0ZMiQA/455s6dq0cffVQ33HCD0tPTNWHCBC1ZsqRHj50yZYouuOACjRs3Tmlpae1KNXl66qmn1NzcrGnTpik9PV3nnHOO15JU3tx8881qaGjQkCFDdNhhh+mUU07xue3xxx+v6dOna/jw4a7n4u9//7t++ctfKjk5WXfffbfOPfdcn48/9dRTdfPNN+v444/XhAkTdPzxx7db//vf/14TJkzQYYcdppSUFJ144onavHmzz/0deuih2rp1q4YMGaLbb79dL730kutq8QN9TlatWqVDDz1USUlJWrhwof7yl79o3LhxfXotXHrppRo9erRycnI0bdo0HXbYYd0+pre6eu66e949HXLIIVq8eLF++MMfKjU1VfPnz3dlAvzrX/9Sfn6+RowYoTPPPFN33XWXTjzxRJ/7OvPMM7Vr1y6deeaZSkhI8LndAw88oNraWg0fPlyXX365rrjiCte65ORkvf3223ruuec0YsQIDR8+XP/3f//nOtl+3333acaMGZo3b54yMjL0f//3f7Lb7V2+Z9jtdv3xj3/UiBEjlJGRoQ8++ED/+Mc/JEmLFi3SJZdcomOOOUZjx45VXFyc/va3v0mS9u3bp3POOUcpKSmaOnWq5s+f78roKCgo0JFHHun153v55Ze1atUqLV68WElJSa5/VobHKaecop/85Cc67rjjNGrUKI0ePdoVILIyLN5++22lpaW5HvvRRx+59h8fH6+kpCRJ5j2jN02wAQAAwpXN0d95yQAAAAAGtCVLluixxx7Txx9/HOypoAvjx4/Xww8/3GWQYjDIy8vTu+++6wp+AQAAYGDouhsgAAAAACDk/Pvf/5bNZusy02KwWLt2bbCnAAAAgF4g+AAAAAAAA8ixxx6rjRs36umnn/bapwAAAAAIBZRdAgAAAAAAAAAA/YrLZAAAAAAAAAAAQL8i+AAAAAAAAAAAAPrVoOz5MGTIEI0ZMybY0wAAAAAAAAAAYNDKz89XaWmp13WDMvgwZswYrV69OtjTAAAAAAAAAABg0Jo7d67PdZRdAgAAAAAAAAAA/YrgAwAAAAAAAAAA6FcEHwAAAAAAAAAAQL8alD0fAAAAAAAAAAADQ0tLi/bs2aPGxsZgTwU+xMXFaeTIkYqOju7xYwg+AAAAAAAAAACCZs+ePUpOTtaYMWNks9mCPR104HA4VFZWpj179mjs2LE9fhxllwAAAAAAAAAAQdPY2KjMzEwCDyHKZrMpMzPzgDNTCD4AAAAAAAAAAIKKwENo683vh+ADAAAAAAAAACCsRUZGKi8vz/UvPz/f57ZJSUmSpPz8fD377LMBmmHgHHvssVq9enWf90PPBwAAAAAAAABAWIuPj9fatWsP6DFW8OHCCy/0z6S8aG1tVVTUwDitT+YDAAAAAAAAAAAeamtrdcIJJ2j27NmaMWOGli5d2mmb2267TR999JHy8vL0pz/9Sfn5+Tr66KM1e/ZszZ49WytWrOj0mPz8fE2ZMkUXXXSRpk6dqnPOOUf19fWSpC+++ELz58/XnDlztGDBAu3du1eSyUS4+eabNXfuXP3lL3/Riy++qIMOOkizZs3SMcccI8n0zbjiiis0Y8YMHXzwwVq+fLkkacmSJTrrrLN0yimnaOLEifrJT37imst1112nuXPnavr06brjjjv6/TkcGCESAAAAAAAAAMCgd9d/N2hjUXW/7nPaiBTd8a3pXW7T0NCgvLw8SdLYsWP14osv6uWXX1ZKSopKS0t12GGHaeHChe16H9xzzz2677779Nprr0mS6uvr9c477yguLk5bt27VBRdc4LV80ebNm/X444/ryCOP1KJFi/T3v/9dP/jBD3TjjTdq6dKlysrK0vPPP6/bb79dTzzxhCSpubnZta8ZM2Zo2bJlysnJUWVlpSTpwQcflM1m0/r167Vp0yadfPLJ2rJliyRp7dq1WrNmjWJjYzV58mTdeOONys3N1W9+8xtlZGSora1NJ5xwgr766ivNnDmzT8+1J4IPAAAAAAAAAICw1rHsUktLi372s5/pww8/VEREhAoLC1VcXKzhw4f73EdLS4tuuOEGrV27VpGRka6T/x3l5ubqyCOPlCRdfPHF+utf/6pTTjlFX3/9tU466SRJUltbm7Kzs12POe+881y3jzzySF1++eU699xzddZZZ0mSPv74Y914442SpClTpmj06NGu459wwglKTU2VJE2bNk27du1Sbm6uXnjhBT3yyCNqbW3V3r17tXHjRoIPAAAAAAAAAIDBp7sMhUB55plntH//fn3xxReKjo7WmDFj1NjY2OVj/vSnP2nYsGFat26d7Ha74uLivG7nmT1h3Xc4HJo+fbo+/fRTr49JTEx03X7ooYe0cuVKvf7665ozZ46++OKLLucVGxvruh0ZGanW1lbt3LlT9913n1atWqX09HRdfvnl3f58B4qeDwAAAAAAAAAAeKiqqtLQoUMVHR2t5cuXa9euXZ22SU5OVk1NTbvHZGdnKyIiQk8//bTa2tq87nv37t2uIMOzzz6ro446SpMnT9b+/ftdy1taWrRhwwavj9++fbsOPfRQ3X333crKylJBQYGOPvpoPfPMM5KkLVu2aPfu3Zo8ebLPn6+6ulqJiYlKTU1VcXGx3nzzzZ49MQeAzAcAAAAAAAAAADxcdNFF+ta3vqUZM2Zo7ty5mjJlSqdtZs6cqcjISM2aNUuXX365rr/+ep199tl66qmndMopp7TLVvA0efJkPfjgg1q0aJGmTZum6667TjExMXrppZd00003qaqqSq2trbr55ps1fXrnTJAf//jH2rp1qxwOh0444QTNmjVLU6ZM0XXXXacZM2YoKipKS5YsaZfx0NGsWbN08MEHa8qUKe3KQPUnm8PhcPT7XoNs7ty5Xht5AAAAAAAAAABCyzfffKOpU6cGexoBkZ+frzPOOENff/11sKdywLz9nro6F0/ZJQAAAAAAAAAA0K8IPgAAAAAAAAAAEABjxowZkFkPvUHwAQAAAAAAAAAA9CuCDwDgjd0uvXCZ9L87gz0TAAAAAAAAYMAh+AAA3qz8h7TxFWnzm+b+1v9JJZvM7boyqa0laFMDAAAAAAAAQh3BBwDoqHyn9L+7pIgoqXyH1NYqvXSF9N6vpNZm6W+zpU/+EuxZAgAAAAAAACGL4AMAdPTlU5K9RTrmx1Jbs7T7U6mpWtq3XirZKDVWSjs/CPYsAQAAAAAA0E8iIyOVl5en6dOna9asWbr//vtlt9uDPa1+9b3vfU8bN27stHzJkiW64YYb+v14Uf2+RwAYiBwOacPL0ugjpHXPSRNOlMYeI73/O+mbV802lbuknR+a24VfSvY2KSIyeHMGAAAAAABAv4iPj9fatWslSSUlJbrwwgtVXV2tu+66K7gT60ePPfZYQI9H5gMASNLetaa00t8Pl2qKpLyLpMwJZt03/3Vvt+afZmyuNVkQAAAAAAAAGFSGDh2qRx55RA888IAcDofa2tr04x//WPPmzdPMmTP18MMPu7b9/e9/rxkzZmjWrFm67bbbJEnbt2/XKaecojlz5ujoo4/Wpk2mj+iLL76ogw46SLNmzdIxxxwjSWpsbNQVV1yhGTNm6OCDD9by5cu9zsnbcdauXavDDjtMM2fO1JlnnqmKigpt2rRJhxxyiOtx+fn5mjFjhiTp2GOP1erVqyVJixcv1qRJk3TIIYfok08+6edn0CDzAQAkafdKM7Y2SvHp0uRTpcgYKTZFqtkrxaZKTVVS6WYpbbTJgij4XBo+I7jzBgAAAAAAGEzevM2Uvu5Pw2dIp95zQA8ZN26c2traVFJSoqVLlyo1NVWrVq1SU1OTjjzySJ188snatGmTli5dqpUrVyohIUHl5eWSpKuvvloPPfSQJk6cqJUrV+r666/Xe++9p7vvvlvLli1TTk6OKisrJUkPPvigbDab1q9fr02bNunkk0/Wli1bFBcX55rLm2++6fU4l156qf72t79p/vz5+uUvf6m77rpLf/7zn9Xc3KydO3dq7Nixev7553Xeeee1+9n27t2rO+64Q1988YVSU1N13HHH6eCDD+7DE+wdmQ8AIEkFK6WUkdLVH0iXLpWiYiWbTcocb9aPOkxKGmZuT/2WlJgl7VkVvPkCAAAAAAAgIN5++2099dRTysvL06GHHqqysjJt3bpV//vf/3TFFVcoISFBkpSRkaHa2lqtWLFC3/3ud5WXl6drrrlGe/fulSQdeeSRuvzyy/Xoo4+qra1NkvTxxx/r4osvliRNmTJFo0eP1pYtW9od39txqqqqVFlZqfnz50uSLrvsMn34oSkXfu655+r555+XJK/Bh5UrV+rYY49VVlaWYmJiOq3vL2Q+AIBkshhyD5GyJrVfnjlBKlojDZsmOezStnekEQdL5TvNYwAAAAAAANB/DjBDwV927NihyMhIDR06VA6HQ3/729+0YMGCdtssW7as0+PsdrvS0tJc/SM8PfTQQ1q5cqVef/11zZkzR1988YVf5n7eeefpu9/9rs466yzZbDZNnDjRL8fpDpkPAFC1R6reI+Ue2nldpvPNeeg0d4ml7FnS0KlSxU7Jbg/cPAEAAAAAAOB3+/fv17XXXqsbbrhBNptNCxYs0D/+8Q+1tLRIkrZs2aK6ujqddNJJWrx4serr6yVJ5eXlSklJ0dixY/Xiiy9KkhwOh9atWyfJ9II49NBDdffddysrK0sFBQU6+uij9cwzz7j2u3v3bk2ePLndfLwdJzU1Venp6froo48kSU8//bQrC2L8+PGKjIzUr371K69ZDYceeqg++OADlZWVqaWlxTXX/kbmA4DwtmWZlP+xuT3KS/Bh+AxJNpPtkHuoFJdqsiESMkwmRFO1FJ8WyBkDAAAAAACgnzU0NCgvL08tLS2KiorSJZdcoltuuUWS9L3vfU/5+fmaPXu2HA6HsrKy9Morr+iUU07R2rVrNXfuXMXExOi0007Tb3/7Wz3zzDO67rrr9Otf/1otLS06//zzNWvWLP34xz/W1q1b5XA4dMIJJ2jWrFmaMmWKrrvuOs2YMUNRUVFasmSJYmNj283N13GefPJJXXvttaqvr9e4ceO0ePFi12POO+88/fjHP9bOnTs7/azZ2dm68847dfjhhystLU15eXl+eU5tDofD4Zc9B9HcuXNdXbsBwKe2VunXWSaIEJMk/V++FBndfhuHQyrf4e79YFn7rPTKddJNa6WMsYGaMQAAAAAAwKDzzTffaOrUqcGeBrrh7ffU1bl4yi4BCF+ONhN4mHWBdNl/OwcepPZNpz3Fp5uxocK/cwQAAAAAAAAGIIIPAMKXlfg1ZKKUM/vAHhufYcaG8v6dEwAAAAAAADAIEHwAEMacwQdbL94KXZkPlf02GwAAAAAAAGCwIPgAIHw57M4btgN/bE/KLpVuk2qKD3zfAAAAAAAAYWYQtiYeVHrz+yH4ACB8WW+atj4EH+q7KLv0/EXS8t8c+L4BAAAAAADCSFxcnMrKyghAhCiHw6GysjLFxcUd0OOi/DQfABgArD9ovQg+REZJsSldZz7U7JWa63o1MwAAAAAAgHAxcuRI7dmzR/v37w/2VOBDXFycRo4ceUCPIfgAIHz1JfNBkuLTfAcf7G1SY5XcAQ4AAAAAAAB4Ex0drbFjxwZ7GuhnlF0CEMb6kPkgSfEZUoOPskuNVc5DEHwAAAAAAABA+CH4ACB89TnzId135oNrOcEHAAAAAAAAhB+CDwDCWF8zH3oQfCDzAQAAAAAAAGGI4AOA8NXXzIeEDKneR9klMh8AAAAAAAAQxgg+AEBfMh8aKyW7vfM6Mh8AAAAAAAAQxgg+AAhf/dHzwWGXmqo7ryPzAQAAAAAAAGGM4AOAMNbXng8ZZmzwUnqJzAcAAAAAAACEMYIPAMJXf2Q+SN6bTvtqRA0AAAAAAACEAYIPAMKXw9mrwS/Bh0rnMch8AAAAAAAAQPgh+AAgjPWx7FKCs+xSfVeZDwQfAAAAAAAAEH4IPgAIX30tu5SQaca6ks7r6PkAAAAAAACAMEbwAUAY62vD6XQpJkmqLOi8jswHAAAAAAAAhDGCDwDCV18zH2w2KW2UVLm78zoyHwAAAAAAABDGCD4ACGN9zHyQvAcfHA4yHwAAAAAAABDWCD4ACF99zXyQvAcfmmokR1v7YwAAAAAAAABhJCrYEwCA4OmHzIfUXKmpSmqolOLTpOKNUsVOL8cAAAAAAAAAwgfBBwDhq78yHySpqsAEH5Z+Xypa0/kYAAAAAAAAQBih7BKAMNZPPR8kU3qprUUq/lrtsx0IPgAAAAAAACD8kPkAIHy5Mh/6EIdNG23Gyt3S/k1SW7N0+A1S8QapuojMBwAAAAAAAIQlMh8AhC+H3Yx9KbuUkCFFJ5rgw951ZtmcK6RLXzFlmMh8AAAAAAAAQBgi8wEA+lJ2yWYzpZcqd0v2VikmScoY594vmQ8AAAAAAAAIQwQfAISv/mg4LZngQ8k3Um2xNHyGFBHhsV+CDwAAAAAAAAg/lF0CEMb6oeG0JB10llS+XdqzSsqe5bGCzAcAAAAAAACEJ4IPAMJXf2U+zDxPmnWhuT18pnt5X/cLAAAAAAAADFCUXQIQxvopK8Fmk06/Xxo6RZq20HMFmQ8AAAAAAAAIS37LfCgoKNBxxx2nadOmafr06frLX/4iSbrzzjuVk5OjvLw85eXl6Y033nA95ne/+50mTJigyZMna9myZa7lb731liZPnqwJEybonnvu8deUAYSb/sp8kKSYBOnIH0ixye5l9HwAAAAAAABAmPJb5kNUVJTuv/9+zZ49WzU1NZozZ45OOukkSdIPf/hD3Xrrre2237hxo5577jlt2LBBRUVFOvHEE7VlyxZJ0ve//3298847GjlypObNm6eFCxdq2rRp/po6gLDRTz0fujwEwQcAAAAAAACEH78FH7Kzs5WdnS1JSk5O1tSpU1VYWOhz+6VLl+r8889XbGysxo4dqwkTJujzzz+XJE2YMEHjxo2TJJ1//vlaunQpwQcAfdefmQ/ekPkAAAAAAACAMBWQhtP5+flas2aNDj30UEnSAw88oJkzZ2rRokWqqKiQJBUWFio3N9f1mJEjR6qwsNDncgDoO39nPtDzAQAAAAAAAOHJ78GH2tpanX322frzn/+slJQUXXfdddq+fbvWrl2r7Oxs/ehHP+qX4zzyyCOaO3eu5s6dq/379/fLPgEMcmQ+AAAAAAAAAH7h1+BDS0uLzj77bF100UU666yzJEnDhg1TZGSkIiIidNVVV7lKK+Xk5KigoMD12D179ignJ8fn8o6uvvpqrV69WqtXr1ZWVpY/fywAg4YVfPDXWyGZDwAAAAAAAAhPfgs+OBwOXXnllZo6dapuueUW1/K9e/e6br/88ss66KCDJEkLFy7Uc889p6amJu3cuVNbt27VIYcconnz5mnr1q3auXOnmpub9dxzz2nhwoX+mjaAcOKwO2+Q+QAAAAAAAAD0J781nP7kk0/09NNPa8aMGcrLy5Mk/fa3v9W//vUvrV27VjabTWPGjNHDDz8sSZo+fbrOPfdcTZs2TVFRUXrwwQcVGRkpyfSIWLBggdra2rRo0SJNnz7dX9MGEE78XXaJzAcAAAAAAACEKZvDMfjOjM2dO1erV68O9jQAhLqiNdIjx0rn/0uaclr/7/+fZ0sNFdJV7/X/vgEAAAAAAIAg6+pcvN8bTgNAyCLzAQAAAAAAAPALgg8AwpgVGKDnAwAAAAAAANCfCD4ACF+u2AOZDwAAAAAAAEB/IvgAIIyR+QAAAAAAAAD4A8EHAOGLng8AAAAAAACAXxB8ABDGyHwAAAAAAAAA/IHgA4Dw5cp88NcBbMQeAAAAAAAAEJYIPgAIY1bwwU9vhWQ+AAAAAAAAIEwRfAAQvhx25w2/pT7Q8wEAAAAAAABhieADgPDl74bTZD4AAAAAAAAgTBF8ABDG/NxwWjYyHwAAAAAAABCWCD4ACF9kPgAAAAAAAAB+QfABQBgj8wEAAAAAAADwB4IPAMIXmQ8AEBjrX5KePlNqawn2TAAAAAAAAULwAUAYI/MBAHqtdKv0wR+kVY91v+3Wd6Tt70lfPun/eQEAAAAAQkJUsCcAAEFD5gMA9E7tfunBQyVHm7kfnSDlXeh7+8pdZnz/99LM86XYJP/PEQAAAAAQVGQ+AAhjZD4AQK/UlZjAw7f/Lo2dL/33B1LJN763r9wtZU01j1vzz8DNEwAAAAAQNAQfAIQvMh8AoHea68yYNEw6Z7EUESV9+oD3bVubpOoiadq3peEzpPUvBG6eAAAAAICgIfgAIIyR+QAAvdJUY8bYJCkxU5p1vvTVi1Jdaedtq/ZIckjpo6UZ35UKv5DKtgd0ugAAAACAwCP4ACB8uTIf/PRWSOYDgMHKynyISTTjoddKbU3SF4s7b1u524xpo6TpZ5nbX//H/3MEAAAAAAQVwQcA4cvfZZfIfAAwWDXXmjHG2Tg6a7KUnSft/LDztlaz6bRRUlquNOpw6ZtXAzJNAAAAAEDwEHwAEMb8XHaJzAcAg5Ur8yHJvSwxS2qs7rxt5W7TEyJ5hLk/7CB3NgQAAAAAYNAi+AAgfLkyH/x1ABuxBwCDk2fPB0tcitTkJfhQsUtKyZEio8z9pGFSY6VpRA0AAAAAGLQIPgAIY2Q+AECvNNeZfjlRce5lscnuoISnyt2m2bQlaagZa0v8O0cAAAAAQFARfAAQvuj5AAC901wrxSS3f/+MTfFRdmmX6fdgSRpmxo7Bh6//IxV83v9zBQAAAAAEBcEHAGHM35kPnscAgEGkuVaKSWy/LC5FamtqX06prUWqLZZSc93LXJkPxe0f//bPpRV/8898AQAAAAABR/ABQPgi8wEAeqeptn2/B0mKTTWjZ/ZD3X4zWgEHSUoebsaOwYeGCqm+vH/nCQAAAAAIGoIPAMIYPR8AoFea67xnPkjtm05bpZUSPYIPiVnt10kmW6KlXmog+AAAAAAAgwXBBwDhi8wHAOid5loppmPmg5fgg5X5YAUcJCkyWkrIbJ/50FBpxvqyfp8qAAAAACA4CD4ACGNkPgBAr3gLPliZD41eMh+SstpvmzSsQ/Chwoz15QRtAQAAAGCQIPgAIHy5Mh/89VZI5gOAQcprz4dk5zpvmQ9D22+bNLR92aXGSjPaW6Smmn6dKgAAAAAgOAg+AAhfDrsZ/VV2icwHAANZ0VrpkWO9BwOa63yXXerYcDo6oXOgwlfmg0TpJQAAAAAYJAg+AAhjfi67ROYDgIFs96dS0RqpfGfndc21XhpOp5qxY8PpxA4llyR35oP1Hmn1fJBM0+klZ0jrnuvT9AEAAAAAwUXwAUD48nfDaTIfAAxkVmZCQ3n75fY2qaXeXWbJYt1vl/ngK/gwTGptcGdVeGY+lO+U8j+SCj7v2/wBAAAAAEFF8AEAyHwAgM5qrOBDRfvlzXVm7Jj5EBltSiy16/lQarIcOkoaZsZaL8coWmNGz/0AAAAAAAYcgg8AwheZDwDgmxUYqO+Q+eAKPnTo4yCZvg89LbvkeYzGSikiytwu/NK5jOADAAAAAAxkBB8AhDF6PgCAT7UlZuxYdqm51oxegw/J7qCBvU2q95X5MNyMNfucx6iQUnIkW4S0d51Z1ljVt/kDAAAAAIKK4AOA8EXmAwD45sp86Fh2yRl8iPUSfIjzyHyoL5ccdinRS/AhZYQZq4vM2FAhJWRI8RlSizOzgrJLAAAAADCgEXwAEMb8HRiwEXsAMDC1tUp1+83tjpkPTVbmQ4eeD5Ipu2RlPtQ5MyeSvJRdiksxmROu4EOlFJ9uAhAWyi4BAAAAwIBG8AFA+CLzAQC8qy+V6/2rU8PpLsouxaVITTXmthW88NbzQTLZD9WF7mPEpUkJme71lF0CAAAAgAEtKtgTAIDgoecDAHhllVySet9wutYKPngpuySZ4EPNXnO7sdJkPrQ2eRynxvSNiIg84OkDAAAAAIKPzAcA4cuV+eCnt0IyHwAMVFaz6dRcL2WXnJkNXns+pLrLJVlZDd4aTkumwXR1kWS3m8wHz7JLaaPbHwsAAAAAMOAQfAAQvhx2M/qr7JJE5gOAgalmnxmzpnSR+eCj50NLnekZUbRGShslxad5P0ZytjlOY6V5P45Pcwcfhs8wI6WXAAAAAGDAIvgAIIz5uewSmQ8ABiqr7NLQKSY4YLe713XV8yE22YxN1VLhl1LOHN/HSBkhOdqk0q3mfny6u+fD8Jnu/QAAAAAABiSCDwDCl78bTtPzAcBAVJFvgg9xqSY7wWGXmjwyEJprpah4770Y4lLMWL5DqtrdTfAhx4zFXzsfmyaNP16a9h334xoJPgAAAADAQEXDaQBhjMwHAGhn5cPSmz+RYpKllGwp3lkGqb7cZCZIUl2puzxSRxnjzfjxn8zYXeaDJJVsNGN8uim3dO6TJmtCouwSAAAAAAxgZD4ACF9kPgCAW8km6Z1fmgyE5hopaZg7yNBQ4d6ufIeUMc77PkYdJg2bIW16TbJFStmzfB/PCj5sXCrZItrvMy7VjJRdAgAAAIABi+ADgDBG5gMAuHxwjxQVJ13/qTT7UmnqwvaZD5ay7b6DDzabdMSN5vbQad6bUlsSMqXIGKluvzTlDJNpYbGCD5RdAgAAAIABi+ADgPBF5gMAuNWVmoBByghp4d+kQ6/2yHxwBh8aq6T6Ut/BB0k66CxTfmnc/K6PZ7O5sx8Ovbb9utgU9/EAAAAAAAMSPR8AhDEyHwDApaXB3TDaYvV5sDIfyneYsavgQ2S0yZ6IiO7+mEMmmWOMPqL98qgYk4XRRPABAAAAAAYqgg8AwheZDwDg1tIgJQ9vvywuVZLN3fPBCj5kju96X1GxPTvmWY+a0dv7cFwqZZcAAAAAYACj7BIAkPkAIFysf0kq3ep9XWuDyTbwFBFpMhPqy8x9K/iQPqZ/5hOfZv55E5tC2SUAAAAAGMAIPgAIX2Q+AAgnzXXSf66SVj/hfX1LgxQd33l50lCprsTcLtshJWd33Ui6v8SlSE1kPgAAAADAQEXwAUAYs4IPfnorJPMBQCjZt15y2KXmWu/ruwo+1DqDD+U7TDPpQKDsEgAAAAAMaAQfAIQvh93PB/BXRgUA9ELRGjO2NHhf7zP4MEyqLTa3y7dLGWP9M7+OKLsEAAAAAAMawQcA4cvfZZes/VJ6CUAo6Cr4YLdLbU1SlI/gQ02x1FQj1e0PXPCBsksAAAAAMKARfAAQxqyggB97PkgEHwCEBiv40FzXeV2rMyDhK/OhtUEq3mju91ez6e5YmQ+8hwIAAADAgETwAUD4ClTmA30fAARbU41UutXc9pb50NJoRl/BB0na87kZ00b3//y8SRsltTZK1UWBOR4AAAAAoF8RfAAQxsh8ABAm9n4lySFFxUkt9Z3XW8ui4jqvS7aCD6vMmDbKL1PsJDvPjHvXBuZ4AAAAAIB+RfABQPjye+aD60D+2T8A9NTedWbMmes9+NBqZT4kdF5nZT4UrDI9IRKz/DPHjoYfJNki3HMHAAAAAAwoBB8AhDEyHwCEieINJmiQMcZH2SVnQCLaS+aDFXyoKTJZD/4K2HYUkygNmSQVrQ3M8QAAAAAA/YrgA4DwRc8HAOGiZIM0dJrJbPDWcLqrng/x6VJEtLmdHqB+D5bsPMouAQAAAMAARfABQBgj8wFAGLC3SSXfSMMOMsGFrjIforwEH2w2d/ZDoPo9WEbkSbXFUs2+wB4XAAAAANBnBB8AhC8yHwCEg/IdpqfDsOlSdKLU1mQCEp5au8h8kKSkoWYMdPAhe5YZKb0EAAAAAAMOwQcAYcwKPvjrrZDMBwAhoHiDGYdNcwcXOjadtrIhfAYfrMyHAJddyppixvLtgT0uAAAAAKDPCD4ACF8Ou/MGmQ8ABrHiDSbImjXFI/jQofRSt8GHIGU+xCabsbm+6+0AAAAAACGH4AOA8OVq+UDPBwCDWPEGKXOCCSzEJJplHTMfWp3BB289HyQpebgZ08f4ZYo+RUabZtctXppkAwAAAABCWlSwJwAAwePnhtNkPgAIBWVbpSGTzG0rs6FjJkF3mQ8HXyKl5EgJGf6ZY1diEsh8AAAAAIABiMwHAOHL3w2nyXwAEAqa66S4VHM7OsGMncouddNwOi1XmnOZf+bXneiEzpkaAAAAAICQR/ABQBgj8wFAGGhpkKLizG1X8KFj5kO9FBFlyhyFGoIPAAAAADAgEXwAEL7IfAAQDlob3RkNvoIPrY2++z0EG2WXAAAAAGBA8lvwoaCgQMcdd5ymTZum6dOn6y9/+Yskqby8XCeddJImTpyok046SRUVFZIkh8Ohm266SRMmTNDMmTP15Zdfuvb15JNPauLEiZo4caKefPJJf00ZQNjxc/CBzAcAweZwmMwHV/DBOXrLfPBVcinYyHwAAAAAgAHJb8GHqKgo3X///dq4caM+++wzPfjgg9q4caPuuecenXDCCdq6datOOOEE3XPPPZKkN998U1u3btXWrVv1yCOP6LrrrpNkghV33XWXVq5cqc8//1x33XWXK2ABAH3i94wEMh8ABFlrkySHu+xSjDPzoVPD6UYpOi6gU+sxgg8AAAAAMCD5LfiQnZ2t2bNnS5KSk5M1depUFRYWaunSpbrsMtOw8LLLLtMrr7wiSVq6dKkuvfRS2Ww2HXbYYaqsrNTevXu1bNkynXTSScrIyFB6erpOOukkvfXWW/6aNoCw4pDf+j1IfiznBAA91OpsLN1d2aWWeve6UBOTSNklAAAAABiAogJxkPz8fK1Zs0aHHnqoiouLlZ2dLUkaPny4iouLJUmFhYXKzc11PWbkyJEqLCz0ubyjRx55RI888ogkaf/+/f78cQAMFg6HnwMEZD4ACJK3firJJh1xo7nvajhtlV1qaL99a6N7m1ATHU/mAwAAAAAMQH5vOF1bW6uzzz5bf/7zn5WSktJunc1mk62fTvxdffXVWr16tVavXq2srKx+2SeAwS5QmQ8EHwAEUFur9OXT0u4VB5D50BC6mQ+UXQIAAACAAcmvwYeWlhadffbZuuiii3TWWWdJkoYNG6a9e/dKkvbu3auhQ4dKknJyclRQUOB67J49e5STk+NzOQD0mcMh2fwegyXzAUBgFX4hNddIzXWml4PkDj5EREqRsT6CDyGa+UDZJQAAAAAYkPx21s3hcOjKK6/U1KlTdcstt7iWL1y4UE8++aQk6cknn9S3v/1t1/KnnnpKDodDn332mVJTU5Wdna0FCxbo7bffVkVFhSoqKvT2229rwYIF/po2gHDisPu37BKZDwCCYcf7Zmyud5dXiop3r49J6Fx2KaQzH5xllwjkAgAAAMCA4reeD5988omefvppzZgxQ3l5eZKk3/72t7rtttt07rnn6vHHH9fo0aP1wgsvSJJOO+00vfHGG5owYYISEhK0ePFiSVJGRoZ+8YtfaN68eZKkX/7yl8rIyPDXtAGEFT+XXaLnA4Bg2LHcjC11HmWXPLIaohM6ZxK0NoRwz4cEydEmtTVLUbFmWUW+9OmD0gl3SLFJQZ0eAAAAAMA7vwUfjjrqKDl8nHB79913Oy2z2Wx68MEHvW6/aNEiLVq0qF/nBwB+bzhN5gOAQGuqkfasMiXlmuvdZZc8Mx+8NXBuaXCXZgo1MYlmbK4zwYfyHdKSb0nVe6QpZ0jj5gd3fgAAAAAArwJQ7BwAQhWZDwAGmf2bJXurlJ0ntTVJzbVmecfMh4EUfHA1yXZmcbx5m1S7z9xuqg7OnAAAAAAA3SL4ACB8kfkAYLCp22/GjLFmrC81o2c/B1/Bh1AuuyS551yyUcqZa243VgVnTgAAAACAbhF8ABDmyHwAMIjUOYMNaaPNWF9uRs/AQnR8+4bTdrvJkgjVhtMxznk115l5V+2RcuaYZQQfAAAAACBkEXwAEL7IfAAw2FiZD+lW8KHMjJ4llWIS2zec9taUOpR4ll0q3ynJIY3Ik2Qj+AAAAAAAIYzgA4AwRs8HAINMfZk5WZ+Q6b4vecl8qJdKvjEn9K2m1KGa+eAKPtRJZdvM7SETpdgUgg8AAAAAEMIIPgAIX2Q+ABhs6vZLiUNMdoPkLsPkmfkQHS9VF0p/P1xa8093L4VQ7fngKrtUL5VvN7czxktxqQQfAAAAACCERQV7AgAQPGQ+ABhk6kqlhCFStDP4UF8qRcZIEZHubaITpbZm5/oyqdXKfIhXSPIsu1S2TUocKsWlEHwAAAAAgBBH5gOA8EXmA4DBpr7UmfngPGFfXy5FdQgqeAYZmmvNP0mKSQrMHA9Uu7JLO6TMCeY+wQcAAAAACGkEHwCEL4fdv8EHMh8ABFpdqZSY5T5hX1fauZH05NOkQ66R4tOl5jrzT3KXago1nmWXyrZJmePM/bhUqbE6ePMCAAAAAHSJsksAwpifyy6R+QAgkBwOZ9mlTHcWQ1tT514OufPMvy1vmhP6ruBDiGc+1BZLdSVkPgAAAADAAEHmA4Dw5e+yS2Q+AAik5loTbEjMcmcLSL57OcQkdSi7FKKZD5HRUkS0tO8rc98VfEgh+AAAAAAAIYzgA4AwFqjMBwAIgLr9Zkwc4s4WkLoIPiQOjLJLkgmmFK4xt7OmmjEuVWqqluz24M0LAAAAAOATwQcA4YvMBwCDSV2ZGROGSBGR7nJLHRtOW6ITpJZ6qcmZ+RAbomWXJCk6UWqqkiJjpYyxZllcqiSHCUAAAAAAAEIOwQcAYYyeDwAGkfpSMyYOMaOVydCx4bQlJql95kN0CGc+WNkbQyaZwIrkDD6I0ksAAAAAEKIIPgAIX37PfPA4DgD4m2fZJckdTPCV+RCT6O75EBkjRcX4f469ZfWwGDrFvYzgAwAAAACENIIPAMIYmQ8ABpE6Z+ZDgpX54Dxh7zPzIVFqrjeZD6Hc70FyB1KyCD4AAAAAwEBB8AFA+KLnA4DBpL7MnKR3BR2ssQcNp2NCuN+D5P4Zhk51LyP4AAAAAAAhjeADgDBG5gOAQaKxStr2rpQywr0spgdll1rqTMPmUA8+xJD5AAAAAAADTVSwJwAAQeMQmQ8ABr7WZum5i6SyrdKFz7uXd9tw2rm+rnQAlF1KkKLipPQx7mUEHwAAAAAgpBF8ABC+HHbJ5scEMDIfAATC/+6Q8j+SznxEmnCie7lVdslX5oO1vrZYShvl3zn2Vd4FUvYsKSLSvSw2xYwEHwAAAAAgJBF8ABDG/Fx2icwHAP0h/2MpIloadWjndVvelj77u3TINdKs89qv67bhtLPUUm2JNHRa/83XH8Yfb/55iog0AQiCDwAAAAAQkuj5ACB8ORx+jj2Q+QCgH7x1m/Ter7yv2/q2FJMsnexlvRVcsDIcOq13llpqqQv9sku+xKVKjZXBngUAAAAAwAuCDwDCGJkPAAaAit2+r+6vK5GSh0tRsZ3XucouddPzQZJiQ7zhtC9DJknrX5I+fzTYMwEAAAAAdEDwAUD4cjj823CazAcAfdVQKTVVSU3V3tfX7peShnpf5yq75KPng2fwYaBmPpzzuDT2GOmNW6XqvcGeDQAAAADAA8EHAGGMzAcAIa5ytxmbaryvr9svJWZ5XxftDCj0JPMhZoBmPsSnS3MuM7fry4I7FwAAAABAOwQfAIQvMh8AhDor+NBY7T2QWVfSReaDM7gwmDMfJCk22Yy+AjQAAAAAgKAg+AAgjJH5ACDEWcEHe4vU2th+XWuT6QWR2NvgQ1LnbQei2BQzEnwAAAAAgJBC8AFA+CLzAUCos4IPUueT63X7zZg4xPtj41LN6KukktWQWpJikns3v1Dgynzw0RcDAAAAABAUBB8AhLFAZT748RAABreqAvftxg4n12tLzOir7NK4Y6WzH5dGHOx9fbvgw0DOfKDsEgAAAACEIoIPAMIXmQ8AQl3lLikiytzueGW/K/PBR/AhMlqacY7v97mICHdTaoIPAAAAAIB+RvABQBhzSDZ/vg3S8wFAH1XuloZMNrd9BR+Ssnq//xhn9oOv0kwDQXSiJBvBBwAAAAAIMQQfAIQvh11+Lbvk2jXBBwC90FBpGkoPm27udzy5bpVd8pX50BMxgyDzISLCZD/Q8wEAAAAAQgrBBwDhy99ll8h8ANAXVr8HK/jQsedD3X6TsRCToF6zMh5iB3Dmg+QMPpD5AAAAAAChhOADgDBHzwcAIapmnxmzppix45X9tSVSYh9KLkmDI/NBkmJTyHwAAAAAgBBD8AFA+CLzAUAos8oqZY43Y8cr++v6IfgQ7cyaiB7owYduMh8qd0v7twRuPgAAAACA7oMPdXV1stvtkqQtW7bo1VdfVUtLi98nBgD+5xCZDwBCVp0z+JCcLUXFm/4Pnmr3S0l96PcgmYyHyBgpKqZv+wm27oIPb94m/eeqwM0HAAAAANB98OGYY45RY2OjCgsLdfLJJ+vpp5/W5ZdfHoCpAYCfORx+jT2Q+QCgT2r3m8yE2CQpLsU/mQ8xSe6+DwNZd8GHqgJ3JgkAAAAAICC6DT44HA4lJCToP//5j66//nq9+OKL2rBhQyDmBgB+RuYDgBDmGVzo2NPA4ZAaKqSEzL4dY+JJ0sxz+7aPUNBd8KG2RGooD9x8AAAAAAA9Cz58+umneuaZZ3T66adLktra2vw+MQDwO3o+AAhltSVS0jBzu+PJ9eY6yWE3GRF9MeMc6dTf920foSDWS2bIF09K/7lGsrdJdful1kappSE48wMAAACAMNRt8OHPf/6zfve73+nMM8/U9OnTtWPHDh133HGBmBsA+BmZDwBCWJ1HT4e4FKnRI/OhudaMg6FkUn+ITTbPid15gUxbq/TB76X1L5ogjsO5vKEieHMEAAAAgDAT1d0G8+fP1/z581VbW6va2lqNGzdOf/3rXwMxNwDwLzIfAISy2hIp91BzOzZZqtnnXmdd5R+bHPh5hSLreWiuleJSpW3/k6oLzbK9a93b1ZdLKSMCPj0AAAAACEfdZj6sX79eBx98sKZPn65p06Zpzpw59HwAMEg4JFu3b4O9R+YDgN5qa5Xqy9yZD7Gp7csKEXxoz3oerOflyyfd6/asct8m8wFAOPjkr9J/bw72LAAAALoPPlxzzTX64x//qF27dmn37t26//77ddVVVwVibgDgXw67/Fp2icwHAL1VXybJ4dFwOpmyS13xDD5U75W2LJOmnGGWEXwAEE62viO98wtp49JgzwQAAKD74ENdXV27Hg/HHnus6urq/DopAAgIf5ddIvMBQG/VFpvRs+dDc41kt5v7rswHgg+STMNpyTwva/9pejwcd7tZVrjGvV1DeeDnBgCB0tokvXyNud1YxQUwAAAg6LoNPowbN06/+tWvlJ+fr/z8fP3617/WuHHjAjE3APAzPzecJvMBQG/VlZgx0Sq7ZPU0cAYdmpyZD9ZJ93BnPT+NVdKXT0ljj5GGTZOShpnnLDLGrCfzAcBgVl9m/mWMM0HYZi4aBAAAwdVt8OGJJ57Q/v37ddZZZ+mss85SaWmpnnjiiUDMDQD8i8wHAKGqdr8ZXT0fPK7sl9xBCMouGVbw4ZtXpcrd0uzLzP20UWZMHSlFxhJ8ADC4WYHp1JFmbKwM2lQAAAAkKaq7DdLT0/XXv/5VktTW1qa6ujqlpHCVHYDBIFCZD348BIDByZX54Oz5EJdqxvpyc1LJlflA8EGSO/iw7nkpPkOa+i1zPzXX9HxIGi61NJjnDwAGKyswnWIFH6rcgQgAAIAg6Dbz4cILL1R1dbXq6uo0Y8YMTZs2Tffee28g5gYA/kXmA4BQVVsiRcW5T6oPnWrGfevN2FQj2SKk6ITgzC/UWM9TW5OUd6EUFWvuW5kPSUOl+HQyHwAMbq7MhxwzNlQGbSoAAABSD4IPGzduVEpKil555RWdeuqp2rlzp55++ulAzA0AAoCeDwBCUNk20+/BCmJmTpRikqXCL8z95lpz358B1IHECj5I0uxL3bfTcs2YPNwZfKgM6LQAIKCaO5ZdqgreXAAAANSD4ENLS4taWlr0yiuvaOHChYqOjpaNL7oABgO/Zz64DuS/YwAYfFY/IW15S5pxjntZRISUc7A7+NBUS8klTxGRpv/FqCOkrMnu5WmjzejKfKDsEoBBzMp8SKHnAwAACA3dBh+uueYajRkzRnV1dTrmmGO0a9cuej4AGCQC1fOB4AOAHqovl974iTThROn4n7dflzNHKv5aammUmqppNt3RafdJp/6+/bKMcWZMzaXsEoDBz+r5YJVdIvMBAAAEWbcNp2+66SbddNNNrvujR4/W8uXL/TopAAgIh8NcTewvVlaFw+6/YwAYXCp2SvYWae6V5mp+TzlzJHur6fvQXNu+1BCkvAs6L8scL132Xyn3MPO8EXwAMJi5Mh9GmNEz+FCzz5SgAwAACKBuz7oVFxfryiuv1KmnnirJ9IB48skn/T4xAPA/f2ck0HAawAGqKTZj8rDO63LmmLHwC8ouHYixx0hRMSbzobVRaq4P9owAwD+aayXZpNgU88/qc7P7M+n+KdLer4I5OwAAEIa6DT5cfvnlWrBggYqKiiRJkyZN0p///Gd/zwsA/M/hkGyByHwg+ACgh2r2mjE5u/O6lBFS0nBp7zqpqYaySwcqIcOMZD8AGKya68zfBptNikt1Zz7sWS3JIRWsDOr0gANSs0/a+VGwZwEA6KNuz7qVlpbq3HPPVYSzNElUVJQiIyO7eRQADAAOu38bTpP5AKArKx+RPrhXKtvuXlZbLMkmJQ71/piMcVLlLsou9UZ8uhkJPgAYrJpqpJhEczsuzd1wev83Ziz+OhizAnrns39I/zxbsnspYdvaLK15xvs6AEBI6Tb4kJiYqLKyMtmcJ+g+++wzpaam+n1iAOB/fm44TeYDAF9am6RlP5OW/1r6xxHmalXJZD4kZkmRPtpypY2SKnebE0wEHw6MK/hQHtx5AIC/NHuU5PPMfNi/2Yz71gdnXkBvNJRLbU1SfWnndVvekpZeL+1dE/h5AQAOSLfBhz/+8Y9auHChtm/friOPPFKXXnqp/va3vwVibgDgXw4HmQ8AgqN4g2ksPeUM04egfIdZXlPcdUPQtFFSdSFll3ojIdOM9WXBnQcA+EtTrftvQ1yq6fngcLiDD8UbJXubCYADoc5qoF6zr/O6alMWXPVkMwJAqPNxWZ3b7Nmz9cEHH2jz5s1yOByaPHmyoqOjAzE3APAzMh8ABEmR80q9medJm14zwYfhM0zmQ3fBB4ezxAANpw8MwQcAg51nSb74NGlvlfm70lQt5cyRCr+Q3r3LlP27ZaO7Fw4QippqzFizT8qe2X5drTMgYZUWAwCErG4zH1588UU1NDRo+vTpeuWVV3Teeefpyy+/DMTcAMC/yHwAECxFa6T4DGncfHO/fKcZa/Z1H3ywxKb4b36DkSv4QNklAINUx8yHxiqpxNnvYcZ3zfjJX6TWBlPCDwhlruDD3s7ragg+AMBA0W3w4Ve/+pWSk5P18ccf691339WVV16p6667LhBzAwA/I/MBQJAUrZVGHGxODiUMMZkPba1S3X4pOdv34zyDD5RdOjCR0VJsKpkPAAav5hqPng9p5n7xBnN/2relCI8KBt7q6AOhpLmLskvWsobKgE0HANA73QYfIiMjJUmvv/66rrrqKp1++ulqbm72+8QAwO/IfAAQDC0N0v5vpBF55n7GOBN8qCuR5JCShvl+bEqOZHN+fKPs0oFLyJDqOOEGYABZ/5L00f0927Zj5oMk7fncZH6ljJBGHWbKL0lSHYFYhLimajN2mflQFbj5AAB6pdvgQ05Ojq655ho9//zzOu2009TU1CS73R6IuQGAn5H5ACAIijdI9laT+SA5gw873V+ku8p8iIqRkkeY21Zdb/RcQiaZDwAGlo/+KH32j55t21znDkzHp5lx+3IpO8/cvnSpdNFL5nbd/v6cJdD/PHs+dGQFJCi7BAAhr9vgwwsvvKAFCxZo2bJlSktLU3l5ue69995AzA0A/CtgmQ8A4KF0ixmHTjNjxlipulCqyDf3k7vIfJDcpZdiCD4csMQhBB8ADBw1xVLJBhMoaO2m+kBbq+nlYP1tsDIfmmuled8ztyMipfh0U36JsksIZQ6H754PLY3uoAOZDwAQ8roNPiQkJGjo0KH6+OOPJUlRUVGaOHGi3ycGAP5H5gOAILAaHlsNkDPGSXJIBZ+b+11lPkju4ANllw4cmQ8ABpKdH7pv1xZ3va1VHz8m0YxW8CFzojTpFPd2NpsJxFKCDqGstclkiUom88HeZgJsklTrkQlBzwcACHndBh/uuusu/f73v9fvfvc7SVJLS4suvvhiv08MAPzOIXftdL+g5wMALxoqJFuk+8RQxjgzbn9Xkk1KHNr1412ZDwQfDlhChgk+EBQGMBDsWO6+7a3uvScr+GAFplNyzHjUzVJEh8+7CQQfEOKsrIe4NNMT67WbpcWnmmU1zkBcZAyZDwAwAHR71u3ll1/Wq6++qsREcwXFiBEjVFNT4/eJAQhxdWXSP88Z2F9cHHb/ll0i8wGANw3lpha39R5hBR9Kt5irUyOjun78pAXSxAVSUjdBCnSWMERqbZRa6oM9EwDomsMh7Xhfypxg7lcXdd6mfIf0zi/NFeFNVuaDM/iQPlq6eb2Ud1HnxyUOoewSQpvVbHrIJPOdbc0zUtEakwFhBeIyJ9LzAQAGgG6DDzExMbLZbLI5vyDX1dX5fVIABoC9a6Rt70j7vgr2TPogUEEBgg8APDRUSPEZ7vvx6dKJd0pnPSad/2z3jx85V7roBSky2m9THLSsUleUXgIQ6ip3mX5AM88z971lPqx/SfrkL1LhFx6ZDx79gNJGeb/QJnFI54bTK/4mPXZi/8wd6Cm73fuFWtbrecgkMzraJHuL+T9hlSDLmkzZJQAYALoNPpx77rm65pprVFlZqUcffVQnnniirrrqqkDMDUAos1Jh21qCO4++8HfDaTIfAHhTX24CDhabTTrqh9LM73YujYH+ZQUfBnLWHoDwULzBjOOOM+VlPDMfmp3ZW6VbzLjzQ/dn856U5EsYYrKYPe39StqzSqruprwT0J+eu1B65frOy63X8xBn5o8t0ozlO00gLiLaZI42VZsABgAgZHX7DffWW2/VOeeco7PPPlubN2/W3XffrRtvvDEQcwMQyqzU7rbm4M6jT/zccJqeDwC8aagwvQcQeK7Mh/LgzgMAumMFH4ZOlZKHm6a7kpT/iXTPKKl0m7R/s1m284POPR+6kjhEaq6RWhrdy6wyN4Wr+2f+QHeaakwm/Z7Pva+TpKHTJNmkWReY++U7zP+F5OHmQg6H3byWAQAhq5uiwlJlZaXS0tJ07rnnatKkSUpNTQ3EvACEOusDYWtTcOfRF2Q+AAiGhgpp2PRgzyI8JQ4xI2WXAIS64g1S+lgTTEge4S67tP09U35m5wdS2TbJFiEVrJQOOtus70nmg+u9sFRKHWluNzqDD3tWSVO/1b8/C+BN/ieSvVWq2GV6OUREutdZF7pljJeueFPKniV99bxUsVOq2iMlDZPinOemGqvctwEAIcdn5kNTU5Muv/xyjRkzRtdcc42uuuoqjRkzRosWLVJz80C+0hlAv7CurhrIZZfIfAAQDB17PiBwrIwTgg8AQl3xBnegOiXbXXZpzyozblwqtdRLk04xmcjb3zXLPXs++JLgDD54lqBrrHLu/4u+zx3oiR3LzWj1cvBkZeLEJkujD5diEqT0MSbbp/ALKWe2FJ9mtqHvAwCENJ/Bh9/85jdqaWlRQUGBvvzyS61du1a7d+9Wa2urfvWrX3W740WLFmno0KE66KCDXMvuvPNO5eTkKC8vT3l5eXrjjTdc6373u99pwoQJmjx5spYtW+Za/tZbb2ny5MmaMGGC7rnnnt7+nAD6m/WBcCCXXSLzAUCgtTab4K1nzwcETmyqqRtdT88HACGspUEq3+4OPliZD/Y2qfBLs2znh2acc7npCbHF+R06JrH7/SdmmdHzvdD6bF/0pdTW2ucfAejWjvfN32XJlFPyZGXZe5YRyxgrbXvXBN3GHds+8wEAELJ8Bh/+85//6NFHH1VysvvKieTkZP3973/Xyy+/3O2OL7/8cr311ludlv/whz/U2rVrtXbtWp122mmSpI0bN+q5557Thg0b9NZbb+n6669XW1ub2tra9P3vf19vvvmmNm7cqH/961/auHFjb35OAP3N1XB6AAcfyHwAEGgNFWZMIPgQFBERpu8DmQ8AQtn+TaaWvWfmQ0u9tGe1qW+fOUGuz5cjDpbOfswEHWKSpOiE7vdvlV3askx679fmQpnGapMR0VIv7f/GLz8W4FK917zOZ51n7pfvbL++udaUFPN8PaePNVkStkhpzFFSXJpZ3lgZiBkDAHrJZ/AhIiJCCQmdP7gkJSXJ1oMrhY855hhlZPSspMDSpUt1/vnnKzY2VmPHjtWECRP0+eef6/PPP9eECRM0btw4xcTE6Pzzz9fSpUt7tE8AfjYYGk6T+QAg0BqcjY7JfAiehMz2pUYAINRYzaaHOasIJGeb8ZtXzXjotWaMSzVZDNO+Ld3whfS9//Xss21Cphk/f0T68F5z5XhTtTTxJLP8qxf65+cAfNn6thkPvsRk7lR0CD401ZiSS56v54xxZsyZY177ZD4AwIDgM/hgs9lUUVGh8vLyTv8iInw+rFsPPPCAZs6cqUWLFqmiwlz9V1hYqNzcXNc2I0eOVGFhoc/l3jzyyCOaO3eu5s6dq/379/d6fgB6iMyHHiDzAUAHVuYDPR+CJz6NExUAQlvJN1JUvKlxL0kpI8y45p/mhOuM70qySUMmuU/OJmZKQ6f2bP9xqVJEtPt+5S5JDpNpMetCaeVDna9EB/rT5jel1FHS8BlS2ujOr7emGimmQ/+SjLFmHH+cGen5AAADgs8oQlVVlWbPnq05c+Z0+ldTU9Org1133XXavn271q5dq+zsbP3oRz/q9cQ7uvrqq7V69WqtXr1aWVlZ/bZfAD5YDadbB3DwgcwHAIFWT+ZD0MWmEHwAENrKtpmrvCMizf0Rs6V53zP3J51iTrqOPVoae0zv9m+zSUfdLM25wnm87WaMS5VO+KUUESW9e3dffwrAu+Z60+9h8qnmtZgx1vR8eO0Waf1LZpum6s7N03PmSiPnSQedY+7HJEuy8TcdAEJclK8VW7duVXR0tK/VvTJs2DDX7auuukpnnHGGJCknJ0cFBQWudXv27FFOTo4k+VwOIMgGQ8NpOUwtUb8h8wFAB66eD2Q+BE1cilS6OdizAADfyndIWZPd96PjpNPvl067z31xy2X/7dsxjv+56SHxxWJ3s9/YFNNf4uBLpC+fNCeJY3rQQwI4EDs/kFobpMmnmPsZ40wZpuKvpboSacY5psRvx+BDYqYpLWaJiDABM3o+AEBI83nW7fDDD9d3vvMdPfTQQ8rPz++Xg+3du9d1++WXX9ZBB5kalgsXLtRzzz2npqYm7dy5U1u3btUhhxyiefPmaevWrdq5c6eam5v13HPPaeHChf0yFwB9NCh6Ptjl17JLZD4A6IieD8EXm2IaqwJAKLK3SRX5Usb4zuv6O2PX6v1g1du3auhPPkVqbZR2fti/xwMk0+g8JlkafZS5nz7Wva6m2IxNNVJsUvf7ikul7BIAhDifmQ+rV69Wfn6+3nrrLd18880qLCzUUUcdpVNPPVXz589XbGxslzu+4IIL9P7776u0tFQjR47UXXfdpffff19r166VzWbTmDFj9PDDD0uSpk+frnPPPVfTpk1TVFSUHnzwQUVGmhTTBx54QAsWLFBbW5sWLVqk6dOn9+OPD6DXBkPPB4f8W3aJzAcAHTVUmDrbMT34Qg3/iEs12XsOh7RrhZSa466rDgDBVlVgPl9bzXX9KXGIGcucmQ9xKWYcfaQUnShtXea+Oh3oL5W7pSETpagYc3/MUdLwmVJ0vFSzzyxrqjF/n7tj/U0HAIQsn8EHSRozZoyuvfZaXXvttWppadFHH32kt956Sz//+c+VlZWl119/3edj//Wvf3VaduWVV/rc/vbbb9ftt9/eaflpp52m0047ratpAgiG5kGQ+eDvhtNkPgDoqL7cZD34NfCJLsWlSPZWqaVBevEyaeIC6TsPBntWAGBY/RcyvWQ+9LeYJCky1qPskjPzISrWNPXdssz/PdIQfpqq3Vk2kjT8IOnaj6Rlt0urHjOvuWYvZZe8iUslmxEAQlyXwQdP0dHROv7443X88cdLkgoLC/02KQAhrrXZpGJLAzv44PcvU3xRA9BBQwX9HoIt1nllb0OFVFcqVfOZFkAIsQIB3sou9TebzWQ/WO+DnieEJ54sbXpNKvlGGjbN/3NB+GisllJGdF6ePNx8x2yqNpkPMT0IPsSmmDJlAICQ5TP4MGPGDNm6OCn31Vdf+WVCAAYAK+tBMoGIAYvMBwAB1lBBv4dgs06uVe6W5JBqi4M6HQBop3yHFJ1gTsQGQkKGR/Ahxb089xAzlmwk+ID+1VjlvhDAU9IwM1buNsGH+LTu90XZJQAIeT6DD6+99log5wFgILH6PUiDIPPBnweg5wOADurL6S8QbFbwwbpS0qovDQChoGy76fcQqFJHCc6+D5GxptySJW20Ga1m1EB/6Vh2yWIFH3Z/JsnRs+yfuBTKLgFAiPMZfBg9enQg5wFgIGkXfGgJ3jz6jMwHAAFWXyqNnBPsWYQ362pL64RaQ7nU2tT+pBsABIrDIX14n5QzW5pwgsl8GDo1cMe3mk53PBkck2BOBlPSBv2prUVqqe86+JD/sRl70vckNsUEM+x2KSKi/+YJAOg33b47f/bZZ5o3b56SkpIUExOjyMhIpaR4SZEDED48yy61NQVvHn0VsAZ6BB8AyLzn1Je5rzJFcFhlRco9rual9BKAYFn3L2n5r6XVT0htreZkf8a4wB3f+psU5+U7fvoYqWJX4OaCwc/KUvAWfEh2Bh92rTBj5oTu9xeXKskhNdd0uykAIDi6DT7ccMMN+te//qWJEyeqoaFBjz32mL7//e8HYm4AQpWV+RARNbDLLpH5ACCQGisle6uUkBnsmYS3jpkPklRD8AFAEFTtkd74ibldsUuqKpDsLT274ru/JDr/Jnk7GZw+lswH9K/GSjN66/kQl2bKf9WVmCwIbwGxTo9xbkPpJQAIWT3KS5swYYLa2toUGRmpK664Qm+99Za/5wUglFnBh4TMgV12ye+ZD/R8AOChvtyMiWQ+BJV1osLzhFotfR8ABIjDIeV/YsYty8wV2+OOMwHR8u1mm57Uuu8vVkDc28ng9DEmQNI6kC82Qkhp6iLzwWZzl17qSdaD5H7dNlb1fW4AAL/oNviQkJCg5uZm5eXl6Sc/+Yn+9Kc/yW63B2JuAEKVZ/ChdQCXXZJDsvmxNiiZD0B4+epF6YF5kr3N+/q6UjNSdim4YpLMe3/dfvcymk4DCJTdn0lLTpO2vSvt32zekyaebMqaFqwy2wQy86G7sktySJW73ctKvpHe/gWfb9E7rrJLPrIakoaasaf/B6wgRhOZDwAQqro96/b000/LbrfrgQceUGJiogoKCvTvf/87EHMDEKqsng8DPvPBLr+WXSLzAQgvu1dIpVvcGQ4d1TuDD4mUXQoqm819pWTiUBOIIPgAIFBKt5ix6Etp/yZpyCR3j4dt/5OiE91XfweCr4bTkjP4INOX4qGjzYnjb16TVvxVqtkbsCliELEyFLxl2khS8nAzZk7s2f4ouwQAIS+quw1Gjx4tSYqLi9Mdd9zh9wkBGACszIf4NKm2JKhT6RN/l10i8wEIL5UFZqwrkZKyOq8n8yF0xKWYutOJWSb4QNklAIFilXzbu84EIsYdJ2WMNcuKvpSGTvdzWdAOrL9J3k4GW/P6+I/mop3KXe7GvlV7pJQRgZkjBo+uyi5JHpkPPS275NwPZZcAIGR1m/nwySef6KSTTtKkSZM0btw41z8AYaypxlyVFRUvtQ3wsktkPgDoL1VW8GG/9/VW5gMNp4PPOlmRkGGusiTzAUCgWMGH3Z+Z7IGsyVLaaEk2c4I/M8DftbvKfEgaJkXFObOFZb4DWBchWX/zgANhBQl8ll2yMh96GHyw9kPZJQAIWd1mPlx55ZX605/+pDlz5igyMjIQcwIQ6ppqpNgkKSpmgJddIvMBQD9xONyZD7U+gg91ZVJ0ghSTELh5wTvrZEVChhSTKFUVBnc+AMJHxU4zWgHprMlSdJzJIqgudJdgCpT4dOmku6UpZ3ReZ7OZ5tdlW6W2ZmfwwVl+tWpPYOeJwcEqj+Sr7NKkBabxek//H9BwGgBCXrfBh9TUVJ166qmBmAuAgaKpRopNliJjzBeRAYvMBwD9pKFCaqkzt31mPpRRcilUWFf4JmSaBuF7Vkm7V0rDppvgOgD4S0W+lDbK3cQ5a7IZ08c4gw8BbDYtmQDDkT/wvf47D5rg+guXdMh8IGiLXmiqlmKSpQgfF7aOyJPOeqTn+4uOkyJjCT4AQAjrtuzScccdpx//+Mf69NNP9eWXX7r+AQhjnsGH1gEcfHCIzAcA/cM6iSSZng/e1JfSbDpUWFdKxmdIydkmMPTEydIr1wZ3XgAGt4ZKE6yeutDcj4pzllySlO7sr5AZ4OBDd0YcLOUeYm43VUvNZD6gDxqrfJdc6q24FMouAUAI6zbzYeXKlZKk1atXu5bZbDa99957/psVgNDWWCnFpZH50C0yH4Cw4Vn7umPZpfd+LTXXm4bTiV4aUSPwXGWXMqWJJ5ngQ1uz9OWT0oZXpOnfCebsAAxWlbvMmHuotP5FKXGo+wpwK+gQ6MyHnohNNmNTjfskLz0f0BuNVb6bTfdWXKq7nBMAIOR0G3xYvnx5IOYBYCBprJJScrwHHza8LL31M+nmr6TI6ODMr6fo+QCgv1j9HlJHtS+7tPND6cN7TUmAuBRp6NTgzA/txXr0fBgyUTr9PqmtVdq7Vnr75wQfAPiH1Ww6fYx05M2m54xl7hXmb0TysCBMrBvRCZItokPZJTIf0AuNVb77PfRWbApllwAghHVbdqmqqkq33HKL5s6dq7lz5+pHP/qRqqp4YwfCWkOlFJ9mgg+ONlMv27J/i1RTJLXUB2t2B4DMBwD9pKpAik6Usia5yy61Nkuv3mSWtzWZoEQCZZdCgmfmgyUySpr2HfO7bK4LyrQADHLlzmbT6aOlw6+X5lzmXhefLk0O0V6LNpvJfvBsON1QznslDlxTtR8yHyi7BAChrNvgw6JFi5ScnKwXXnhBL7zwglJSUnTFFVcEYm4AQpHD4Sy7lCpFxZhlntkPVsNVz4BEqApY5oP/DhFWPvuHtO3dYM8C8K5yt5SWa0po1JWaZeXbpYqd0oJfm7reEsGHUGGd+IjPaL88daQZaaQKwB8q8s37Tn+ffA2E2BR35kOSMzujqlBqa5F2vC+1NgV1ehgg/NLzgbJLABDKui27tH37dv373/923b/jjjuUl5fnzzkBCGWtjSbYYPV8kMz96Hhzu6XBjPbWoEzvwPg7KkDmQ79pbZbe+aWUM0eacEKwZwN0VlUgpeZKiUOk2hJnoNaZKZo+Rhp9hLT9PbMewTfiYClraufGrik5ZqzeY7JYAKA/VeSbvwkDUWyyaZbd2iANPVSqLTZ9Kza8LJVtlb7zDynvwmDPEqGusZqySwAQZrrNfIiPj9fHH3/suv/JJ58oPj7er5MCEMIaKs1olV2SzIlhS7Oz3NJACD44HKZ+rb/Q86H/FH9tglx7VrlrDQOhpLLAZD4kDTUllpqq3V+E41Kl8ceb2wkEH0JC9izp+5+Zv2WeUp3BBzIfAPhDRb6UMTbYs+id2GSpusjcznL2L/rwD+ZvntS+3xHgjcPhp7JLqZRdAoAQ1m3mwz/+8Q9ddtllqqqqksPhUEZGhpYsWRKAqQEISY2VZoxLddd89Vp2aSAEH+z+LbtE5kP/KfzCjPZWKf9jqWiNNOkUKWe2Wb7jA6lylzT70uDNEeGrodLUvk4fa8ouSab0khV8iE2Vpp8pbXrdXHGP0JU8QpJNqib4AKCftbWaLLmDzgr2THonNtndMHvIRCkm2QRyz3ta+sM4Lg5B11qbzevH3tr/ZZdiU0y/wbYWKTK6f/cNAOizboMPeXl5WrdunaqrTSQ5JaWf/1AAGFhcV/KmuTMe2rxkPrS1BHRavePnhtNkPvSfwi/MFePNddKyn0nlO8yV5mf+w6z//BFp92cEHxAcFc4GohljpegEc7u2pH3mQ1KWtOit4MwPPRcVY7JXqvYEeyYABpvqPebE60Auu1RbYm7Hp0s3fWn6V0RGOcvecOU5uvDRfdIHvze3+7vskpVJUbnb9G5qqJCSh/fvMQAAvdZtvZG//OUvqq6uVnJysm655RbNnj1bb7/9diDmBiAUtSu75LyypF3mg1V2iYbT7n0TfOizwi+k3EOk0YebwIMk7fncvb62WKovlVoagzM/hLdyZ/Ahfaw5cS2Z8hOuTDEu3BhQUnLIfADQ/6ysgYEcfLA+08ammL93kVHudWQ+oCvVheZ1c9j3pcmn9e++J55kMnFevEx6eL70wDz3BXGW5voBcnEcAAw+3QYfnnjiCaWkpOjtt99WWVmZnn76ad12222BmBuAUOSZ+RAVa257DT4MgLJL/s58cB2G4EOfNFZJpVtMiaVJp0oRUdJBZ0tl26T6crONdSUeJwwRDFbmQ/oYKTHL3K5zZj5ExbvfKzEwpObQ8wFA/3MFHwZqzwePQHpsUvt1cSnU3EfXmuulpGHSKb+VUrL7d9+Z46WzH5P2fW2+HzRVu0u2NlZLj50k/W6k9K8L+ve4AIAe6Tb44HCeNHvjjTd06aWXavr06a5lAMKQ60reNHfDaW9ll/oj+FCzTyrZ1Pf9+OLvzAdJJrjBe2afFK0144jZ0txF0s3rzShJe1ab3yPBh/BUtMb0+wi28h3mC3VskrOhtE2q3W+CD/3dVBH+lzLSvJfweRdAfyrfKUVESykjgj2T3olN9n5bcpZdqgrsfBB6/nON9M4d3tc110kxCf479uRTpCvfka77RJJN2v2pWb53rcmWjk+T9q03yxoqzXwAAAHRbfBhzpw5Ovnkk/XGG29owYIFqqmpUUREtw8DMFhZZZfiUtxll1r9lPnw7t3Ss+f2fT8+BSDzwWbjBFZf1e03Y2quSe9PGWGa9toizZeJphqptcFsw9XK4eWdO6TXfxTsWUjl+e4rWSOjpIQMZ9mlKkouDUSpI6XmWnewHQD6Q0W+lDZKiogM9kx6p8vgA2WXBrX1L0n7N3e/3e4V0o73va9rqZdikryv6y+586SsydKwg6Rdn5hlVrnWSadKtfuk1ibpme9Kb/zEv3MBALh0GUVwOBy6++67dc8992jVqlVKSEhQc3OzFi9eHKj5AQg1jVXmg2NktBTZVdmlXvZ8aKqVyrab29WFpnGYZ3CjP5H5MDBY9VmtYJckxSRKw6ZLBZ+7gxOSaeaI8LF/szvrJZgqdppm05bELGfZpWoyHwai1BwzEswE0J8q8gduvwepfcCh40lkyi4Nbq/eKK34W/fb1ZW5y4t11FwrRfsx88HT6MOlglVSW6v5XhkZI406zKyrLJD2fSWVbQ3MXAAAXQcfbDabTjvtNM2ePVtpaWmSpMzMTM2cOTMQcwMQihorTcklyaPskkfzrr6WXVrxV+mR4yS7XaorleTw4wllMh8GBCu4Zb3eLLmHSIVfmvJcFk4Who/GKnMFW1NVcBuNtzSYQGl6x+BDKWWXBqqUkWakjBuA/jSYgg9kPoSPtlZzcVnlrq63a2mQWurMd8XGKpMt39rkXt9cby4eCoRRh5u57FtnMh/Sx0jpo826gpVSa2NoXLwCAGGi2/pJs2fP1qpVqwIxFwADQUOl+2SadSV6m/ODpcPR97JLZdvNycTGSvcV7ZW7ezvb7pH5EPrsVuZDh+DD0GlSc420d525HxVnThba7QR8wsH+Le7bdSVSQ4XJNOitZbdLa/554I+rcH4ZzxjnXpY01HypJfgwMFn12Ak+AOgvu1eaz7aeWXIDjRVwiIprn40qOXs+kPkwKDU7g0oV3QQf6svdtyt2SY/Ml97/ncd+6gIXfBh9hBnzPzHBh4zxpnyrJO109grzzJwGAPhVt8GHlStX6rDDDtP48eM1c+ZMzZgxg8wHIJw1VpmGXZIU1aHsUmujXCfaext8qNnrHuvLzG1/BB9cJ6fJfAh5rrJLUe2XD5lkxvyPzTh8hsl8ePFS6c8zTH3ajja8Ij31HX4ng0GpR+3h2hLp+Uuk12/p/f42LpW2vXvgj6vYacZOZZdCt+F0m92h+uZ+6MszWCUOMWNdWXDnAWBwWL1YeuJk87dh0inBnk3vxTp7GHXMepBM2aW2pvZXumNwaKo1Y9UekwXhS73H38zdn5pMn5JN7mUtAQw+JA833xN2fmAavWeMk1JyJNncPSmaa90Z+wAAv4rqboNly5YFYh4AQlFznTnxP3Sqe1ljpWmWJ3Uuu+T5Aa63wYfqIjPu3+zehz+DD7ZuY7B9ROZDn/kqu2QFH3Z9Yn6Pw2dKa5+R9n9jahH/+0qzTbZHwPzLJ6Udy80XqLTcwMwf/rG/Q/CheEPf/j+3NrXvX9NTVtmv5Gz3ssQsU/vaFtHn4MPagkrNGpkqWzdZWkvXFmr+pCylJcR0ud2f/7dF//xst9rsdn34k+OUHBetN9bv1X1vb9Zfzz9YB+WEXrAk4KJizUm2+tJgzwTAYLDmaWnYDGnRm95P3A8UVp8Hb02DrcBEU4374iQMDs3O4IOjzZTC9VU6zPNv5oZXzFhT5LGfusD1fJCkscdIXywx3yczxkpRMeazmuec6kqkmDGBmxMAhKluv6WPHj1aBQUFeu+99zR69GglJCTIbrcHYm4Agu3zR6SHj2lfw7Wh0qPngzPl2rrKqaWPwQeHw535ULzBvdwvwQfn+5i/yy6R+dB3voIPSUOl2FQTEEvMMsGE1kbzuz37MbPN3rXu7VsapF0rzO39m4QBrnSLFJ9ubpfvkBrK2/efOVBtzb17vPW+53k1X2KWGR129wmZXli/p0rfefATvb2xuMvtdpbW6QfPrdVf3u26eWJjS5v+8u5WZSbGqKK+Ra+uK9LjH+/U9c98qR376/TRVk62uyRkOvsOAUAfNFRIRWukKacN7MCD5J6/t5/DFXyg9NKgY2U+SF2XXvIsu7T7UzNWO7/XtbWYz1neAlf+Mna++/to5ngzdrzwqJbSSwAQCN0GH+666y79/ve/1+9+Z+r1tbS06OKLL/b7xACEgIpd5oPivq/dyzzLLkV2KLvU1+BDQ4WzdJPcwQdbpJ96PgSo7BKZD31nnRCO6JCsZ7NJQyaa20lD3U1ih8+QJpwkRcW3T/fetcL9+ir5Rtr8lvTBvf6dO/xn/2ZplLOmb+FqM9r7GnzoRbmIZi/Bh6Sh7tt9yHzIL6uTJH2yreuT4F/tqZQkLV1bpOZWu5pbvV8ksq2kVg6HdNMJEzVleLIe+2in/vDWJp04daiykmO1fX+t18eFpcQhZD4A6Ju2VlMa0mGXxh0b7Nn0XZfBB+eyjn0fuGhx4PMMKHXVdNoqu5SSI9d3n7r95nN8s/k8o5gAZj6MOUqu73lWXy6r74M11tF0GgACodvgw8svv6xXX31ViYnmS/WIESNUU1PTzaMADAq1zg9k+9absa3VNB3r1HDaKrtU535sb4IPVtaD5A4+DJ0mVRYc+L664yq71P+7bofMh75ra5Eior1nqVillxKHSqnO4MNB50gREVLWJFOCqbFaWve8tOk1kz0Rn2EyHz7+o/T+b9tfqYWBoaXRfAEeNt1kP+xxBh+CkfnQXGten57NNxP7J/iwr8oEyz7dXqYd+2t19VOrVVrbOUCyfk+VJKm8rln/9++vdNCdy/TPzzqfINhWYoILk4Yl6YJDRmlnaZ2iImz69XdmaOLQJIIPnhKGtK9fDQAH4vNHpXvHSysfNld7j5wX7Bn1XVfBhzgvmQ8Fq6TfZruvfsfA1OyZ+ZDve7v6Mkk2KTvP3I+MkeQw5Sm9ZYn6W0KGKb0aEe0ONliZD6MOM2Nt15mlAID+0W3wISYmRjabzVVruK6urptHABg0ap21zPd9ZUbrC4Wr7JLV88Equ9Tgfqy97cCP5/nlpMqZ7ZBzsKnN2dqLWuxdCmTmA/qkrblzySWLK/NhmPlif/JvpLmLzLKsqSbz4dMHpZevllY/IY063GRGFHxuTlg77NK2/wXm50D/qdlrfnfpo82J/ipngLK3wQe73QRMe9PzoaW+85V8VsNiyf1+2Qv7qk3wYWtJre54dYPe3lis371hsnla2+z68/+26OvCKn1VWKVZI1M1NDlWL68pVHSETXe8ukFvfb1Xdrs7+Lm1pEZRETaNzkzUd/JylJUcq9tOnaLhqXEan5Wk7SW1chAsNRIzaTgNoHfsbdInfzFlIfM/kkYf2T5APVBFRErRiV1nPniWat271mScdnW1PEKfVXYpIrrrskt1peaCkIyx5v7YY8xYs9d9gVp0AIMPkjTve1Lehea1K7mDELmHmpGySwAQEN0GH84991xdc801qqys1KOPPqoTTzxRV111VSDmBiDYXJkPzuDDnlVmtE6sRfVz2SWrAZhVPkeSRhxsTjJWFx74/rriynyg50PIa2vx/aXdynxIypIio6QjbnBffTd0inlNrX9BypoiTTpFOvQa00C9bKtpnGeLkLYs833s2pL2QTWEBivIEBXXvsRRb8suWQHU1l6WXepYw9jq+SD1OfMhKsK8R320tVRDkmL17y/36N9f7NH//Xu9/vy/rfrF0q+1obBKeblp+vGCyTp37ki9/+PjNCErSdf+80vNv2+5iirNa3hLca3GDElUTFSEUhOi9fnPTtAlh4+RJI3PSlR1Y6v2e8msCEsJzrJLvH8DOFBb3zZB8RPuMJ8/Dr4o2DPqP5nj3CVsPFk9HzzLLlUXdV6GgcfKfMia3H3ZpYRMd0PqSaeYsbooOGWXJGn2pdLCv7rvW98bsvPMxSGUXQKAgIjqboNbb71V77zzjlJSUrR582bdfffdOumkkwIxNwDB5HA4U1Ftpj5+bYn03x+YL1FTTjfbWDX4+6vskpX5kD1Tqt5jTtplTjDLKne5r6TpF/R8GDC6zHywgg/DOq/LmmrG8h3SiXdJR91s7ltBtegEafJpJvOhrdUELzzZ7abh+sGXSMff3ucfA/3I7tEHxDP40JvMBc/H9arhdJ15LXmKSTABiebaPgUf9lY1aM7odG0oqlZDS5ueu/pQXfXUF/rRi+skSTNyUrVmd6Uk6aCcVH13bq6+O9dc1ffy94/Qsg37dOuLX2nxJzt1++nTtK2kVlOz3Ves2jyCr+OHmgDK9pI6DU2O6/WcB43EIeZ10VTjDmgCQE+sekxKzpaOuFE6+pZgz6Z/XfmOuQK+I+tvnWfmg1VOlSbUA5v1Ox02Xdq+3Pd29WXmb+f0M83tad+W3rjVvA6sizICWXbJmzFHSVd/II3IM58fawk+AEAg+Aw+bN26Vbfeequ2b9+uGTNm6L777lNOTk4g5wYgmBoqzImXnDlS4RfSk98y6bQXPi9Fx5ttbDZzUrjVW9mlXmY+JGa5a/cnZrlPKtf1c+NPMh8GDntXmQ8TpVN+b77odDR0ivv25NM8lk8z4+gjpKlnSF+/ZBoWW/VfLeXbzRcmms6GHs8m5J6Bp7ZevO9I7rJuvW047e1KvsQsZ/Ch9yeu91U16rDxmcrLTZPNZtOEocl6/aajtHZ3pZpa7Zo7Jl2H/+491Ta1aubItHaPTYiJ0pkHj9S735TouVUFuv7YCdpVVqdvzRrh9Vjjs5zBh/21Onx8Zq/nPGgkODP86ksJPgDoudZmaccHJtNyMJRa6sj6DtCRq+xSlXuZK/OhqvP2GDis3lYZ46WvnvedkVxfbi4USxwiHXub+f4TGWteB9bFZIEuu9SRzWYCD5Ip21lH2SUACASfZZcWLVqkM844Q//+9781Z84c3XjjjYGcF4BgsxpwTXBmOpVukb79oJQ9q/12kTHuE4Etfc18KDJXilknExOGeK8h2y/IfBgwuiq7ZLNJh10rJXvJfEgdZa5Izxjv7g0hmbJLMUkmIDHyELOsZGPnxxd+YcbevJbhX9bvJDK6fYmjvpZd6lXmQ733L9NWRkYvMx/a7A6V1DQpOzVOPz1tqm471QTTEmKidMSEITpuylAlx0XrwkNHKTMxRuOzvH+hv+LIMappbNUdr26Q3WGaTXszPCVOCTGRNJ22WOUF6fsA4ECUbjZ/i0YcHOyZBFZUrDnR3F3mw4ZXuu4bgNDTVCvFJrk/z/gqo1Vfapo8W2w2KXm4s+eD87NFsDMfPCVlkfkAAAHiM/OhpqbG1dth8uTJmj17dsAmBSAEWMGHMUdK1RdLE070fnV5ZIy7ZEmzR8+H3lyBXL1XSs1xBx8SPYMP/ZyyHbDMB5H50FddlV3qSkSEdPj3pfSx7X/PcSnSzeudjYAdki1SqtrT+fGu4EMvmqfDv6zgQ6fMh76WXerB41+7xXyJPusRc7+5rv2XbUtilnndRvWuhFFZbZNa7Q4NT/VxlanTTxZM1vePnaCoSO/Xk8wela6jJw7Rq+vMFagThnoPPkRE2DQuK1HbSgg+SDJ1qyUynwAcmH3rzTh8ZnDnEQyxyR16PjiDD9Yye5v00iJTh/9bfw749NBLTTVSTLI7C7CpSkrskCHpcLh7PnhKGWFeB9Z3xED3fOgKmQ8AEDA+gw+NjY1as2aNHM6TZg0NDe3uE4wABrkaZ/AheYTJePAlMsZ91XBPG05bJU6iOpxQrimSRs41V8lIJvgQkyTJRuZDOGtr6V3wQZKO/7n35Z4ni5OzpSovDc3JfAhdVoZCZLQ7+JA8ovfvE9Z7Uk8aTheubn9ypaVeih7ZebuMcVJqbq8DnHurGiWZjISuREVGKDXBZyKrbDabnrziEC3fXKLNxTWaNDTZ57Y5afHaWVrnc31YcWU+EHwAcAD2fS1FxUuZ44M9k8CLS3H/HW6qkZqdt62ySw0VkqNN2rs2KNNDLzU7Mx+8NRW3NFWbz8tWyUJLcrb5fVvfEWO8XwARFElZZt4tjVI0va4AwJ98Bh+ys7N1yy3uBlnDhw933bfZbHrvvff8PzsAwWNlPng2c/WmXdmlHgYfXrrCXA18zuPuZW2t5oqZpGHuYyZmmRN3sSn9H3yg58PA0dbs37rJqTlSdYfgQ2uT++pFgg+hx9VwOloadbC5ilI2ad1zvdvfgTScrt3vPIHiMP+/m+u8lxE49qem2WgvWcGH7NS+fyGOiLDphKnDdMJUL+XJPKTFx6iqobLPxxsUPHs+AEBP7ftKGjZNiogM9kwCLzbFnalsZT1I7mX1zjJ2xRu6LqmJ0NJUY4IGrswHL9/JrEC9t8yHzW+6yy5Fh1Dmg3XxSu0+KX1MUKcCAIOdz+DD8uXLAzkPAKGmtth8QIz1fZWsJJO9YF0t3Oysfd5S1/UJ29Itndc3VpoxIdNcLRwRZUbJfNj1VV+0txx2M9p8XzHcP8h86LO2FnOS2V9ScqSiNe2X7fvafUKa4EPoafPo+RCbLC38m/Tur/rQ86GHZZccDpOib28xV3LGp5ngg7cv0zEJfSovsK+qQZI0vB+CDz2VlhCtyvpePoeDTUyC+b2S+QCgpxwOqfhraerCYM8kODzLLtUUuZdby6z307ZmqeQbKTsMS1MNRM21plSplfngrRRufbkZOwUfcqTWBmd5U5vvhuXBYAUcyncSfAAAP/P3WTcAA1VtsclA6C4zwLPnQ0u9+6qYrurk15dLlQXtt3F9aM0w/675SJp1gVkWm9z/PR8CVXaJzIe+60vZpZ5IzTHNzj1/T3udwYi4NHo+hCJX5oPHNRSRMSao2JvflxVAtbdIdrvv7Ror3ceu2WfGlvpeBxmq6lv0/uYSvb1hn6uspWVfdZOiI23KSPDja7+DlPhoNbXa1djCa16SyX6op+E0gB6qLjSZccNnBHsmwRGXap6D1iZ35kNKTufMB0nauy7w80PvuBpOd1F2qWybGdNy2y9PG2XGkk0mS9TL98rmVrva7EH4rpThLI1Wvj3wxwaAMOMz8wFAmKvZJyUN7367qDh3uaWWenePBl9Xizsc7pqv1UXuD6nWF5L4dDMOm+Z+jD+CD4Equ0TmQ9+1NXsva9NfUnNN35KavdKO96WZ50nFG6XYVCl9NJkPociz54MlMsq97kDLXXhmPNhbpIhY79vVejQmrCmShkyUWhtNxtcB2Fpco+uf+VJbPZo7fydvhOqb21RS06RnvneoNu2r1rCUOEVE+Ps9yi0twTyfVQ0tiosOw5IhHSVmkvkAoOf2fW3GcA0+zDpf2vSa9Potpu+RJA2ZJNWWmNtWGTtbhLPvwyXBmCUOVHOtaTgdm2rue/tOtnet+Sw0ZFL75a7gw8Z2n+U/2rpfeysb9d25I3XRY58pJy1efz7/YP/M35fkbNOfpWxHYI8LAGGI4AMA72pLpKFTut8uZYT7apdm5xXAEVG+T9g2VpnAgyRV5LuDDw0emQ8dxaZ0XXe7sdpctTKiNx9ayXwIeW3NUmS6//afkmPGFQ9Inz1osh1KNpoAWFtLz/oAILCs9xfPclzWbXuLpAMsVeQZfGhrlqJ8BB/qPIMP+zwaKJrMh6VrC/X35dv12k1HKTrSd3LpR1tLtbWkVjefOFGHjM3Qyh3l+su7W5UUG6W65lZd+OhnWrenSjefOPHAfo4+Sos3WRaV9S0a1k2j67CQMISeDwB6zuoVNWx6cOcRLFO/JR3zY+nDe6XkESYTInm4+3uCdaFRzhypaG3QpokD1FTjbDjtLMXrLfOhaI0po9Xx4g8r+NBQLqWPdS1++IMdWrG9VJUNzVqVX6HqYUG40CciwgTJyHwAAL/zGXz48ssvu3zg7Nmz+30yAEJIzT5p3Pzut0vNNVeLOxzmRFx0N8EHK8ggmeDD2KPNbavsUry34EOyVLHT9xxW/FVa8TfpZ0U9v+KZzIeBw97q/4bTkvSVs1lxwWcm82HG2WYk8yH0WAEhz//vVmmu3gSLPIMPrc2Sj9iD6krct2v2moCr5Or58MHm/dpcXKMNRdXKy03zebiCinolxkTqBydMlM1m0xHjh+jYyVkalZGgRz/aqYc+2K5ZI1P1/eMmHPjP0gep8e7MB0hKHSntWeVuLg4AXSleb06wdtcvbTA79memn8Om16SsqeYCIlfPhzJzBf3IedLqxby3hpryHeb16/k7cTicmQ9Jps9fVJzUVNX+cW2t0t6vpLlXdN5nfJrJmGiqapf5UFjZILtD+u0bmyRJe519rgIuc5wpCQUA8CufwYcf/ehHPh9ks9n03nvv+WVCAEJAQ6X5kGhdrdKV1JHmQ2lDhbPnQ5oz+OCjZnhDhft2Rb7H8i4yH7prOL1vvSl90tp4AOV56PkwYLQ1+zf4kDLSjNYVeRuXmtf/0GnS/i30fAhFdo+G0xbPsksHyur5IHXddLrOo2REzT6ppc7cj0mSJG3aVyNJWp1frrzcNLXZHXplTaFmj07X2CHu96aC8nrlZiTI5vEF/+BRJrvnlpMmKSU+Sgtnjegye8IfrLJLlfXdNN4OF8MPkr5YbBpldqxjDQAd7VsfviWXLBER0pkPS0tONyV44lJMmR673XzOSsw0WdOtDWZ5XGqwZwxJKt0qPTBPuvjf0oQT3Mtb6k0/rVjzOaddMMn12M3m9+krAz0tVyp2Bx/sdocKKxs0NDlWJTVNys2IV0F5g+qaWpUYG+DCHBnjpc1vmQBKJEVBAMBffL7DLl++PJDzABBKKneZMW1099taJ2Sq9pirgFNGmA9vdh8nAOs9gg/WcSST+RAR7TqJ105sskn59aXkGzO2HEDwgcyHgaOt2b8NpxOHSJGxpu9DYpY7KDZsuvTNf9ufmEZocDWc9gw+xLRfdyA6ll3qqK7UBE5rS0zgIWO86VnTbAUfEtTaZte2/aaHw+r8Cl15lEM/f+Vr/evz3bLZpO8dNVa3n2562ewur9foTO/vVTFREbr+2MBmPFiszIdKMh+M4TPNWPw1wQcAXWuqkcp3SrMuDPZMgi82Sfreu+bv5acPSHJePV9fJiVkSolDzXZ1pQQfQkXxBkkOk/0gj+BDk7M3lZXNYwWTPFkltHwGH0aZv6POLNHSuiY1t9p17fzxGpker5rGVv3oxXXaW9WoCUO9fA/0p8zx5nNjVYGUMbb77QEAvdKjS+q+/vprvfDCC3rqqadc/wAMYhVW8KEnmQ9W8KHAXAUcndizskspIztnPiRkeA8GxKaYK2r2rpP+MF4q86jN2VwnVe42t6366z0SoIAAmQ9919bi38wHm80EzSTpiJvcy4dO7fq1jOBp85L5YAUiuspc8Lm/boIPb/9CWnKGVFeilth0VUQPNZkPrrJLicovq1Nzq12JMZFavatcf39/u/71+W5dedRYnT4jW49/vFOFlQ1yOBwqKG/QqIyEA5+nn6U6Mx+qCT4YQ6dJsrnruAOAL8UbJTlMxhTMhUgREeZktWROWNeXml46iUPMMs8+Sgguq7xtzb72y5udwYcYZ/DBW+ZD0RqzPmO8931b3yedF4gVVpgSS6MyEnTy9OEamR4vKUill6w50/cBAPyq2+DDXXfdpRtvvFE33nijli9frp/85Cd69dVXAzE3AMFiZSSk9yDzwQo+VOSbWq7xaV2fsLV6O4zIax98qC/33u9BMh90JdNbor7UlMWxlG6RK5DQ2tj9fC1kPgwcbS3tr3D3h/TR5gvIjO+a+yk5Unw6wYdQ5cp88EjgtAIRbb34fbV2E3zYt16q3aeWXZ9rZ0Oi3i+KVEtVkUfZpQRt3me+oH/74ByV1jbrvrc364yZ2fr56VN126lT5JD0r5W7VVrbrIaWtpAMPiTHRikywqbKeoIPkszVuxnjCD4A6N6+r8wY7mWXOrI+wzdWm8/6CZkmy1Qy2YQIDeXO4ENtcfvlVua5VXbJW+ZDxU5pyAQTbPKmY/Ch0gQZcpxBh+xUK/hwAN/j+kumM/hQtiPwxwaAMNJt8OGll17Su+++q+HDh2vx4sVat26dqqqqunsYgIGscrdpDhaf3v22iUOkqHhpy1vmRFzO3G56PpRLsknZeeaKJyudt6HCe78HyZ3qu3+zGbe+7V7n2SSs5UCumAlkzwf/HmLQ83fZJUk67T7pvKellGzTbM86eRAZTc+HUGT1dWjX88FPmQ/2NrU633uiSzeq1JGiyshM2WqL1Vzv/AIenaDN+6oVYZMumGe+ZGenxOk3Z86QzWbTyPQEnTBlqJ5btVvbnaWZQjH4YLPZlBIXpcoGej64DJ/ROfiw9l/SrhXBmQ+A0FT8tel7lpIT7JmEFs/Mh7pS81k/ySq7ROZDyCh3nnzvGHxwZT500fOhua7rJus+Mh+s4MOw1FhJ0t7KIAQfkoaZrP1ygg8A4E/dBh/i4+MVERGhqKgoVVdXa+jQoSooKAjE3AAES8UuKb0HJZckc3I9daS08yNzf9RhUkRk15kPcanuuppWyaT6ct/BB+uLi9XboWClO4Niv0fwgcyHwcnfZZckachE0+NBki583gQjpK5fywgebz0frNu96vng0dejtcOJ94p8Rdndy9KH5ujIgw9SlNr0/sovJEl7GyL0zb4ajRmSqOkjUnTlUWP14EWzXT0UJOniw0artLZZj35ovuDmZsQf+DwDIC0hRlUNvOZdhh9krur07Dv09u3SJ38N3pwAhJ7iDSZY6ffPlQNMrLOnQ80+U0I1cYjJfpAIPoQSKxu9R5kPHfrwNdd679lnsYIPzp4PhZUNSo6LUkqc+YwUGxWpIUkx2lcdhLJL1vfYKs5vAYA/dRt8mDt3riorK3XVVVdpzpw5mj17tg4//PBAzA1AsFTu6lmzaUvqSEkOc7VXWm73PR8SMqTkbHPf+pDb0FXZJY/Mh+gEyWGXtr3rXNbHzAdbj1rf9B49H/ouEJkPnrImu5vLUnYpNHnr+WC9Rvq57FLz3g2SpIZI8z40efw4TZowSZJUkm/WnfnoWr2zsVhThicrIsKmX5wxTQePap85dszELI3KSNC7m0yZiZHpoZf5IJmm05X1ZD64WE2nd7xvxpZG0zS1bGvQpgQgBFUX9axXWrixLiCyegokZJq/3fEZBB9CRWuTVLXH3K7pGHzo2PMhtXPZpeZ6V2DBK1fmgwlQFFY0KCet/QUY2anxwSm7JJnvsdWFwTk2AISJbs+6/f3vf1daWpquvfZavfPOO3ryySe1ePHiQMwNQDA4HCYb4UCCD9aJ2lGHmbG7ng/xHinXtSXmmF1lPlj1YlvqpHHHmmZ1253Bh5Jv3HM9oMwHu/MGmQ8hzeEwV7L7O/PBF4IPocneItki219hGuns/3CAZZcKyuv13zX57gUdHl+yY50kqXTMGZKkiKShri/SebFFkqSrT5yh02dk67tzc30eJyLCposPM48blhKruOjIA5pnoKTGR6vqABpOV9Q1B6dJZKCMOUrKmiq9fJ20d51UY37nqsh3l/8CEN4cDnMi3eplADfrM7xV1ibB2Ww6MYueD6GiYpckh5Q6yryOPcuNNlaa0QoixaWYTAfPbZrrXCWVvIpPNxnFs86TZDIfrCbTluGpccEpuyRJqTlSFcEHAPCnboMPJ5xwguv2mDFjNHPmzHbLAAwydfullvqeNZu2pDqvaBnlzIrqrudDu3qvJSZ9197SfcNpyVydkj1LKtloPuxW7pZGHGzWHUjmQ6DKLtlE5kNf2L1c4R5IBB9Ck721fbNpyZ35cIBll176Yo+Kyz2u4usQfGgs3KA9jiFKmX6SWZCYJWVOkCRNjzRp+ouOna4HL5qt4yYP7fJY352Tq5ioiJDs92BJSziw4MMtL6zVcfe9r3c2Fne/8UAUkyhd/G8zvvNLc3WzZF6DVpkKAOGtsdL87SD40Jl10rrcI/NBMs9VXWlw5oT2rKyUUYdJjjaT3WepLTFZ4tZr2/pOtvVtafUT5nZLfdfBB0k65CopY5wkX5kPccG7kCFlpPk+2trU/bYAgF7xGXxobGxUeXm5SktLVVFRofLycpWXlys/P1+FhUSGgUGrYpcZDyTzYYg5EafRR5qxy54PFSbIEJsiRcWZsksNzv4N3TWclkxpp6zJUulWZwNqhzv4cCCZD4FqOE3mQ99YJ4IDWXbJEz0fQlNba+eAlNXz4QCvRv/fN8UameLOQsgvqWi3PrZyqwoic5U69QRpwonSmCNN7ePkbNmaa00QJKpnr8/0xBj9+tsH6aqjxx3QHAMpLT5alfU9ew5rm1r1ybYy2e3SNU+v1pe7K7p/0ECUmiNNOMH8zbGCD5L5OwQA1kn0pK4D0GEpOsFkKnYMPiRl9bzsUu1+U/IO/lHuEXyQ2vd9qN1nslUinJ+TrGDS27+Q/neXucCqubbrskseSmoaVdPU6mo2bclOjVd1Y6vqmoLwmTvV2STe8+87AKBf+Qw+PPzww5ozZ442bdqk2bNna86cOZozZ46+/e1v64YbbgjkHAH40/4tUvFG9/2ybWY8kMyHqQulaz6Uhk0z9yOifJ8AbKgwQQabTUocar5QWM2jfWU+xHlkPqTkSEMmmatsrL4PI/LMGJKZD/R86JOgBx/IfAhJ9hYvmQ9W2aWeBx+KKhu0oahao1Pd+1qx2ePLp71NQ5t2qz51ghSfZq6Ad165Z2U/KLqbq/06OHderk6ePvyAHhNIqfHRqm5skd3e/fvWx1tL1dxm198vmq2k2Cgt/iTftW7H/lpVN7p/F5/tKNMdS79WQ7OPrLhQlzleqtkrlW5xL7P+XgIIb1b5oMQhwZ1HKLLZzOf46j3mwqMUZ8+3xCxztXlPPDJf/8/eeYe3VZ7v/6PtvfeMHTvb2ZOQkEnYM+wNhZZRWkr5lvZX2lI6KFAKLdCy955hB8ggey9n2HG89x7y1vr98epYsi2PJJaX3s91+TrS0dE5r2xZOue9n/t+2Pq0+8bo6dRki54OkZPFfee+D8Zy8I903FecD9VZQnQwt4oo276cD0BLu4U739qHXqNmYUrn/xVFjPjswBAUuQbYxQel74VEIpFIBpwexYdf/OIX5Obm8sQTT5Cbm9vxc/DgQSk+SCSjiW9/A2vudtw/+I44CQtN7f8+1BoRhdRxv4cJW3M7tBtF9ieICrH+OB+0Xo6JxkC78wHg6BpR7RxhP1k+lYbT0vkwvFEmkrtONA8WUnwYnlhc9AE5hdildcfEBXask/PhYH4lr23Npd1sZePu/RhoxztqfPcnh44VS/3wjVA6FQJ99NhsYGw1Y7HaSC+q73HbDRkV+Bu0nDU+nNWz4vn2cClbT1Rx9QvbWfbPH/nV+wc7tv3fj9m8vj2fW1/bTXP7CPyfCrH/vXM3g1egqASVTaclEgk4Kvh9pfPBJdHTIHY23LrWMUntGw6t9eLaoDfMbaIZcF2B+8fpiZjb4dgXkDAP/OwiQ1fng59TwYRzQZjV7IhochIfssqNfLKvCFuX4qsnvstkX0EtT109nckxgZ0eWzkxkjNTwvh/nx7mwz2FA/LS+k1gnFjKptMSiUTiNvrs+fDTn/6Uf//736xevZrVq1fzzDPPYDLJBnsSyaihqRLq7FFL5UcgdxPM+YmjivhUUOtc93xosUdyOIsPTZUiigl6dj6oVI5Km4AY4XwAKE+HsFRHLJNZOh9GHYr4MKTOhxFaqT2asZocMUsKpxC7tC6jgjGhPvjrbKD3AyA11MCfvjjKosfW88qXmwCYPX1G9ycrAm0/qv1GEkHe4vdY19LOm9vzuPCZLRRUN3fbzmK1sSGzgsXjwtFp1Fw3PwGTxcZ1L+3kREUji1LD+OFYOScqjLSaLOzIqWZyTAA7cqt56ocROGmvOF2K99gdeKlQJZ0PEokEh/ggY5dcc+MauH2dwyENjh4CfUUvKe7otp6FcMlpcHSNcPXN/amT+FDmeLyxwrXzQUFxSdjPhf7+zTFW/msTv/rgIFtPOHpHtJktfLyviPPTojkvLbrbMLz1Gl65eQ5xwd6szxjkRuSK86E2H967DnJ+HNzjSyQSiQfQp/hw1113sXfvXu66666O23feeedgjE0ikQwGLXWiaqW9GXY+D1pvmHXz6e2zp5z8rg4HxfnQ1A+7uiIw+EeL7RShInwCaA2A6iTzYKXzYcjJ3QzvXA1Wa8/bDHnskuz5MCyxmLsLpJqTEx8sVht78mo5MzUMlbmt48L5tvkxvHHrXMZF+pPmWweAPiyp+w46YpdGmfPBLj7UNLXz6X5RBXii0tjx+PqMct7cnsdVz2+nwtjGuWmiInJsuB+XzYhlyfhwvv7FIp66ajoGrZqXNueyN7+WVpOV+88ex2Uz4nhtWx4ldUPUWPJUUeK2rGYhgoemQMURWHMPFO4a2rFJJJKhpbECUPVcRCPpTr/FB/sEdqsUHwaM/54Je14Vt3f+V3yfpawQTk5DgCNGzGoRt/2cxAevzo4FjKViqfPBarXx9o4ClowPx9+g5fODDifBD0crqGs2ccXs+B6HpdeqiQv2pqpxkBs/631EYVz6h5DxJex9bXCPL5FIJB5Aj6XNZrMZrVbL7t27OXjQYZtftmwZ06ZN6+lpEolkpNFSJ5YNxZD1PYw/t+f4o/6i1oK1qfv6mhyxDLDbW30jxEVFWbq4COntuIYAsb3WIO6Hj4eC7RAxUbgLtF7S+TDSKNgBx78RUVxdL2YUOpwPOtePuxsZuzQ8ceV86BAf+ohwsJNR1kBcew7LgvVQ1C4EzsZyVFYTi8eFs3hcOGxYDz+qHJZ8ZxTxYZQ5HybHBqDXqHl8bSYH7ZFL+Xbnw/FyI7e+tgcQIsWTV07jfKcKxievmt5pX1fMjuOD3UWU1Lei06iYlxTKuEh/vjhYwlM/HOex1SPofFLvI6ojG4qF+BA+Afa/KX4MARA/d6hHKJFIhoqmStFI+XRcw55Gh/hQ1ft2UnwYWKwW4RzP2wKpZ0PxXlj5CKjtNal+kWC0Ox+aq8Fm6Ry7pDgfvENEUZniktD7kVPVSGObmQumxhDqa+Cbw2U8cskUDFoNH+4tJDrQizNTeu+LEuZn4HDxEPytA+LE7wUg90dRGKXus05XIpFIJP2kx0/UuXPFRZRGoyE7O7tjfU5ODhqNpqenSSSSkYTFLCZ+ASozwFjS2RJ9qvQ0YVu4U1SwK/0h/CJEk7KcjRCV1vs+vYNEvwcFJXpJ6f+g8zpJ54OCdD4MGRZ7ZVNvvTo6nA9DJT7opPgwHHHV80ERI/rZ82FPXi2P6Z7njKzHxfvMHrvUSbyoKxBuK0X0dCY4UXzWjTLnQ3SgN7ecOYZt2WLCR69Vd4gPr23Lw6BVs/7+s9j5u+VcNjMOVS8C7n0rxhET5MWm45XMSgzG16AlLtiHK+fE8dmBEhpaTTS1mUdODwjF/RAQCzNvgqvfEe+P1rohHZZEIhlimipl5NLJ4qeID31E7EjxYWBptxeH1eQ4+hY59+3zj3KID8rSOXbJJ0S4JOb8pPM2eh8OFIq/0fT4QC6eHoOx1cyGjEr25NXw4/FKVs+KQ6Pu/borzM9AVWP/ikgGFOUa0xAg3nOKECGRSCSSAaFH8UFpEPTEE0+wdOlSlixZwpIlS1i2bBn//Oc/B22AEonEjTifyOeKbPOTajTdEz3l5BfugujpQigAh43XWAqRU3rf54qH4dzHHPcjJtqXdrFE6y2dDyMN88mID0PY88Fm7T0aSjL4WM29OB/6N5G9N6+K8epiDO21ouGiIj44N7+syxcigys0Oggb76jeHEXcszSFMD8985NDSI3wI6+6ibrmdj7ZV8Ql02NJDvfDS9d3IUqon4E3b5vHuEg/rprjiFq4fGYc7WYr36aXcfULO7j77X3ufDkDh+J2CYgBgx9MOF9UO8tJMYnEs2ms6D06VNIdH/vvq9+xSw3uHY+n0CE+ZGOrEuJDpSHB8XjwGKixF54q8UvOzge1Bq7/WHz/gZP44MuBwlr8DFqSw/w4Y2woUQFe/O7TdO59dz9xwd789KyxfQ4v3N9AY5uZVtMg91tT+j4seVAsczYO7vElEolklNOjN7SyspInn3wSEE2nLRbxBaDRaNi/fz9Lly4dnBFKJBL3oTSABsjeIJZhAyE+uMjJN7dB8T6Ye7tjnXOVWNTU3vcZN6vz/RnXC/FCGe9JOx8U8cHdllrpfOgRRVjoTXxQ3kdD5nzQOMahHiIBRNIdq9nxt1E4idglm81GSW4GBtrFxLHOR0R/qbXdnQ+JZ/S8o2vfB533KbyA4Y2/l45P71qIQafm4c+PcrS0gY/3FdNqsnLzwjEnta/4EB++u++sTuumxweREOLD3745Rl2zCX+DFqvVhrqPisghx1l8UPAKdMQXSiQSz6SpEmJn9b2dxIHBXxQRKA2le0J5vLVeFPO4u2hotGMSTkZa62nO3obN5sWfNtTw7PX23lZhqSJOsKXOEankH0lBdTNWm43EUB/heFR68Snig86Xg4UVTI0LRK1WoUbFO7fP48639pFVYeSDny7Az9B3LFm4n3CaVhrbiA8ZRGdp9DRRTDDzRtj3prguXviLwTu+RCKRjHJ6nHWzWCw0NjZiNBoxm83YbDZsNhtmsxmj0djT0yQSyUjCOSqiOgtQOWIlTgdXsUulh0TMTvw8x7pO4kMfzoeuGPxhymWO+1pvMJ+E+GAbpEp26XzomZHifAAZvTTccBW7pLxH+hG7VFzXQnCTvbKvtV58NmkNoDE43nMWk8j3D+rB+QAQFD9qq13jQ3yI8PciIdSHotpmvjtSxrhIPyZGB5z2vlUqFRdNi6Gu2YRGrcLYZia/pnkARu1mEhaA3t/huAMhPkjng0Ti2TRVjkoXnFtRqcRkb0tf4oPd+WCzOKr2Jf2n/Cg8O8/RW6O9seMhfe56cm1RfHW4jJ051by/u4DWQPt1YPWJDmHB4hPBhc9sYckTG7noma2YLFZH7we7QNGq9uJYaQPT4oM69p8c7seaexay/v4lzB7Tv36CYf7iXK5ysJtOz7wRfpUhri/HLoP8beL9tvc12Pzk4I5FIpFIRiE9ys/R0dH84Q9/GMyxSCSSwUap1lTrxIRdUPzAVPG6Eh8Kd4qlc1NOX7v4oDGcftyTzstRzdOVoj3w9a8hdRUs/a1YN1ixS9L50DPKJG9vcVlSfJC4wlXsknLf0rf4cKionlRVkbjT3gjtzULM0Ogc77n6IiFSBiX0vCMPYEyoDyaLjZ25NdyxeADEaTuXz4rj7Z353L00hb98dYz04nqSwoZ58+64WfC7os7rvIKg9fCQDEcikQwD2pvF94ifFB9OGp/Qfjgfqh232xpE5J2k/5z4XvT1q8wA3zPF+9WOrr2OXNtEdBoVV72wA4DS6Sp+CVCVBY3lYAjkRK2F+hYT85JC2Jlbw978WubHd3Y+HCw3YbbamBYX1OnwXjoNY07iuz3cT0TzVhkHWXxQqUBrv9YYtwp2PAsnfoD1fxGCxKJfDe54JBKJZJTRZ88HiUQyilFil5SmzUqkxOniSnwo3guBCaKRmYLBD3S+on+Dpm8rbq/ofFzHLlVmwssroWS/+OlA+YyTPR+GjP7ELikTyV0nmgcLKT4MTyym7p8ZajWoNP0SH46U1DNeXexY0VQlRFCN3vG+rCsQSw8XHxJDHZMGS8YN3ORaUpgv+/9wNjcuGINeo+ZIsXAP2Gw2zJYR1GPFK1A2nJZIPI3WBnjlHCg/4uhZ4CsbTp80PiGdxQVXOD8uXWYnT5m9cbLyPu3iHsm1RfPHCydzXloUF06L4bmDFmwqjcP54B/JwaI6AH53nhAqNmRUCLeoWtfhqHh5ZzlBPjoWpZ6eG1RxPgxJ02mFxDPAEAg/PCx+b329RyUSiUTSJz2KD+vWrRvMcUgkkqFAmTBRmj0PRLNpcN3zoTYPQl00GotKg+Qlp39MrZfrCvrifaJ62Tu4c5b7oDofJC7piF3qJW5FmUge8p4Pg9z4TtI7VpNrQUqj6xa7dKKikeb2zp9Hh4sbmKIrcaxoqxfCg9bgeM8p4kNPDac9hDF28cFHr2HWmOAB379eq2ZCtD/pdvHh6/QyZvz5eyqMJ9PDZwjxDhLVuPIzQiLxHCozoGA7HP7ESXwYXc6HExWNpBe5ebK/v+KDRvQBkOLDKVBmd+YpsUumzuJDjfcYrp+fyHPXzeKvl04h0M+XElWkaEbdWAF+kRwqqsPfoCUtNpC5SSGsz6gQ108Gf8CGTa3ju8xabl2YhG8/+jr0Rqivo+fDkKHRQeoKR+Pt1nqwyCIkiUQiOR16FB9CQvqXyyeRSEYwSuyS0m9hIJpNg8P5UJsPWT+IdfWFriuIb/0WVvzp9I/ZU8NpZQIxZGwXQUQ6H4acDudDL5OMMnZJ4gpXPR9ACBJOzofMMiPnPLWJf6870bHOZrNxrLiGBFsxhI13PFerF/tURLG6AkAFAbFuehEjgwh/A946DWeMDcOg1fT9hFNgckwgh4vrsdlsfHukDGObma8OlbrlWAOOV6BYykkxicRzaCwXy4LtUHpA3HZVYDMM+fm7+/ntJ+l9bvenz4/wi/f397ndadFL7JKx1USrySIeDx4jVsrP2ZPD1ApVx8Xtrs6HYNFgujUwqWPzAC8dvz9/IsdMkTTl7RauidAUDhXVMyVWNJJeOj6CrIpGCmuaO5pON+OFr17DTQvGnPaQ9Vo1gd46qga750NXxp8nlh3CV92QDUUikUhGAz2KD6fLrbfeSkREBFOmOJrI1tTUsHLlSlJTU1m5ciW1tSLyxWazce+995KSksLUqVPZt29fx3Nef/11UlNTSU1N5fXXX3fXcCUSz6SlVsQeKXFLAyU+aHRisnbn/+C9a4Q9valS9JToiko1MO4Drbdr50NdAfhHi4inIXM+SPHBJSPC+SDFh2GJ1QxqLV8dKuXN7XmO9RqH+GCz2XhozWHMVhsbMys6NqkwthHYnI/O1g4J852e26XhdFOFaCY9VO+9YYJareI/18zgt+dNcNsx0mIDaWg1k1PVxPZsUZ255oBwpgz7GFApPkgknociPhTtgaNrxETuQEWXDgC7cmtoaut+3mKz2Vh/rJx3dxWw5kCxi2c6yCw3klfVJAQAd6E0nLZ2jtprNVm44D9beOizw8L5EGLvN9Ta0LFNm9nCQ58dpqSuhVaThZe35NJmHt0OtFaThY2ZFf36XmwzW7BVHhONuqG7+BCVBoC6y7XfRdNiaAtIwq+lBIuphZfM55BRamRqvPiuWz4xEoANmRUdTacbLDounRlLoM/AnC+F+xs6xId2s5VP9hXxq/cPcLh4EL9nU88Wjafn/0zcl9FLEolEclq4TXy4+eab+fbbbzute/TRR1m+fDlZWVksX76cRx99FIBvvvmGrKwssrKyeOGFF7jzzjsBIVY8/PDD7Ny5k127dvHwww93CBYSiWQAaK0TkREpK+DSF2DM4oHZr1orIijaGsREXt5msT7IjfElPTkf6gsgML5zljsweM4HpPOhJ/rV80FxPkjxQeKExYRFreWPnx/mH99mOnoEODWMfm93Ibtya5gcE0BGmZHyBvH5cKSknls132BV62HSxY59djSctgteTVWjLkbjVFkxKZKx4e5r8rl4XBhqFfztq2NUNbYzPtKfA4V13PDyTpY+sXF494DwChJLWRUpkXgORrv4YGmD3E2iStrtxSy988HuQo6XG8mvbuLK57fz5o78bttUGNtoareg16h56LPDPUbb1DebqDS2YbVBblWTy20UrFbbqU/6e4eIaNQun59v7cgnv7qZvSdKRGFRiL0632m79KJ63tyRz3u7C/n8YAmPfHmU74+Wn9o4RghfHirl5ld385/1J3rd7kSFkSl/XMtv//seAM02A/VVdjehXXxon38PfzTdRGRYaKfnqlQq5s6ZB8AWw1n8ZaeFdou1o5F0UpgvSWG+InrJ7nxosnlx2cy4gXqZhPnpO8SHx77N4FcfHOTTA8X89M291DUPUi8IrwC44VNIOkvc76sxukQikUh6xW3iw+LFi7tFN61Zs4abbroJgJtuuonPPvusY/2NN96ISqVi/vz51NXVUVpaytq1a1m5ciUhISEEBwezcuXKboKGRCI5DVrqxMSJRgfTrhINWwcCpeeDMql8wh69FOjC+TBQ9OZ8CEqwx7E4TSBL58PQozgfXP3dFJT8/qGKXVJED5nnPrywmilpMFPV2E5jm5nDJfZqSI0erGYOFdXxx8+PcGZKGP+4fCoAm7NERX3BiaOs1mzCPOMm0exeQas0nLa/L5sqhfNB4nbign04e1IU6zKEQ+WRS4RrdnNWFXnVzRwrNQ7l8HpHOh8kEs+jsVw4hxXGnzt0Y0FUhz/4ySEe+zaTjZmiwt1VlXh2ZSMAv79gIk3tFp5Zn+VyfycqHZ+5x8t7//x9dsMJlj3x46kJED72iW+niV1jq4lnN5xAr1HTWm93LQYr4oPjNSmiyI+ZFaIBMrAzZ3RPEFdm7eEb/YO89P1+vjtS1uN236SXYbLYuDS6BpPai8O2JIw1zuKDiiLvSbxuWUV8sE+354enrYSoqSy6/Z9cNiMWjVrFjISgjseXjo9gW3Y1Fr0oSrBovZkRH9RtP6dKmJ+BSmMbZouVzw4Uc/akSD69ayEVxlb+36eHB+w4/cLHPp/VMrrfWxKJROJu3CY+uKK8vJzo6GgAoqKiKC8X1QnFxcXExzsmJePi4iguLu5xvSteeOEFZs+ezezZs6msrHTjq5BIRhEttaIR80Cj9Hxot8fpKOKDq54PA4Ur54PVAvVF4rhOFdEC2fNhyOmX82GIxYeOhtPS+TCssJo5Ud1GZIDI4t2RY7fDq7W0trXyszf3Eu5n4N/XzGBSdABhfgY2ZlawN78Wr73PY1Op0Z91v6NqHUTkknPD6aZK6XwYRG5ZOAaAxFAf5iaF8O9rZvD8DbMA2JM/jC/6vYPEUooPEonn0FghooDCJwgB0jnCbwgoq2/FaoNNxyv58pCIrDta2tBtu5xKMWG/YmIkV86O551dBRRUd4++PFHR6PK2K7ZmV1Fc18J3R8p5aXMOf//6WP8HrogPThO73x8tp7bZxAOrxhOssh87IBq0Xp0+Z/OqxWs5VFzfIbjszHUdjWO1ivPw2qZ2fvL6bsc5wzDh84MlnPPUJkx9uPzUpfuYqC5gaWgdj6/N7DF+aX1mBdPiApnnU4ouegom7whotM+PmJpB70thnbhmig/pLj4QOhZ+thl12FieuGIaG3+9hOhA746Hl02IoN1s5US9uIby9Q9ENYDFXCJ2qZ1t2dVUNbZz2cw4pscHcc3cBNZllGOxDuJ1lbddfJDOB4lEIjktBlV8cEalUg3ol9Qdd9zBnj172LNnD+HhcrJAIukXSuzSQKOID0qWf12BWOcfNfDHUtB6i4pl59xYY6kYR1BC99gl6XwYekZU7JKp9+0kg4rJ1EaZ0cxtZyaREuHH9mwxkWBT6ziQW0F1UzvP3zCLEF89amMJS8cG8OWhUi7/7zYmq3KwxMwWkxk6b+GKAqfYJaXng4xdGkzmJoWwZHw4l80Q0Q0XTYth1eQoYoO82ZM3jCM3FedDS92QDkMikQwijWXgHwnL/wDnPj7kvYGK6sT5drvFyu68WvQaNblVTTS3dy6cyK1qwkunJirAi1+uSEWtUvHylpxu+8sqb8RLp2ZMqA9Z5T2LD1arjSPFQuT497os/v5NBm/uyO+Y7HemvKGV17bmdn5MqSp3ytPfnVeLv5eW6+cnEq6xuy58QkV/gTaHoJJX1Yxeo8ZmgxaThRkJQRwvb6SmqXMsT6vJwhmPrueJtZk89cNxfjhWwd1v7+uIYhws6ltMPUYGfZNeSkaZsVehx2az0VQvfk9XTfIiq6KRLSequm1X3djGgcI6lo4PFw2jo6bgHxqNv6WWioZWaG8U4kONeM/Eh3h324czarWqm0AxNykEX72GPaXi/RURGuLqqadMuL+BxjYz//rhOP5eWpaMF+diabGBtJqsHcLToNDhzhlegpVEIpGMNAZVfIiMjKS0VFj+SktLiYiIACA2NpbCwsKO7YqKioiNje1xvUQiGSCU2KWBRq0VGa7tTieHgXGOKnJ3oPMSS3OLcDxs/IdoBAgO50On6nXpfBhyOhpO90N8UA+1+CCdD8OJ1tY2NFod18xNYEFyKLvzatiRU01enYn6phb+emkaU2IDxXvs2Xn8PmQdvztvAg9dMInJhiq8o+wNFlUqx+SxErtkbhM/bQ0ydmkQUalUvHbLXH6xonPzy9ljgtmdVzN8G0/L2CWJxPNorAC/SJhwvogtHWKKasV5lI9enGdfPisWmw0yyzpHJuVUNpIU5odarSIywIszU8LYeLx7YkBWRSPJYX6Mj/LneLmRn7+7n8fXZnTbrqCmGWObmaQwX7IqGrFYbTS3Wyis7e6meHtnAX/64ijbsp0mcV2ID3vyapiVGIy3XsOUYPu5l0+o+KztErs0f2woob569Bo1v1o5DoBdXdwP23OqKWto5ZkNJ3hzRz4rJkbQYrJw2+u7Kanr5fxzAMirauLDPYWsOVDMWY9v4I4393bbxmazsSdfCOxHSrq7VRRK61vRm8Xfc064mTA/A69uzeu23Y/HK7HZYFW8RRSZRU4hKiaOQFUzPx4rhvYmrDpfPt1fjK9eQ6S/10m/Lr1WzaLUcBpVQpTQew1sT6hLpscyIcqf/QV1nDslCi+deF9PjBYNro+5cPW4Db2vODeUsUsSiURyWgyq+HDRRRfx+uuvA/D6669z8cUXd6x/4403sNls7Nixg8DAQKKjo1m1ahXfffcdtbW11NbW8t1337Fq1arBHLJEMrpxm/PBLjK0OV30uLPfA4DOXpVjaoXyw7Dxb/DNb8S6oMTusUsdzgd3fwxK50OPnFTs0lCLD7Lnw+nw1aFSljy+gfrmnh0kFQ2tvLurgJe35NJu7jl6YH9BLTaLifGxIfh76VgwNpTmdgtXv7CDFouK6TE+rJ5lb3xYlQXtRgJrDnHH4rHcNisYdUs1hIx17FD5DNTo7A4pk3A9gHQ+DANmJwZTYWzjd58e5k+fHxnq4XRH7wcqjWw4LZF4ClarXXyIGOqRdFBc24JKBTfMTyTAS8utC0WPhK79cnKqmkgOd/SqWJQaRn51M/ldKslPVDSSEuFHaoQ/OVVNfHGwhDe25Xf0ddieXc3P3tzLXvuk+UMXTCTQW8dNCxLtx+0+Oaz0oHhzR55jZZeq8rrmdrIqGpmdKCJh0/yFiGHxiegkPthsNvKrm0gO8+XWM5O4cUEi85JC8dKp+e0n6cz/2zre3VWAzWZjQ0YF3joN85NDCPDW8Y/Lp/LMtTPIq2rmgv9sociFUDJQ/OmLIzzw0SF+8d4BGlvNHCio63Z+U1Tb0tH421WfDoWMsgYCEX8nXUs1185LYH1GRTcB5bMDJYT7GxiPveF4VBrhkeKc6D9f7uBIfin5RthXUMujl09FrT61Iqw/XDiJ82cLwQf9wIoPMUHefHXvIl69eQ4PnuvozZUS4YdGrSJjMPtAqVQieknGLkkkEslp4bZZt2uuuYYFCxaQmZlJXFwcL7/8Mg8++CDff/89qamp/PDDDzz44IMAnHfeeSQnJ5OSksLtt9/Oc889B0BISAgPPfQQc+bMYc6cOfzhD3/o1sRaIpGcIuY2EYvkrtgl6GSPJihx4I/jjNbJ+aDkmjbam7EFxg1d7JJ0PvRMh/Ohlws/i0lM7LnTNdMbsufDaVPT1M7vP0snr7qZDZkVLrcxW6xc/eIOfvtJOo98eZRve2ikWFTbzL3v7UensjAxVkxarJgYyf87byL/vW4m42JCifR1eq9U2LOny+0NCmvs8RKhTuKDUrmucWo43WT/DJHiw5Aze4w473t3VwGvbcvrdXJmSFDcM9L5IJF4Bq11IorRz41RoidJcV0LEf4Gfr1qPOt/vYSUCD/8DVqOljo+l9rMFgprmhkb5hAfFo8T33GbsoTgXlbfyqtbcymuayE1wo/USDGpHO5vwNhmZtsJIRI88V0m3x4p48nvj6PXqDkzJZwDf1jJg+dORK2Co/bJYZvNRmFNMzabjUNF9WjVKr4/Ws4tr+5i+T830mTzEt+7zdVY0z+m6aO7uFazruNzf4JXLfU2H9bltYFXALSK64rKxjaa2i0khfly99IUfn/BJPRaNbcsTGJSTACxwd789pN0fv/ZYdZnVLAwJZS3bpvHxl8vIdTPwLIJkXx05wJqmtr58lBpx+/jvxuzWZ9R3ufve0dOdZ99I5rsv6/LZsbyys2z+dtlabRbrGRVdJ4431cgBJwgHx1He3A+5Fc3cbSkgQCV/Xy5qYJLZ4g0iK/THeP/8Xglm45XcseiZNQV9vOeyMmo/MTf+fxkHfV1dTRY9Pz90jQunBbT52vtiZggb+KiIsUdvYu+EaeJRq1i6YQIQnwdPd+8dBrGhvt2iFtHSxq48ZVdbhWQAOHQaRnG8Y8SiUQyAtC6a8fvvvuuy/Xr1q3rtk6lUvHss8+63P7WW2/l1ltvHdCxSSQSHPnU7opdAuF8CE6C2lwIcrfzwZ5Zamp1TByCsMXrvERsj8W56nqQYpek86FnFDHI3EvurqV96JpNg4xdGgD+9vUxjK1mAry0/HCsnEtmdI9P/GR/MTmVTTx55TT++tUx1h0r56IuF8XtZivXvbST+mYTBrUVtV68L/RaNbcvThYb7dF3/ltVHBXLugIxOayID87OB+UzUIldsrRL58MwYnykPw+sGk9qhB/3vX+AV7bm8uSV04d6WJ3xDpLig0TiKRjt4vgwcz7EBnmj06gJ8zMAIqLmQGEdrSYLv/sknaOlDVhtkBzuqFJPCvMlLtibzccruWF+Io98eZSv0kvx0WtYMDaUxFBfVkyM4MFzJ3Dps9v45nApoX569uaLvhLFdS2kxQai14p6Rm+9hjFhvmTYJ4e/OFTKve/u57/XzaSqsY3bFyXx0pZctmVX02a28srWPH7uE4rpwAfomp4mAi1/0tqw+t4NhBKvKidLHcWzG7NZGRGIqk7EMedVicnmMU5CCsBvzpkAiF4Uf/v6GC9tyQXgziVj0WrUBPk4zicnRAUwIcqfjZkV/OyssRTVNvPY2gxiAr2Z88sQ7nhjLzcsSOS8tOhuv+/ff3YYk8XKjw8s7fFvsjmrknaLlStmxbNgbCi5VcK1cLi4nskxgR3b7c2vxVev4fy0aD7bX4zVauvkRnhzex4PrTmCTqPiDUMrWIGmSpLCfJkcE9Ahnry7qwBjq5nEUB9uPCMRPjkMwWPA4N9xLvObRSFg8QaDP9PmJvQ49n5j8BdLvW/v2w0gE6IC2Jtfi8Vq47efHOJgUT1//yaDZ6+d6b6D+oTKng8SiURymgxZw2mJRDLEKBER3sEDv29lwra9EeLnimPEzR744zjj7HxQxIfUsyHWflxNF/FBOh+Gnv46H4aykaMUH06L7dnVfLS3iNsXJ3PulGh+zKyk1WShuK6FVpOIb2gzW3j6hyymxgVy6YxYlk2IYENGBSZL52iCbdlV5Fc384/L0lBbTa77gKi1nR1OivNBuV2dLW6HJDnWdzgfdKBVYpcU54Ps+TDUqNUq7l6awtmTo1g9K44vD5ZSYWylsKaZn7y+e9CbhrrEK9Ah6FtM0O7mKkyJRDJ0NNor4/0iB/WwNpuNfQW1Lps5F9e1EBvcufr87MmRHC5u4Mx/rOeT/cXYbKDXqJkWH9SxjUqlYlFqONuyq6lvNrEhs4Kr58Rz5OFVzB4TQri/gZdumkNKhD/LJkaw9kg5f/nqGH4GLY9engYg+is5MTE6gGNlQnx4Z6eI/vnLV+K7+Ny0aN6+bR7f3beYsydF8vymHMyGIHRNpZTbgllleRqbWovXlkcBUNcV4B2RzMHCOkrbDB0ib559Ij8p1PWkt1qt4sFzJzA3KQSVCpaOdy0ULRkfwZ68WoytJj7eK35HxXUtXPfSTrbnVPPFwZJuz6lrbudERWNHXNW27CqyyrvHAP1wrIIALy2zx4jrrMQQH/wNWtLt7r36ZhP/WZfF90fLmZEQzNS4QJraLdz73n6ue2kHJouVQ0V1PPLlMabFBxHmZyDWy37ebHd4XzA1hgOFdfzt62No1Cp89BoevmgyBq1GNJuOnCK2VwopmqpEP76BEgsU8UE3eOLDxOgAiuta+Od3mRwsqmdWYjBfHSpld54bY5G8g2XskkQikZwmUnyQSDwVxT7qztglgIAY+E0epKwY+OM408n5UCHEiGveh6vfFuuViuYOIUA6H4YUm62fPR/apfgwQmk1Wfh/n6YTH+LNvctSWTEpEmObmeX//JGFj65n8h/X8v7uAt7fXUhxXQv3nz0elUrF8omRNLSaOy4kfzhaTnZlI98eLsNXr2HpeLsg4Op9ofRsUKg8BnFzxe3yI1CTDQFxjs8L6B67ZJaxS8OVmxcmYbZaeW5DNv/8LpMfjlXw343ZQz2szrFL3z0Er8j+ZBLJqKXRHh84yOLDmzvyuey5bXxxqPOEuNVqo7ReOB+cue3MJP5+WRomi40/XzyZtfctJuORc0jq4ha4ZHoMjW1mfvXBAZrbLZybFo3KRWHO6llxNLaZ2ZVbw01nJHLJ9FjuWJzM1XM6O5snRvlTWNPC0ZIGduTU4KPXUFzXgkatYlJ0AGekhJEY6sv/nTOeFpOFw3Xiu/x4/Go++e2V2Ob9DNI/FD2b6vKJSZ5IfIg332Y1Y7WLvDlVTeg0KmKCem6WrNWoefGG2bz9k3nEdPndKCwZH47ZamPriSo+2lfIguRQxob7cqioHpUKDhTWdXuOEpME8PmBEm59bTcPfHSo0zYWq431GRUsnRCBTiOmW9RqFZNiAjhcLISZl7bk8M/vj2Oy2LhsZmyHG+LLQ6VsPVHNcxuyuevtfYT7G3jt5jls/+1yEnzs5zf2c5Tz7a6MpDBfPr1rIRsfWMqS8RFCYKjJgSghEHUUUjRVisKwgerRMATOh4nR4pjPbcxmyfhw3rxtLsE+Ot7ZWeC+g/qEyIbTEolEcpq4LXZJIpEMczpil9zofIDBq4bp5HyoEpOGaid9VaMDbKJxsEbr5Hxw87ik88E1VjMdooypl8plq2mIY5eUng+y4fTJ8vq2PHKqmnj91rl46zWcmRKGn0FLm9nC/ztvImuPlPHwF0fx0WuYOyaExani4nhRahh6rZq1h8uICvDi9jf3EBPoTYvJwrKJkXip7Y4ItYtTGGeHU3sT1ObB9OugMlOID9XZEJrc+TmKAKvVOzWcrhSfKQPcRFFyeiSF+XLN3ATe3JGP1WbDz6Dlvd0F3LMspSNqZEjwCoIG+4Rg8R4oOyTECK/AXp8mkUhGGPvegPxt4ra/+8WH+hYTK5/8kbTYQLZmizjAtUfKuHi6I76wwtiGyWIjNrjzBLtKpeKauQlcPSe+Q0xw1Vx4blII0+ICWZdRgb9By4LkUJdjWZQaTsYj52C12URlPfC78yZ2225idAAA97y7D5UK/nrpFO57/yDjIv3x0jl6MqVE+PP89bMofc+HKSo1ky/4uYhFmnMT7HgaDn0Alna0IUm8d8cCvvnfZ6hb2zlRVM6aA8XMSAhGq+m9jjLQR8cZY3t2MM5KDMbfoOW3n6RT22ziVyvHodOoeWJtJuelRfPcxmzK6luJCnSIHHvza9GoVYT7Gfj3+ixMFhsHCus4UWEkJUJMjB8urqemqZ1lEzo7LtJiA3lzRz7tZiuf7i9mUWoYb942DxDRktPjg1g6PoJdedX864fj6DQqPvjpAoKVvgeKyN0kBLCEUB+evno6MxOC8TU4nROVHgRsDvHBECDOb5oqhTNPN0A9GjrEh4Hv+dAT85NDue3MJOaMCWHlpEg0ahVxwT7UNbf3/eRTxSdUOB9sNvc75iUSiWSUIp0PEomn0hG7FDTw++4kPriuNhpwuvZ86FqxrFRJW5WqaOl8GFKUyCUY5rFLyvtGOh9OhvoWU0dV2ln2hpbeeg1f3Xsm6361hNsXJ/PU1dNRAVWN7fx61fiOyRFfg5YL0qJ5d1chf1hzBJ1GTVlDKzVN7Zw7JcrxP+zS+aBzPF6ZIZYRkyBykpgQrsnu3O8BnJwP+s49H3zD5UXmMORXK8fho9PgrdPw2i1zaDNbeXFTztAOSnE+2GyiWheg7PDQjkkikQwsdYXw+c/h4Lti8nYQxOmDhXVUGNv48Xgl3joNZ0+KZKM9vlChuE6cQ8X1UN3vysXQ9fE7FovvxaUTIjr6N7hCp1F3CA89sSg1nKtmx1Ne38qKiZFcMj2WidEBnJnSXdRYMSmSKZc/SMGixwiJShQrQ5LF92/6B+J+8Bhig7y5YvEMAO575XtK61u5d1lqr+PoDzqNmnuWpTAlNpCbzxjDuVOiuWBqDBsfWMqKSUJcOlDYudHw3vxaJscEsHRCBCaLjZkJQWjVKj7cU9SxzZYTQihamNJZ+EiLC6TNbOXJ749TVNvS0TQaRP+qz+5eyC9WpPLQBZMI8NLy0AWTmJHgVCSmFI611HYUWlw8PZb4kC6T/yfWgUoNiWeI+yqV+J02Vgxs7JJflDiO/6k3rj5ZvHQaHrpgEudMiUKjVs4bNTS1ubFIyDsEbBbZ20kikUhOA+l8kEg8lY7YJTc7HwarGsbZ+dBYAf5dGsQp1fOWdiFUyJ4PQ4tzLn9fsUuusv0HC+W93KlZ+eBxqKiuW7XgcGJfQS3bs6u586yxnSoqn1mfRUOrif9bNaHT9olO+cxxwT48ffUMjpU2MDcppNN2vzt/IhsyK9hyooqbFiQSEeDFa9vyWDI+HMwissCl88G5sbzS7yFiIkRNhV3Pi/uhXcWHILFUYpcsbaKqUPZ7GJaE+hl46abZtJmtzB4TwmUz4nh5Sy6XzIjtqLgddJQ86MYKh7BfdgjGLBya8UgkkoFHEbSTl4pGvoMgTiv9AdbfvwSDTk1GmZHvjpaz9UQVyyeKyfGiWnEO1dX5cDKsmhzJDfMTuWJ23GmPWa9V84/VU/nLpVNQq1SoVCq+uGdhx0RxV+KnLQWcGjerVBA/DzK+FPeDxwAQGCYm6nUtlcwZk8zCUCM8vRwue1H0lztFfnrWWH561thu6yfHBKDXqNlfUMc5U8Q1hcli5WBhPVfNieesceG8u6uA/ztnAi9vyeXjfcU8sGo8Wo2aLVlVTIwO6ObIWzYhgglR/vzvx2y8dRpWTY5yOaYJUQHsfWhlR2STOHirOD8JjIf6QlEkEdC9GTYAJ74XkZPO13hBiSKKydwycOJDYCzcu1/sewjxM+goruvlWuJ08bGfo7bUuKdoTyKRSDwA6XyQSDyVjtglN8RCdHI+DJL40OF8cIpd6jQm+wS2ZSicD5JuKM4HtU5cCPWEpX2IY5eGrufD8XIjFz2zlbd25A/6sftDdWMbd7yxl8fXZvLCZkfl+Qe7C3lxcy5Xz4lnUkzvk8ErJkXy8+XdqxfD/Az87dI0ksN8ueOssdy9NIWdv12Oj17r+Fu4jF1y6vlQkwsqjbgoPuv/4IJ/wbLfw7RrOj+na8NpAGOZ7PcwjJmXHMpiu6Pm9+dPJMhHx28+PoTFRSPWQSFyinDcHPvcsa4sfWjGIpFI3IMiPqx+BS58alAOeaiojjGhPiSE+hAZ4MWC5FD8DVrWHinr2Ca7sgm1CuKDT/18W6tR88glU5gaFzQAoxboNOoOwUGrUffpwOiEIiao1GKyHcBPfObfONWHv12ahmrDX0W04tE1AzZmZwxaDRNjAtjv1PdhfUYFLSYLc8aEsHRCBNt/u4z5yaFcOiOWqsY29ubX0tJuYW9+rUunh7+Xjrd/Mo85Y4K5YUFi56ikLui6RkopVfehKWJpj17qhrFcxC6ldum1F5os4idhYHs0DJIQ1xt+Bg1NbW48T/e2iw/Ntb1vJ5FIJJIekeKDROKptNaBIdCRaT+QOO9z0MWHZhG75NdD7JIyMSmdD0OLxS4+eAX24XwY6tiloev58O4u0TzPubkhiOaS2ZWNgz4eZ2w2G7/9JJ2GFhNnjA3l8bWZbMio4Puj5Tz4ySEWpYbx8EVTTusY56ZFs+7+szqaaHY4Kyy9xS5pHbFL9YUQECvW+YbB7Fth8QPdHQ0pK8T6qDSH0NVQLMWHEUKwr54/XDiZQ0X1fH6weGgGET9HLA+8LZYhY6H0kBD5m2WTSolkVFCZIb4XfEL63naAOFzcQJqTIKDXqjl7chRfp5fRaJ9sPVJcz9hwP7z1w9MheUrEiz4IBMQ6igJ8Rf+ES1J1pFpzRVNqVJC7yW3DmJUQzIHCOgqqm2loNfHHNUcYH+nPSnskU3SgOD9ZlBqGTqNifUYFu/JqaLdYOTPV9TlEqJ+BD392hst+Gb2iuOrC7AUb9qbT3cheL5YpKzuvDxkrmk3DoDaIHgz8vLQd/w9uISRJLEv2ue8YEolEMsqR4oNE4qm01IK3m5phDoXzQYldMpaLycduPR+cYpcA2fNhiFEmkL2DwNwKVmvP23mg86HVZOGTfWIi9WBhfaf1P393P8v/+SNfHCwhr6qJf36XOegV32uPlPPd0XJ+dfY4nr9hFhOi/PnJG3u4+519pMUG8r/rZ/WaG91fXFZKKuKCqzgutc7xP15XCIH9iJDwChCOCI3O8V5rqXVcbEqGPRekRTMxOoB/rzuB2dLDZ4k7CUoUE2Ml+8V7aML5UHkM/rsQXj235883iUQycqjMhPAJfW93kqw9UsY5T20ix15U0NJu4VcfHOCD3YUU17UwNbbzufr18xNobDPz2X5xjnC4pJ4psW46nx8qoqeLz1J75BLgOK9vrIQ9L4PeH+bfJVxmbhJ5f7IoCb1GzQMfHeSut/ZRYWzlsdVTu53f+HvpmDMmhPUZFXy6rwiDVs2cMQMca9vhfLCLD42VrnsQZH4tvo+ipnZe7xw5qRtd4oOvwc3iQ/h44XA8+J77jiGRSCSjHCk+SCSeSkudI+t8oBmKhtNeQeIn90dx314h1UGPzgc3fwxK54NrzE7OBxAChCss7UPsfBhc8aG6sY1lT2xk0WMbqG8xcda4cIrrWqhuFL+v336SzlfppYT5GXj0mwzueHMP/1l/gswy46CMD6C53cyfvzgiBIczk/D30vH+TxewZFw4yWG+vHLznF6jBE4bi/1v4dL5oHc8Xl8IQfEnt+/wCWKCY8nvYME9pzdOyaChVqv45YpUcquaeG934eAPQKVyxISEJEPMDPGZ0VAsqqWz1g7+mCQSycBhs7lFfDhSUs8v3ztARpmRBz9Ox2K18esPD/LJvmL+7+NDgGhS7Mz0+CAmxwTw1o58Ko1tlDe0MbmPiMMRh84L5vwEJl/qWKfVi/P8pgqozobISTDxAsAGBdvdMoyYIG8ePHcCO3Nr2JNfw18vTWNafJDLbZdNiCCropHPDpRw25lJIiZyIFGEhjB77NL3D8E/J3Z2DzdWQuY3kLYa1F2ub0KcxIdR5nzwN2hpN1tpM7vRpTz1KijeA1Un3HcMiUQiGcVI8UEi8VRa69zTbBqGpuG0Wg2JCx0XIF2jVZSJSqVq2mavRB2UnFIpPnSjI3YpSCx7il4a8tgl94oP6UX1zPjzd+RXN2G12vjl+wcoqmthenwQF0yN5mf2JoiHiuqpbzbx5aESbj5jDP+5ZgbFdS0cLxeVku6OYbLZbORXN2Gz2fjb18coqW/lkUumoLVnEvsZtLx88xy++cUiQrs0WBxweu35YI9dspihocSRFd1fxi6FB07Akt8MnnAqGRDOnhTJguRQ/vj5Eb44WDL4A4ibLZahKZCwQLz3Vr8iltv+M/jjkUgkA0dDCbQ1iAroAeJgYR03vbKLIB8dD6waz668Gub89Qe+Si/lp4uTCfUVTryuwoJKpeKG+YlklBl5eUuufZtR5nwAOOfvMOe2zut8w0XcUG0eBCdB7CzhfM7d7LZhXDs3gcdWT+XbXyzmmrkJPW63bIIoegrzM3DX0pSBOfjRz2HPq+K2Ij4ExIrX3FQJpqbOro+D74hzoJk3dd9XSLLj9mBdmw0SSsFLU5sbxYe0K0TB2qH33XcMiUQiGcW4sTRRIpEMa1rqIGLg7ePA0PR8AEhaBJlfidvDJXZJOh9cY7b/HbyDxNLUDHRvzoep2T1N0ftLh/jgngua9OJ6aptNfH6ghDB/A5uzqvjbpWlcO09c4Da2mVGp4GBRHRXGVkwWG5fNjGVqXBC/WJ5KkI+OP395dMDFB5PFitVmw6AV/8vrMyq47fU9zEwIYl9BHXcsTmbOmO651yfVUPJUsfbW80Ev/seNpWCz9C92STIqUKlUvHjTbG59dTf3vX+AmCAvZiUOXjY7cXbnQ1gqBETDfYfFfWMprP0dVGS47ztXIpG4F6XZdMRJ5vT3QFFtM1e/sINQPz2v3zqX5DBfKhpaqW5qZ/G4cK6YFce5adHsL6jF36v7d90lM2J54rvjvLApG4BJo8350BN+EVBfDPVFIpJJa4C4OVC4w22HVKtVXDm770KG5HA/rp+fwJJxEfgNlPtzz8tQkwuzbxFxkCCKdlJWCEGsZJ8oJguMFdca+96A+Pmuv2v0PuAfA8YS0PsNzPiGCX4d4oOZEF83RbUGRIsit+PfwLL/555jSCQSyShGOh8kEk+lpXaQYpcGUXwYc6bjtl+X2CV1T7FLsufDkGDpZ+xSa51DoBgKOhpOu8f5UGEUr/vrw2W8tjWPyTEBXJPUDK0NgLigSgn3Y09eLZ/uL2ZMqA9p9mzn+1aO45aFScQH+5Bd2TSg4/rdJ+lc/YLjYn5fQS1qFRwpaWB2YjAPrBq46s+TxtJHzwerGepEs+6Tjl2SjGj8DFpeunk2MUHe3PPOfmqa2rFabby/u4C65va+d3A6xM6CpMUw7pzO65Xvparj7j2+RCJxH4r4MECxS7vzamgxWXj+hlmMDfdDpVLx8MVTeObamVw5Ox6VSsX0+CBuWei695CXTsPti5Kw2iAhxIdA7yF0iA4mvuGixwM2Rz+I0BSozR/KUXXwl0vSWGFvRj0gNNcIkcFqdTgfvALh6rdh+UPivrK+ZD9Un4CZN/S8P6Xvw2iLXfIS153GVjdHpCYuhLLDrnttSCQSiaRXpPggkXgiNtvgxS4NpvgQMRm8QwCVfelE154P0vkwtCjOB0V8MDW73q6lzn3v0/7g5tilCqMQYY6VNpBZbuTGBYmoXlkFO/7bsc2ZqWFsOVHFjpwaLpoe281dMDbcl+yKgXM+mCxWvj1cxv6COioaWu3jM5Ia4c/WB5fx1k/modMM4emD8rfQ9BC7BFAroigI7DkiQTI6CfDS8dx1M6k0tvH8pmy2ZVfzm4/T+fWHB2k1WfjxeCVWdzRo13nBTV9AwvzO64Ps70FFEJNIJCOPygzwCe0e6XmKZJY1otOoGBfpf8r7uG5+IkE+uh57EIxK/CIcxSuK+BAUDy010D6wRRjDgpZa4fZsrhIT3lov8V0DjgKyljqxzPxGxAKNP6/n/SnRS4N5bTYIdMQutbtbfDgDsEHhLvceRyKRSEYhUnyQSDwRU4uIJnFXRblzHMpg5qar1aLK1C+i+8Rk19gl6XwYWpS/Q9eeD9XZjogjq0VkLLvLodMfOsQHU+/bnSIVDa0duc7+XloumhojhMHWuo5tHjx3As9dN5ObzxjDDfMTu+1jbLgfOVWNpzSh2ma2kF/d+YJ9d14NxjZxAbc1uwqAjNIGJkT7E+ZnwEun6bafQaXD+eBKfLD/n9co4kPs4IxJMqyYEhvI4nHhfHGgpKP/ww/HKlj02AZuemUXH+wZxKbUXkFgCJDig0QykqnMhPCBiVwCyCo3khTme1pCvp9By2d3LeRPF04asHENe3ydXM2K+KAUGdQN4uf6YKH0c6gvEueFzjGkym2lCj/zGxG55NNL3GDYuM7PHSUosUuN7nY+xM0R557529x7HIlEIhmFSPFBIvFEnHND3UGnng+D3LR11d/gqre6r+8QH6TzYVjQNXbJ1Cys5c/MgWNfiHXKBdVQOh86GpW7p+dDhbGNybGBXDw9hnuWpuCtsR/H3NaxjUGr4by0aP500WTC/bs3cx4b4UeryUpJfQ9Nu3vhlS15rHjyRwprmrFYbTS2mVl/rAK9Rk2gt47NWVXUNbdTUt/KxOhhkilt7SN2CaAmW1SpjrJoAUn/uXh6DCX1rXy8r4gLp8WwdHw4eo2aMaE+vLg5xz3uB1eoVML9IMUHiWRkYrOJni0D2Gz6eIWR1NNwPSiMCfMl1K/7ecGoxc/ez03rBf5R4rYSr1g/ysQHc5toKA3i/Li1vrNooJwbt9YJ4aU8Hcaf2/s+Z90M133Uu0AxAukQH9rcLD7ofSB6OhRsd+9xJBKJZBQiG05LJJ6IUlXt7tglnc8gOAu6EBTvOudd06WCvUN7kM6HIaFbw+lWkYlus0BDsViniGRD2fNBZdfo3RW71NDG+Eh/Hr9imlhh7/XQIc70g7HhonFgdmUTccEnZ6XfcqISk8XGu7sKqDS28cWhErx1GuYlhxDgrWNLVhXHSo0Aw0d8sCixS64aTiviQw4Eyn4PnsyKiZF46zS0mCxcODWaFRNFDvcXh0r4xXsHWHOwmHOnRA+OkycoYdhkkkskkpPEWAZt9QPW76G53UxhTQurZ8rvqJPG1y4+BI9xnL8r3/WjTeBVXA/gWnww2M/JWuvh+Lfidl/ig8EPUlcO7DiHAX5egyQ+ACQugJ3Pi+sWJQJLIpFIJH0inQ8SiSei5IO6a1LXWXwYLnSNXZLOh6Glw/kQJJamZsfknOJ4UN6nQxm7pFKJ97MbxAeL1UZlYxsRAU5Vi8r709L/mKex4aK6/0Q/+j48/MUR/rsxG4B2s5W9+ULgeX1bHh/uLSLU10Bts4mzJ0WyKCWMCmMb7+8WF/QTo06/SnNAsPYWu6SID7kQGDd4Y5IMO3wNWlZNjiTAS8viceGo1SrUahXnpUUTF+zNfe8fZN7f1pFdOXD9UnpEcT7I7wKJZOShNJuOGBjxQfmuHh/lNyD78yiU2CUlcgmEA0KtHX3OhxZn8aEIGis797PTaEHvL86Vy9LBJwzCUgd9mMOBjp4PgyE+JJ0lztVzN7n/WBKJRDKKkOKDROKJuD12aTiLD4rzQfZ8GFK6NZxugdo8cVsRH1oV58MQxi6B28SHmqZ2LFYbEf5OlVNK3JK5/86HEF89YX4GDhTWdVrfbrby0uYcLnl2K7/64ACl9S28ti2PlzbnYLHaSC+uo9Vk5dp5CTS1W4gN8uaHX53Flz8/k2vnJbJiUiRhfgY+O1BCqK/eZeTTkKD8D7tyPiixS20NMHbp4I1JMix5+OIpfH7PmZ3cDTqNmo/vPIMnrpiGxWrjibWZAJgtVq56fjt3v72PDZkV5FU1YRsosSAoAdqNju9eiUQyclDEhwFyPhwvF+LDQMQueRx+Ts4HBbUGAmJF9FDxPqg8PiRDG3Caqx23q06I92H01M7beAeJc+bGcgiIHtThDSd89eK60+jung8gxAdDIBz51P3HkkgkklGEjF2SSDyRwYpd0g8j8UEZk+z5MDzo2vPB3Ap1PTgfhjJ2Ceziw8D3fKgwtgIQ4e/K+dDu4hmuUalUrJgYwZeHSmk1WfDSaShvaOVnb+1lf0EdMYFeHCiso77ZhM0G1U3tHCisY0eOqKr71cpxaFQqLpgajbdew5RY8TcJ8zPw3h3zufbFHaTFBqIa7Ai1nlCEIFc9HxSRMWkxzLp18MYkGZYEeusI9O7+PokM8GL1rDiKa1v41w/H2V9Qi8VqY2duDTqNiq/SSwF4fPVUrpg9ANEoQfaGqPWFoy5rWyIZ9VRmiPNlJfLnNMkqN6LXqEkMGUbnyCMF/2jRYDphQef1QQlQmwtvXyGaAl/73tCMbyBRYpe8AiF7vYgljZvTeRuvQHFNZywDv8hBH+JwQaNW4aPXDI7zQauHiRfAsS9FoZD2JAtzrFZRjDDKmn5LJBJJX0jng0Tiibg9dsleZTrYzaZ7o2vsUofzwd0Hls4Hlyh/B0UAcxm75GaHTn9RawbU+bAxs4KFj65n/bEKACICnJwPyu/lJJwPAOdMiaKxzcyWrCoA/vFNBsdKG3j22pmsu38JYX4G1mVUMCU2AK1axQ/HytmZW8O4SD/C/Aw8cskU5iWHdttvSoQf3993Fk9dPf2UXqtbsPbS8yF6GiQvgUv+C2p5iiPpndsWJRHqq+eZ9Sf48XglGrWKzf+3jHdvn09yuC/v7HJkiDe2mWk1CREys8xIVeNJ/I8q4sNoyySXSDyBykwInzggTtndeTW8t7uQybEBaDXyO+qk0RrgvnSYfEnn9YHxULwXmqugsWxIhjbgKLFLkWlgbhG3u4kPQXbnQwX4RQ3q8IYbfgbt4PR8AJh8qegDk73h5J977HN4chK0GQd+XBKJRDKMkWc9Eokn0lIrGunq3WT5HtaxS116Pqjc/DEonQ+ucY5d0vuJyKWusUvDyvkwMBc0O3KqufOtfRTXtfDK1lygi/NBER1OwvkAcMbYMPy9tHxzuAybzcbmE1WcPSmK8+1uhp+dlQzAzWckMTcphLd25LPpeCVnjeu7kjPQR4e/l4uJ/qHC0kvPh/BxcOMa2e9B0i/8DFqumZvA+swKPt1fzIz4IKICvVgwNpSr58Szv6COExVGbDYb1724gwv+s4VjpQ1c9MwWbnx5FxZrPz/bR2tDVIlktGOzQcUxCB9/2ruqNLZx/Us7CfXV8/RVMwZgcJIOgpwcak1VQzeOgURxPkRNEcvQlO7OOa9AsV1TBfh7rvMBBll8SDpL/O4zvjj559YVQHuj41pHIpFIPAQpPkgknkhrnaiWcVdl8LAUH7rELtms9gdkz4chwdImYnPUGhhzJhxfKyrWAFob7Ms68R46WUvzQDMA4oPJYuW+9w9w9Qs7iAwwMHdMCLXN4r0YfpqxSwB6rZqVkyL5/mgZR0oaqDS2sTDF4WS46Ywx/OeaGVwyPYaVkyIxtpo5Py2a+88+/QmVQcfaS88HieQkuWZeAiqgqLaFJeMdYtwlM2LRqFV8uKeIvfm1HCyq50RFI5c9tw2L1cbR0gY+3lvUv4N4BwuxX4oPEsnIovqEOBeJnXnST92ZU82vPjiA1S5S7smroc1s5Ykrp5EQOozOj0cDgc7iQ+XIKvr59ndw9PPu61tqxTlwyFhxP25u9228g0ThjtUsnQ9egyg+aPWQcAYU7Dz555pb7cuTczhLJBLJSEeKDxKJJ9LaAF4B7tt/h/gwDGOXrIPccFqlktqDK8ztDlEheQk0FIvbWu/OzoehbjYNAyI+fH6ghE/3F3PH4mS+vHcRq2eLyvwgH12nZrinGrsEcOXseBpazTz4ySFAuCEUdBo1F06LQatRc/38RN64dS7/uWZG52OPFHpzPkgkJ0lskDfLJ4qK0SXjIzrWR/h7sXxCBG9sz+fv32Tgb9By3bwEWkwWHrlkCrMSg3n02wze21WAyWLtafcClUpEL0nxQSIZWRTsEMv4eSf1NJvNxl+/PsYn+4rJq24C4EBhHXqNmskxbjz/9lQiJwMqGHeOmNxtbxrqEQkaK3tvgG21wq7n4etfg6ml82PNNeAdAgEx4n7c7O7P9wp0RDL5RXR/3IPw1WtpHIyG0wrxc6E6C5qq+97WGeXvLMUHiUTiYUjxQSLxRNob3Re5BE4Np33dd4yTpafYJel8GBosbY6/SfJSx/qoKZ17Pgx1vwcQ7gxL3xc0x0obuOTZrby/uwCL1YbNZuOxbzP48lAJz208wYQof3577gT8DFqWT4hAreoSuQSnHLsEMC8phKlxgRwubiA+xJv4HppZ6jRqFo8LR60eJg2kT5aOhtNSfJAMDP+3ajx3Lx3LpOjOk4J/uWQKYf569ubXcvmsOB6+aDKf3b2Qq+fE8/fL0ogM8OLBT9L578bsvg8ixQeJZORRuFMUQYSm9mvz4+VGrnp+O69szeNQkTiXSS8Wy/0FdUyKCcCgHYGi/3Andib8OgsmXiTuN1U6HrOY4N8z4dAHgz+uDX+FNy/p+fHmanFO01gOe17t/FhLDfgEQ8J8SFkJ48/r/nznc2R/6XwYNOcDiL8LQNEuxzqbDXa/1Lsg0eF8aHXf2CQSiWQYIsUHicQTaW90rzAwHJ0P6q6xS4PpfJDiQzfMbQ7nQ/h48I8Wt6OmQluDqAZrrRv6fg8g4qH64Xx4f3chBwrr+M3H6Tz2bQY5VU08tzGbe97ZT3ZlE3cvTUFlf7+F+hlYNiGCiV0mO081dglApVJx+yLR2+GM5LA+th7BWGTskmRgSY3054FVE7oJchEBXrx56zwumhbD7YuT0WrUTI8PQqVSMS7Sn6/vPZNpcYEdjd57RREf5PeBRDJyKNwl4m76GVO6PqOCnbk1PPLlUUJ99ei1ag4X12O2WDlUXMeMhCD3jteT8QsHX3t0XlOV+LxtbRDLmmzI+XHwx2QsE85epYdZVxrLxVLnA1ufEue+CorzwTcMrv8IAqK7P98r0HHbT/Z8UMSHbSeq+P1n6djc+X0bM0NcW2Z9Dy+vEtFZtbnw1f1w6P2enyedDxKJxEORZYMSiSfS1ti9adlAMhx7PqhUYhJZmbgcNOeD87EkHVjaHZPHKhWMXQYZX0JIMmATAkRLHYQk9Wt3m7MqKaxp4dp5Cf0eQpvZQpvZSkAfzZRNNjXVdU30VlNms9n44Vg5yyZEoALWHCghOtALgCtnx1HTZOK8tM4Xjv+7fhaaru4D5WLEfPLiA8C5U6K4fn4CV83u/+9hxKFEp6ml+CBxP2PCfPn3Na6bw6pUKmaPEQ3c281W9NpeJiiDEsTnWmvd8IiTk0gkvdNcA1WZMO2qfj+loKYZfy8tMxKCOW9KFO/uKuBwcQMZZUZaTVamxwe5b7wSMVEPwvnwwQ3CCZGyQqyrzBj88bTUimX1CdexSY1lYjn+XDj8seh9psQntdRAYFrv+3cu0JHiA01tZswWK7//7DA5VU3cuzyVCH8v9xxQ5w3R02DPy+J+VBr42Hut1ffSD0pxPFik+CCRSDwL6XyQSDyR9qZBcj4MI/EBRMyPUlEunQ9Di6UdNE6RQysfgZu+dFRxtdb3O3bJZrPxxzVH+OPnh6lrdj1pn13ZyEubczhR0dix7oEPD7HqX5toNVl63Pe+glpya9s4kF9FYU1zj9tllhspqm1h5aRIzpkSRVlDK69uyyM+xJvHVk/jpZtmdxMatBp1hxOigw7nw6ldlGg1av5ySRppcYF9bzxSsdr/XtL5IBkGzE4Mps1s5UhJfe8bBtkFQRm9JJGMDIp2i+VJ9HsorGkmOcyXN26dy9VzE5gSG8jhknr2F9YBMDNBCo9uRXE+VGWCsRRK9gnXA0DVcVHY8c2Dg/c5rIgPVT30fTDanQ/R0+33yxyPNdc4JrN7QjlnNgSAfphdcw0ySuzSmgMl5FSJnh+ZZUb3HjR+vuO2sVT8ANQX9vwc6XyQSCQeihQfJBJPxN09HzRaOOdRSLvCfcc4FTTaIXA+yJ4PLnFuOA3gGwrRUx0XUh0VwkEAWKw23tlZwEH7Bbwze/NryalqwmSx8e3hMjZmVrAxs6Lj8Q2ZFSz/54/85atjPPLlUUD0Z/j8YAml9a18uMf1RUJTm5lbXt2NTaVBg4UNTvtUKKpt5sL/bOEPa44AsHxChHA/qCC/upkzU04y/ug0Ypc8AnO7/X9YJXpxSCRDzMxEMZm4N7+29w07xIdeJiUkEsnwQZkwjpzS76cU1DSTEOoo7pkSG4ix1cx/N5wgJtCLuOBhFEc6GlGcDwU7xbLimHAdgDivPPwx7PwvpH80OONprRPLqizXjyvOh+ip9vt2MaIjerQPl7pSoOPhrgcQzgeTxcZjazMYEyqEGLeLD7NvgcUPQPISEa/VIT70w/kgez5IJBIPQ4oPEokn4u6eDwDz74Twce49xsmi0TsiW6TzYWhxbjjtjCI+NFaAqRm8g2hsM3PLa7v53afp/O7TdMcurDZqmtr5cE8RPnoNCSE+vLQllzve2MvP3trb4VRYf6wCP4OWmxYksimrkqLaZp7+IQt/g5bJMQH878ccTBYrrSYLn+wrosmeGfvxviLqW0zEhQbgr1exPkOID1arjc/2F2NsNbHmQAnpxfXsyq1hWnwQEQFehPoZOqobz0wJP7nfy2nGLo1qLGZ4ciLseUW6HiTDhsgAMaG4r6C7+NBqsjicVdL5IJGMLIxlwsHr1T8nodlipbi2hYQQh8CQFiueW9rQyj9WT+3udpQMLDpv0PtB4Q5xv70RcjaCyl6ssOt5saw45v6x2Gx9Ox8aK4RrIUT06+qYvG6tA5u174hcJXbJw5tNA/h7Cde9WqXi6atnEOZncL/4EJYKy34vvt8bSqDhZJwP8jxfIpF4FrLng0TiadhsoueDwW+oRzL4OMcuSefD0OLccNoZ5SK/Lt9+P4gXNuWw6XglKyZG8MOxCtKL6kmLC+Q/67N46gdRTbZ6VhyxQd48vS6LMD89ze0W/vzlUV68cTaHiuuZEhvA7YuTeWNHPne+tY/04np+sTyVqXGB3Pb6Ht7Ynk+lsY3//ZhNSkQ2j16Wxmvb8pgWF4iPl4FwH9iWXU1zu5n1GRX88v0D3LlkLDtzqpkaF8jDF00mxNchppyfFs3RkgbOGNuHZb4rpxm7NKoxNYk8ZACdm8VTieQkmJUYzJasKuqa2wnycXwO3PLqbmzYeO+OBaLPg95Pig8SyUihoQT8o/tdpFJa34rZaiMhxBF/My7Sn9ggb66dl8Ci1JMsRpCcGr5hUJvnuF99AsYsgrzNULJfrKs46v5xmJod53SK+6IrxjLR40FxLigxTM01Ytmn88F+zqz0ifBgLpoWg8Vq4/JZcQR46ZgQ5U9muZvFBwX/GCEkKdcuTZVCZNC5cDpJ54NEIvFQpPNBIvE0zG1gs7jf+TAcUTvFLknnw9Biae/d+VArTuDbdYG8uT2PFRMjefKq6Xjp1LyzS0zebcisZEyoD1fNjueuJWO5fGYc0YFePHHFNO5dnsr3R8vZlVvDsdIGpsYFERfsw+LUcNKL6zkvLYp7lqWwbEIEyydE8I9vM3hpcw4LU0Kpa25n9f+2k1PZxC0Lk1CptYT6qGk3W1l7pIyn7YLHWzvy2V9Yx/IJkcxICCbRKWrh5jPGsPk3Swn2dfEae0NxPljNwnYvcWByulDTyNoJyfDh2rkJGFvNXPviTmqbxGTT3vxatudUsyOnhtyqJvFdEJQA1VnwzFzY9swQj1oikfSKsUyID/2kwO62jHcSH/RaNVt+s5S7l6YM+PAkPaD0fXCOIkpY4Igo0npBZaZTDKubUFwP3iFQnS3cm11pLAe/KFGM4x3scD4oy74cDR2xS9L5EOSj55aFSQR4CWfs+Ch/jpcbsVgH4RosIAawQckBx7qGEtfbdjgfpPggkUg8Cyk+SCSeRru94a47ez4MVzT67hcbKnd/DErng0vMfcQu2S3qPxZbqW028dOzkgnw0nF+WgyfHyimwtjK4eJ6zp8azT9WTyU53I+EUB+2/3Y5S8ZHcN28BPRaNf/8LpN2s5Up9uiDhy6YyG/OmcDTV89AZ2/4/OjlU/E3aPHRa/j31TNYd/8SnrhiGvcsTeG8tGhQawjQqxgT6sN97x8kq6KRmxYkYmw1Y7PBikndK87UahVhfi6cHX3h3OtB9n3ojNl+wRYzExIXDu1YJBIn5iWH8sKNszhR2cjP3tpLu9nKi5ty8DdoUang0/3FYsOgBDixTjRDPbpmaActkUh6x1gCAUJ82JNXwx/WHMbWSzGJIj44FyIAMmppsFHEh+hpjri70LEQPl7cnnqliGDtyY0wULTUiWX8XHE8pSremcZy8LeLJP7Rjp4PSuPpvsQvnTfMuR0mXTQgQx5NjI/0p9VkpaCmGYvVxreHS7nmhR38+Qs3uF4CYsWyoUi4IKDn6CVFdJDn+BKJxMOQ4oNE4ml0iA8e6Hxwjl2yKVXl0vkwJFhMrmOXDAFimbsZgId3a5mREMRse1PXa+fF09Ru4eHPj2Kx2piX5DrWyN9Lx1njwtmZK6zrU+3iQ0qEP3cuGYtO4/j6C/c38NGdZ/Dhz84g1M9AoLeO1bPi+PWq8ei1alBrUdvMfP7zM7luXgJnT4rkjxdOZnJMALFB3kyKDhio30oX8UFGL3VCcT6ccQ9c8+7QjkUi6cKS8RE8dvlUdubWsOqpTaw9WsaNZySycGwYn+wrYkNmBc0+9upIgJJ90N40pGOWSCQ9YLPZnQ+iovyjvUW8sT2fo6UNPT6loKYZnUZFVIDXYI1S4gof+3lhaApETBK3Q8ZC5GQR2TjzZrFuoKKXPv4JbP139/WK8yF+rlgeX9t9G2O5w7XgF+kQHZRG1H05H1QqOP8JSJh/8uMe5YyPEkV2D39xhLMe38DP3trHrrwaPtxbiHWg3RABMY7b8XPEsq4H8cEkY5ckEolnIsUHicTTaLOLDx7Z82EIYpek88E1PTWc1mix6nyh3cgJWwx+wRE8d93MjsrBmQnBpEb48VV6KRq1ill2UcIVF0wVFWP+XloSQ3163A4gKcy340KlG2otWM0EeOn466VpvHDjbNRqFc/fMIvXb50zsFWNZifBQTaj64zifNC6yNCVSIYBl8yI5YFV4wny0fGTM5O4c0kKl8+Kpai2hVte3c1H2famp1NWi2i1wl1DO2CJROKalloxOWivPD9mb1z7w9GKHp9SUN1MXLAPGrV0OgwpivMhJFkIDsrtpf8Pbv0WoqaIBtTlAyA+WMzCxZa/tftjivgwdjkkL4W1v4NDHzgebzOKXlYdzocoh/hgLBNCicEDXeoDxPgof2ICvThQWEd8sA//u34mj1w8BWOrmbzqARb+A5wcKrGzABXUF7neVjmXNcsCI4lE4lnI0GSJxNNQKi091flgVWKXBkkQkM4H15jbXTsfgDqrDyE00RA2kw9uX9CR3woivuDquQk88uVR0mID8TX0/DW2fGIkBq2atNjA0xMINDoxUdiFuODeBY1TQjofekapFtPJqlLJ8OXupSmd8t0vnhZLiK+BbSeq+N+mKs5ZcC8RK++DI5+ICauxS4dwtBKJpBNl6fDq+XDpf8V9/2isVhvHFfHhWDk/WZREU7uZCH/Hd9GRknp25lZ3RDxKhhBFfAhNgUmXiKhGX7sbwjfM8djJOh9aG0Rev79TL4maHHHepjSIdkYRH3zDhFvzlXNg85Mi9gkczaX9nMSHxnK766ZU3JeRXaeMl07D1geXdTr/P2Z3LqUX15McPoBFeF5BoPMRTcYD44Vo2ZP4IHs+SCQSD0U6HyQST6NdXEB5fM8H6XwYWnpyPgB1NjGpP3Phqk7Cg8JlM2Lx0WtYnBrW6yH8DFoev2Ia960cd3pjVWvAajm9ffQX50oomQfbGel8kIxA1GoVZ40L5+5lKdTrI3m07XLwCRF55HkuqmUlEsnQUXYY2urhwDvivn80BTXNtJgsJIf5kl5cz9n/2sTFz2ztiG7JKGvgsue2oVWruX/l+CEcvASAqDQR4RmVBn7hMPGC7tvEzYHsDVCV1f/9rv0tvHlp53WKgNHSi/jgHSx6M4w5E2pzwWqPfW3sIj74RYkCqeaak252LnFN18Kj1Ag/vHRqDhbWD/SBHNFLATEQGNdzz4cO8UGe40skEs9Cig8SiaehOB88MnZJ5zShqwgCsufDkGBqEVVCXVdbrFSb7dWE8fNcPjXYV8/6+5dw97IUl487c9G0GOaMCTmtoSqxS4OCs+AgL0w6I50PkhFMgJfoJfPp/mIWPbaebJ9pULzHIYj3gx051dz19l7MFmvfG0skkpOnqVIss74Xy4BoMspEtfRddkdTaX0LpfWtZNjdEK9uyUOtUvH5zxeSFiedD0NO0iJ4sMDhcnDFst+Lc4lPbhefwVYLFOzsfb9l6VCV2bkYpTJDLF05H1rrQK1znOuGJItqd2OJuN+1r4PiqDCW2p0PkUgGFq1GzZSYQA4V1Q38zhWxyD8KghOh6nj36z+LCWz29490PkgkEg9Dig8SiafR5sENp9U66XwYDlitIuvWRZZtYU0z9TYf2nSBEJra4y6iAr0waDXuHKWDoRIfZOxSZ6TzQTLC+dXZ4/m5fQLz0+IA8f9ur440tpr4v48OctMru3hlS67L57+1I5+v08tILx7gqk2JRCJQxAfl+9cvimOlRtQqOD8tmmeuncH7P10AwLbsKuqbTaw5WMwlM2I7xTBJhpi+zu0DouGcf0DJfsj9ETK+hFfOhtJDrre32aA6R5wLNhQ71lccE8vWOoejQaGlVrgelLGEjhXLmhyxrMoCVBCUIO4rk9eNZdL54EamxgVxuKR+4EX8gFix9I8WLhdjKVRmdt5GcT2A7PkgkUg8Dik+SCSeRrsiPnh47NKgOh/ce4gRh6kJsLkUH3KrmnjJcj4lC/8C6mHyFTWY4kOn2KX+V0R7BNL5IBnhBHrr+NXZ47nzrBR21gWJldViIuo/60/w4d4iTlQ08o9vM6hvMdFmtmCxR7tYrDa2nKgCYKt9KZFIBpgmp/8t7xDQeZFR1sCYUF+89RoumCrclMlhvmzLrubDvYW0mqxcPz9h6MYsOTUSzxDL+iKozRO3S/a53rap0hFbW5vvWK84H2xWEdfljCI+KIQki2V1tliWHxaChFIMpsQvVWWJ3gGKI0IyoEyLD6TVZGVrdvXA7njsMhh3juhnN3aZWJe9vvM2zm4HWWAkkUg8jGEysyORSAaNdg92PjjHLknnw9DRZr+A60F82GGdRPDcqwd5UL0wmD0fOsUuyQuTTkjng2SUcMG0aEq19nzomhxOVDTyypZcrpodz3PXzaTNbOXjvUVc9J+trPzXjxwvN3K4uJ66ZhNqFWzOkuKDROIWmipBYxC37ZXnGWVGJkR3Pl9ZMDaUHTnVPP1DFnOTQpgcI+OWRhz+UYAKGkrED0DpQdfbKoIBOIQKcztUnwB/+2d51+ilruJDQKwoglKcD2WHIXKK03iiQaWB3E2O+5IBZ+mECJLDffn5O/vItEenDQjTroJr3xe3gxKEezt7XedtpPNBIpF4MFJ8kEg8jbZGUcmtNQz1SAYfjU40cwNkz4chRIn+Mvhjs9n429fHWPjoes55ahNZ5Y0E++gI8nHdjHpIGDLng7ww6YR0PkhGCQFeOmZPGk8TXrSWH+dva/YRo2/i16vGMzUukPGR/vzt62NklhupaWrn4me28p/1WahUcPnMOPYV1NLc3vNn0u68Gub+9Qc+2F3ImgPF/PWrox0OColE0gtNlZAwTwgQ/lEcKKwjv7q5W++ohSlhNLdbMOjU/Ouq6UMzVsnpodEJt0FDsSNKqafYpRon8aEuX7gTdjwnzg0VB4XSYFqhpa6z+KDWQHCSEB/ajKL5tLP4oPOCpMVw/FtxXzof3EKAl443bp2LXqvhz18ecd+Bxi6DvK2Oc1fo7HyQPR8kEomHIcUHicTTaG8Srge3V/wPQ5xjl6TzYehwcj5klht5YVMOAd46MsqMrDlYTHL4MGuGrtYOXgSSpR209sl12XC6M9L5IBlF3Lk0lXxbJIcO7WdZ/lN8q3+QMIMNlUrFFbPjMFttXDErjrW/XExCiA8/HKtgSkwgF02PwWSx8XV6GbYehO23duRTYWzj/z4+xC/eO8CLm3NlVJNE0h+aqiAgDs78JUy9khc35+DvpeWK2fGdNluUGsayCRG8cONsYoPkd9KIJSAGGkodzofyw2BxIexWZ4tzQf8YEbv00S3wwx8BFaSsENu4FB+COq8LSRbig9IrImpK58cnXyoinEA6H9xIXLAPV8yOY2dODfUtbjq/T1kuzlsLtjvWSeeDRCLxYKT4IJF4Gu2NntnvATrHLg2a8wHpfOhKW4NYGvzZmCmaO75002ziQ7xpNVlJChtmkWBq7eDGLun9HLclDkytoFKL/2OJZIQzPsofbVgKYe1FnKPbj097FRxdA8BVc+K5d1kKv79gEpEBXrxz+zwWpYZxw/xE5owJISrAi19/eJDlT/7I1+mlGFsdkyfN7Wa+P1rOVbPj+f35E/nnFdMI8NLy6f7inoYikUhAnKs1VYJvGCz9HbmxF/JNeinXzkvAz6DttKm/l45Xbp7DzITgHnYmGREExDhil3S+ohq9Oqv7djXZEJQoejQU7YaydFh0PzyQDXFzxDZ9xS6BeH5NLpTZHRaRkzs/PvFCEb0Ejh4QErewYmIEZquNH49XuucAiWeIv2XeZse6Ts4HKT5IJBLPQooPEomn0d7omf0eANTOPR/slUUqd38MSudDN5ycDxszK5gQ5U9skDc3LRgDMEzFh0GMXVJ6YUjxoTPmVuF68ETXlmRUMnb8VJLVZYTZagAV7H4JEBObvzp7PIHeQmgL9TPw5m3zuHJOPF46DWt/uZjHVk9Fo1Jx19v7SPvTd5zz1CYOFNbxw7EKmtstXDozlp8sSubyWXGcPzWGbw+X8eGeQp7dcGIIX7GDhlZTr9FRCsdKG9gie1xIBoM2o4g79A1nV24NV/xvGz56LbeckTTUI5O4i4AY0XC6sRzGLhXrXPV9qM4RwkFwoohLAph0MfiGgo89kqvFSXywmESD6q7iQ0iSqIbP+BoMgRDY2VGDTwgkLxGPGYaZC3iUMT0+mFBfPT8cLXfPAQz+EDsTcp3EB8X5YAiUsUsSicTjkOKDROJptDV67gmtRu+wUw9W7JLs+dAdu/jQpPJhT14tZ40PB+DKOfEsnxDBsgkRQzm67qg1gyc+WNod4oOsiuqMqUX2e5CMKjRhYx13FtwNRbsgf1ufzwv00XHl7Hi++cUiXrhhFr85ZwL1LSYueXYrv3r/AFEBXsx1yqi/bGYsLSYLD3x0iMfXZrIzp9odL6cTVquNP31+hH0FtS4fv+HlXVzxv+20mXt3lf3lq6P87K29tJoGyX3mhOyT4VlYG0UFtNUnjJ+/uw9/Lx2f3nUGUYHye2fUEhAjRAKbVUz6a73h0AfQWu/YxmYTUUkhYyFojFjnEwaRaeK2VyCg6ux8aLZ/xnYVH5TnZK8TrgdX1yDn/gMuf3EAXpykNzRqFcsmRLAxswKTxeqeg4xZBCX7HL3uFMHBO1AWGEkkEo9Dig8Siaeh9HzwRIYidkk6H7rTLk7Cdxa3Y7baWDJOiA0BXjpevnkOE6MDhnJ03VHrhkZ8kA2nO6M4HySS0UKoXXwIGw+LH4DABHj3aije16+nazVqzp4cxZ1LxrL2vsX8/vyJXDsvgT9fPBm12vHdNjsxmGvmJvC78yYQ5qfnmZN0P7SaLFz23FY2Zlb0ue3tb+zhzR357Myt4bVtedz77n6a2jp/fuZVNXGwsI4jJQ08sTazx4kfs8XK/oI6GtvMbBqgaIy9+TVc8uxWTlQ09rrd8XIjk//4LbvzanrdTjJ82HS8ki8Olpzy8x/7ZAsAea0+lDe08fNlKaRGemhMqacQEOu4HZQASx6EnA3w/GJobxbrG0rA1ORwPoBoJqy2T6OoNaK3g7PzwVhq339M5+MlzIOfboLF/wdLfuN6TGGpMG7Vab80Sd8smxBBQ6uZQ0V17jnAmDPF9UPhDnFfcT54BUnng0Qi8Tik+CCReBqy54O4LZ0PQ4e958OOonb0WjWzEod5ZrJaCzbL4Pwdzc49HwapyfVIQTofJKONELv4kLJcTF7d/KX4///2wZPeVYCXjp8sSubPF0/h7MlRnR5TqVT8/bI07lg8ltvOTGZzVhWHiuqoaWrn1td2c6LC2Ou+DxbWsa+gjle25lFU28zixza4bGBdVt/K90fL+df3x3l3VwEGrZqi2hb++vUxrE4ugm8OlwEic/vFzbmM//03vLgpp9v+MsqMNLcLx8OXh0p5fG0Gz/+YfdK/G2de3ZrHgcI6bnplF6X1LT1ud6ionlaTlcfXZvbY2Bugpqmd5f/cyDbZ0HtI2V9Qy0/e2MNjazNO6nmf7CviT58fIbuykZw8EafzSWYbKhWcNS7cHUOVDCecxYGAGNFo/IrXoDZPiBAg+jsARE6B0BRxW2kyreAd0rnhdINdfHDVNDp6Giz7f8JpIRlS5iYJh+COHDeJzAnzRQGTEr2kCA5egdLdLJFIPA4pPkgknoYn93zQ6AFbl+bB0vkw6LQZQWMgvayFiVH+6LXD/KtIbW80ORjuB0ubjF3qCel8kIw2/CPh4udg4S/E/eBESDoL6t3XHPr6+Qn46DW8u6uAz/YXsz6jgt9+kt7rBPuefDGptvVEFf/4NpOCmmb+sOYw5Q2tvLE9ryMSaU++mMCpaWrn84MlXDgthtvOTOKdnQVc8+IO8qqaAPj2cCnT4gJ59rqZ/POKacweE8LT67JoaO0suCqRTYtSw/j8YAnPbsjmH99mcKy0odsY1x4p44aXd7oURRRa2i2sO1bBwpRQ6prb+c3H6R2P2Wy2Tr+DwhpR9bwrt4atJ0SESml9Cy3tneOfvjpUQnZlE69uy+vxuJKBw/lvtDe/lqY2M8ZWE3e8uZd2s5XqxpOLMnl1ax6vbcvjzrf2EqEWItxHGW3MiA8i1M8woGOXDEOcxQF/uxAx/jwxOZzxlbiviA9RUyBmBty4BtJWd96PT0jn2CWj3YHT1fkgGVaE+hlIjfBjZ66bxAe9L8TPg2Ofi2tPxfngHSTP8SUSiccxzGd8JBLJgOPRPR9E804s7dL5MJS0GbEZ/DlSUs/k2MChHk3f+NmrHxtOPc6h33RqOC0vTDohnQ+S0ciM68DfyangGwpNlW773vD30rFqchRfHirlo71FeOs07M6r5fVteT0KEHvyagjw0mKx2vjiYAljw33JrmzirMc38Ic1R3jNPvG+J68Wb52GNPvn+mUzYvn9+RN57PKpHC1t4JynN3H3O/s4WFTPOVOiMWg1XD4rjj9cMInGNjPv7izoctxaIgMM3LVEVBuvnhVHgLeOv3x1FJvNRml9C29sz8NitfHvdVlszqriupd2cva/fuSxbzPYmFnRyXGxPqOCFpOFu5emcN/KcWw6XskGe5TU7z49zLlPb+74HRTWNhPubyAm0IvbXt/NFf/bxhmPrueSZ7dSUudwTKw5IL4XNmZWUNskM7zdzWX/3caNr+ziX98f5/L/buPPXxzli4OlVBrbWDExguZ2S78amYNoen6kpB6NWsXx8kbmR4n4rxoChl/vKYl7UMQBjcHROFqjg3HnQOY3ok9c2UEISRbnZiqVcCyoNZ334x3cOXapoRRUGvCV7pnhzrzkEPbm1WB2V9+HeXeIniFHP3NyPgRJ8UEikXgcUnyQSDwNT+75oHYSH2TPB/dQebzvE+q2Rsw6PxpazUyOGWb9HVwRNk4sq7I6r2+shLqC7tufDpZ2x/+njF3qjLkVtFJ8kIxyfMOF8Njee0+C0+GymbEYW80cLW3gFytSmZcUwp++OMqqpzbx3q4CciobqbFPpFutNvbm13L+1GjG2/Pvn7l2JssmRBAd6M30+CCe/zGbxjYzu/NqmJEQxEMXTOKq2fHMTw5FpVJx5Zx4vr/vLM4aF86BgjrmJ4dw2UxH1vqU2EDOGBvKS1ty2WPvsWCziePOSgxmwdhQ1t9/Fo9dPpX7Voxj64lqPt1fzH3vH+APa47wl6+OcqSkgd+eO4FHLp5MoLeO5zflcPOru/nb18cA0Tz6w72FhPkZmJcUyo0LxjAm1Ic/rjnCsxtO8O6uAjLKjBwvF7/3opoWksJ8efeO+Vw2M46apnZuWjCGkroWLntuGzmVjRTVNrPH/rsxWWw88uVRbnttN4eL6+mLhlZTj2LPv9dl8en+olP/A49SKo1t7C+oY9PxSp5el0Wgt47PDhTz+rY8UiP8OHuSEPH6637Ym1eL1QZ/umgy4yP9WRBpxazzR6U1cM4UF3E5ktGHzltEJgXEdC5GmnC+EBMKtkPpIYia2vt+vEOg2Sl2yVgKfpHdRQrJsGNeUihN7RaOlHR31A0IEy4U1xGbn3T0EfEKlD0fJBKJx6Ed6gFIJJJBxGIGc4sH93zQi6XFLJ0P7sDUAv87E1b9Febe3vN2bUaaVT4ATIkZAc6HDvEhE1Kdcn6/vl/kuN61vXPl8ulgaQetQbxXZVVUZ0wt4CerUSWjHJ8wsWyqcrigBpgzxoYRGWCgvKGNi6bFcMvCMXxxsJSXt+Ty4CciYkSrVvG3y9KYFhdEQ6uZ2YkhrJgYydGSBiZGB/DijbNRq+BAYR2XPreNv399jGOlDdyzLJW5SSEdWdoKUYFePH/D7B7H9OC5E7j9jT2s/t92wvz02GxQ3dTObWcmAZAcLhyb189P5IuDJfzfR4cwW20Eeut4dWseeo2aK2fHE+yr54YFY2huN/P3rzN4aUsuzSYLuZVNbM+p5v6V49CoVWjUKv5x+VTufmcfj6/NJDXCj6yKRtZnVDA+yp+CmmYWpoSRGOrL3y9L6xjnVXPiuf6lnVz9wg7igkUM3IPnTCC7opFP9hejUavYnVfDWz+Zx9S4oG6vs9LYxuNrM/hobxF/umgyNy4Y0+lxi9XG/37MJirAi0tnxJ3033Y0o4g6D180GbPVxhljQzn36c1klhtFM3V/cY5X1dhGfIhPx/Oyyo0E+egJ9+8co7QjtxqdRsXqmXHcMD8RPnwV/CM4+ttz0KjdXZgiGTYExopKdGdSVoDOB7Y/A3X5MOum3vfh07XnQwkESAFrJDAvWXxX/Xi8kmnxQQN/ALUazvg5fP5zu9NGBYYA0UvOYgaNnI6TSCSegXQ+SCSehEnkLaP36X270YrGlfPB3XiQ86G9SVTs1hf2vl2bkQarFxq1ivFRI0AI8wkVlvqq453X1+aLyrg1dw+MwGS1ir4SGoP4scgIj05I54PEE1BiOpq69C5orhEN6QcAjVrFL1eM49aFScQEeWPQalg9K46v7z2Tj362gKeums6CsaH830eHuPW13QDMHhPM8omR/Hx5asc+VCoVMxKCuXJ2HG/vLMBqgzljgk9pTFPjgtjw6yX88cJJrJwUyfKJEfz10ilcMzeh29j/ddV0DFo10+ICeeXmOQCsnBRJsK++YzsfvZY/XjiJcyZH8e6uAtKL63n0sjTuWZbSsc285FA2PrCURy6ezOu3zmVSdADrM8ppM1soN7YSH9K9x8zE6ADeu2M+fl5a6lpMPLBqPPEhPjxxxTT+fc0M1t9/FgHeOq55YQc/Hq/s9NydOdWc9+/NfLa/hMgAL57dcII2s6WTAyK/uonmdgs5VU1kV7rP/eIKk8VKsT1SKrPMyCf7Bt99UVLXwur/biO9qLt7JL24HpUKLp8Vx21nJjExOoAzU8LQqFVcMiOWUF8hLjg7H6oa27jk2a38Yc3hbvvbmVPDtLggvPX26vS6fPCLlMKDp3HeP+HsRzqv0/vCvJ/C8W/F/f44H9qNjs9oY6nrZtOSYUeEvxeLUsN4el0WXx5yU7xqnPieoixduG20diFUxqtKJBIPQkqtEoknodg9PTV2qUN8aJPOB3egVOo399G4ra2BapMPqRF+eOlGgCVdpRLuh26xS+XigvPED+ICdfy5p3cc5SJEowOtdD50w9QiLtokktGMb6hYNjuJD2WH4ZVVMPVKuOBfA3KYrpP6ACqVitljQpg9Bs6fGs0z609wsKiO+cmhJIT0XLTwj8unsmBsKBszK5kzJqTH7frCR6/lloVJfW4XH+LDt79cTKCPjgAvHS/eOJtJLiL8tBo1/7thVq/78jNoucHuPlg2IYLnNp7gSEkDNhs9vubUSH/W37+k07opsYFMsfe6+PjOM7j51d3c9tpuvrz3TCZEBVBhbOWmV3cRE+jNW7fNo9LYxvUv7+SWV3ezN7+Wd26fx6zEEI46NdNed6ycseGD16PrrR35/OWrY7x12zz+32fp5FY1sXhcOGGD0Hi5qc2MXqvm/g8Osie/ljd35PHY6mmdtjlUVE9ymC9+Bsfl698vSyO7spEIfy/azSKzvbrJ8d35zPoTNLVb2JJVhdliRasRdXf1LSbSi+v52VnJYsP6YijeC0t/7+ZXKhl2JMxzvX7hL2HPq9Ba17f4EGh3Ka17GFb8SYgPYxYN4CAl7uS/18/illd3cc87+/k6vZS/XZpGkI++7yf2l+AkQCXeFz6hjkIac5vnXpNLJBKPQzofJBJPwmQXH3Qe6nwIFRWbFO5C9nxwA8rkubP13BVtRsrbdEyKHgH9HhTCxnV2Plit0FgBM64XMSkH3z39Yyhig1Y6H1winQ8ST6AjdsleNd9cA+9eI3pAHP5k0HrB6DRq7ls5jtdumcs/r5yGqhehXqVScemMOJ6+UTnwTQAAejxJREFUesagCcrxIT4EeImCgpWTIokNOn1hctnECKw2eHlLbscxToXIAC/e+ck8DFo1z23IBuDlzbm0m628cvMcxkf5szAllGnxQWzLrqbdYuW7I+UAHCttQKtWkRLhxw/HKno9zpvb83j6h6xet+lKq8lCU5vrhsx78muxWG3c9MouciqbsNlEk+6uFFQ3c+truymsae7zeMqxduZUs+LJH9lf0P38oLqxjfl/W8fkP65le041sUHefHO4jFaTpdN26cV13aKs4kN8WDJexPEpIkmV3fmwLbuKt3fmkxDig7HNzIHCuo7nfbinEIvVxrlKb4eja8Ry8qV9viaJh+AdJGJEx50D/pG9bzvlcpjzExHT9MOfoLVexi6NIPwMWt64dR73rRjH1+llvL1zgPu56bwcApXWyfkg+z5IJBIPQooPEoknYRJ2eo8VH+LmQGA8pH/o5Hxw88egSuUx2kO/nQ/tjVSbDd3yl4c1YePEZKDy2pqrRV5rYBykrYbMb6Gl7vSOoUwqavTC/SDFh86YWqXzQTL68XXq+QBw5BOoLxBVuK11kLd5qEY26pkRH8S4SD++OlQKQHzwqZ8rBfvquX5+Il8eKmFzViVv7cjngqkxjAkTVa4qlYrnr5/FmrsXMicxhO051QAcLWlgbLgf502JYk9eDd8eLnW5/+rGNv7y1TH+9cNxvj1c1q8x2Ww2bnt9N5f/dxtWa/cTk/SiesaG+2K2Wlk5KZKYQC/WHSvvtt33x8pZn1HBT17fw568GrZlV7lsnl1Q3cyMP3/PAx8e5L73D3CiopF73tlPbVPn77YP9hRhbDNz2YxYfr4shb9floax1czGTCHA1Ta1k15UT3lDG2mxPfeJ8tJp8DNoqW5s5/G1GVz74k4i/L146SbRn2RTlvifslhtvL49jzljgjvcKhz5FKLSICylx/1LPJAZ18O17/e9nVYP5/8Txi6Hva+Jdf4xbh2aZGDx1mv4xYpUAr11VDS4QRQIsbusdF5O4oN0OEskEs9Big8SiSfh6c4HtVpUJ51Y56gqdXfskic5H5ST6JbexQdbm5EGqzf+XiMo+U9pOl19Qiwb7ZM9fhEw9Srh+jj62ekdw+LkfNAa5EVJV8wt0vkgGf3ofcV3dLOYjKbimGhOueRB0Pk6KrQlA45KpeL2RWKCSK9VE3GaAvlti5LQatTc8PIuWkwW7lo6ttPjUYFeTIsPYv7YUA4X19PQauJYqZFJMQHcdMYY0uKC+Nlb+/jLl0cxWaydnvvmjnzazFbGhPrw+8/SqWnqWaz+YE8hN72yizd35LP1RDUZZUY2ZVVitlix2EWIuuZ2CmqauXxWHN/8YjH/uWYGyydGsul4VXcHQlEdvnoNJyobWf2/7Vz74k5+9+lhzF3GeKCojnaLlQ/3FlFubOMvl0yh0tjGz97aS3O7cERYrDbe3pnP/OQQHr18KvefPZ4zxoYS5qfn3V0FVDW2cd6/N3PhM1sASIvrWXwACPXTU93Uxkd7i1iUGsa6+89iXKQ/0+OD2GTvwfHZ/mIKa1ocEV/1xVC0S7oeJKfPpIuFSw2k82GEEuqn73BPDSiK+NDJ+SDP8yUSiecgxQeJxJPoEB88uHo4bbWoWD/yqX2F7PkwYPTH+WBuR2VuxWjzJsBbNzjjGgjC7JFdSvSS0V4N6hcFMTNEpFdPk4L1RXDwfWisdP24gvL7kw2nu2O1iN+HJ392STwHnzCHQF5xDMIniPf+uLPh2Jci9k3iFi6eHktkgIG4YG/Up9l4OMLfi9dunsNjl0/ly58vYkKU66jB+ckhWG2w9nAZZQ2tTIoOINTPwAc/nc+NCxJ5aUsui/6xgTl//YHP9hfT1Gbmje35LJ8Qwf9umEV9i4mHXDRUBjG5/9T3x/nxeCV/WHOEcZF+RPgbeHpdFiv/tYmrX9hOq8lCerFo8Dw1NojxUf546TSsmBRJi8nCx10aT6cX13NGShhv3jqXZ6+dyU/PSubdXQU8/l1mp+2yyo1o1CqevHIa/7lmBtfPT+TxK6ayO6+GW17dTbvZysbMCopqW7h+fmLH87QaNbcvSubH45Ws+tcmqpva+fXZ47h3WQoz4oN6/Z2H+urJKm+kvKGNxanhHTFgZ42L4EBhHec9vZn7PzzIxOgAzp5kj9LJXi+W406zb5NEMuF8h6NaOh9GJGG+Bqoa3SAKhNrFZ52XU88HGbskkUg8hxFUdiqRSE6bjtglD57Ai5wifsrtF+rS+TBwWJycDzab69+tvSKsCa+R5XwISgSVBqpFfjeNdvHBP1K8zjFnwuGPxaSguouuv+Up2P2iuCC97iNIWe76GIrYoDScluKDA+UCTTofJJ6Ab5iIXbLZhPgw8UKxPnWVEM4rMyBy0tCOcZSi16r599UzaDUPjMBzRkpYn9vMTAhGr1Xz+Foxea80zzZoNfz54inMTQrhy4OlnKhs5KE1h/kqvZTa5nbuXpbChKgAfrliHI+vzSQu6Bg+ei0f7i3kkumx/HrVeDYdr6SkvpWfL0the3Y1vzl3Atuzq3ny++MEeGnJrWrit5+kkxIhGls7xxotSA5lVmIw/+/Tw1Qa2/jlinEYW03kVDVxyfTYjtd2/tRoKhraeH1bHredmUSEv/icPl5uJDHUh8tmxnXs8+LpsVhtNu57/yD/+zGbLw+VEBvkzdmTojr9Tu5YnExjm5n/rD/BXy+dwnXzEukPoX4Gvj8qvp8nOvWV+ulZydiwsTGzkp8uTuaXK8Z1NJ8m90fwjYCIif06hkTSI75hkLhQxOP5R/W9vWTYEeqnJ6uiceB3HGIXH7ReosAI5Hm+RCLxKEbQzI9EIjltFOeD3ndoxzGUqFQw9w744l5lhfuP5zHOB/tJtNUMbQ3g5SIeoc0IQCPe+BtGkPNBo4WAWOFiAKfYJfvFZdwc2PuqcEZETOj83OoTwhlRmwv523oWHzo1nNZLO7YzJrv44MnCqcRz8A0TAmdTpRBzlUnRhHliWbhzeIsPuZtg14twxevdxdgRwLzk0EE9npdOw6KUMHbkVHPH4mTmdzn+BVNjuGBqDLlVTZzz1Ca+P1rOr1aOY2ZCMAA/XZzMtuwqnt+UA0BcsDfPbDjB7DHBvLUjn1BfPT9flsr9Z48HYFykPw0tJq6bn8iXB0v45/fH8dZpSAz1IdDH8b2s16p59/b53P/hQf69LovLZ8ZRXNeCzdY9/uje5al8frCE/23M4Q8XivdmVnkj4yL9u73eS2fE8U16GU9+L5yEL9wwC7228/tEpVJx/9njuXHBmJPqDxXmp++4PSHacWwvnYZfrhjHL1eM6/wEm028X5MWD0IxisQjWPgLCIgBL9dOJ8nwJtRPz44cdzofZMNpiUTimUjxQSLxJNpl7BIAaVc4xIdBudj0FPHB6SS6uaZX8WHExS4BBMVDfaG4bSwXOex6e/+UuNliWbynu/hQmwuxswCbI7bJFR0NpxXxYRRdlNhsosJLe4oZ6ma7a0s6HySegG84lB8RrgcQsUsAwUniscKdMPuWoRtfX+RshGOfC6ebnIDrF89eNxObTTQ97YmkMF/+cflUDhTWcfdSR2NkrUbNW7fNw9hmprXdgr+Xjgv+s5mbX90NwF1Lxnaa3A/01vH7C4RAcM+yFFQqeOK740yLC+p2TL1Wze/Om8A36aW8vCWX2CBx/ti18XNSmC+XTI/l7Z35/GJFKgatmrzqJi6Y6jr3/g8XTmLLiSoWJIeyUok/csHJCA8AYX6Gjucpt3ulMlMIfUmLT+o4EkmPpK4UP5IRSZifgdpmE2aL1eGOGgiCxwgHtNY5dkkWGUkkEs9Big8SiSfREbvkoQ2nFfQ+Ir4iay2o3fwx6EnOB4vTSXRLDZDUfRtn58NIil0CCIwTzgUQzgc/pwmT0FQwBELRbphxvWO9xQR1hTBltfj/UxpWu6Kj4bReTNK3NQz8axgqMr+BT+6A+9LBO/jkny+dDxJPwidUxC5VZoj7ivNBpYL4eUJ8GM60iv4BUnzoP0pvgr64ZEYsl8yI7bZepVIR4KUjwEuI+v+7fhaf7C9mSkwgqyb3PLmvUqm4Z1kqC8aGEhvk+twwOtCbi6bH8P7uQhJCfIgN8ibUxcT+TWck8vG+Ir44WMKMhCCsNkh14XwAiAv2Yf39Swjx1aMawCKQUF/hfJgQ5fq43cj9USyTzxqwMUgkkpGL8tlW09zeESE3IGgNEDFJuGK0doeWFB8kEokHMcJmfiQSyWkhG047uOZdUe2mcXf1vQf1fDA7ZZc217reRhEfbCNRfIiHhhKwmKGxorP4oFZD7Ewo2tv5OXUFosF5SLKo/D+xTjRPVruYaOpoOK23Ox9GURZs2SFoN0LlcUd0zMkgnQ8ST8I3TIiRRbvBK6jzZ038XMj4UjSw9wsfsiH2iiI+tLkhN1vSL1Ij/fnNORP63tDOrMSQXh//2VljWXu4jMrGNm6Y77r/QlpsIBOi/PlwbxF+BvH97ip2SSEqcOA/z5WJw0nR/RS9sr4XFcnBYwZ8LBKJZOQRZhcwq4wDLD4A3PSFOI9VXNSjyeEskUgkfTDyglglEsmpozgftFJ8QK0R1SfuxpOcD84n0S01rrexV/M3MkJjl2wWMJaCsUw0m3Ymbg5UHIH2Jse62lyxDEmCsHFiQrGuwPX+OxpO28UHyyiqiDKWiqXy+zhZpPNB4kn42kWFE+uE68G5MjzeLt5tehxyNw/+2PpDh/hgHNj9fvoz+PzevreTDDjjIv05/PAq9j20kvtWjnO5jUqlYvWsOA4W1vHG9jy0ahVJYYPbYyzU3vPBud9DjzRVQfZ6mHSJewclkUhGDIqAWd3khnNwnxDhvu/o+TCKzvMlEomkD6T4IJF4EqYmITyMwAaQIxcPcj5YnJ0PPYgPRtGouZIg/PQj0PkAomKpsdzRbFohdibYrFCW7lhXY59sD06CsFRxuyrL9f6V35/WIH6Gm/PBWVQ5WRrs4kNNjmOdxQRf/BJeWgFVvcRRgXQ+SDwL3wixtJrhzPs6PxY9XcQy7Xoe3r2mb3HbYhL9IwaTVntkXPsAiw+5m6Bk38DuU9Jv+hOPdOmMWPwNWg4U1rFiYmS3RtLuZnZiCPetGMfZk6L63vjoZ6KgIO0Kt49LIpGMDJSm9dWNbjwH19jFh9FUZCSRSCR9IGcgJRJPwtQiK4cHG+l86ExdAa0aP2z6QNTqwWj2PYAo4kPFURFh1tX5EDlFLMsPO9bV5ArBzz9KOB8AqnsQHxSxQWk4benjwmf9X2Dfmyf3Gk6V/O3waKLoX3EqKM4HRYyxWuDdq2Hvq6Kp7gtL4Jvf9CxCSOeDxJNIWgxn/xXu2gHjVnV+TOcF9x2BZQ+Jyf3m6t73tf4ReH4xtPQQhadgboN9b4DVenpjB/fELrU3Q0MxNPXxeiVDSqifgd2/X8Hxv5zL/26YNejH12vV/GJFKr6GfhQ3pH8smrlHTnb/wCQSyYhAcT5UNbpRGJDOB4lE4oFI8UEi8SRMLaAfXAu8ZIQ7Hzb8Hd66vH/bKpPnev+enQ91BVRro0Ze5BKIhtMAmd/a78d3f9wrEMoOQ85GeP1CUaUbkiREKJ8Q8A6BquOu99+14XRvFVFWK2x/Dg68fVovCRDi2Ac3ijH3RHUWWE1CKDgVusYuHXwXTvwA5z4uJljHLoE9r8Jbl7qe/JTOB4knodXDGfdAYPfGwoAQ4SImidu1+T3vp7kGdr0kHBS1eb0f8+jn8PnPB8ZZ4I7YJeWzo7nacwT9EYqXToNWM8wvMRtKoWAbTFndOdZMIpF4NAFeWnQaFdVNbnQ+KOeysueDRCLxIIb5maFEIhlQTM2ycniwGenOh2OfQ96W/r0GSxugEk1Qe3E+VGoiRl6zaRA5rT5hcOJ70PlA6srOj6tUwv1Qfhj2vyUiQgq2i8glhbBxjtglc7toXq1wMg2na3JEjFpPQsbJ0NYAR9eI7OueaKkTy/oe+lX0hsUETZXidk2OEEE3/A1iZ8Hc20Uvjavegkv/K/ph5LgYh3Q+SCSdCUoQy7pexIedz4vPCei514xChT2aqS8nRX9QxIf2AXQ+VGeLpaVtYPcr8UyyvhPLCecP7TgkEsmwQqVSEeproHpQnA/DLF5VIpFI3IgUHyQST6Jdig+Dzwh2PrTUiUp3c2vfkR0gttN6iep+V84Hmw3qCihVhY9M8QEc7odJl4DBRUPLyClQfhSyN4B/tFgX4iQ+xM6Cot3QWAFvXgIf3+p4rLVOLA0BQtwwt/R8YVJ2SCybq3t2mfQX5W/b26SjMpnY1wSmK+x9PghJFsfY+m8Rn7LiT50rTidcIN47e1/vvg/pfJBIOtMhPvTyP7n/TUhY0Pd24HA1ne7nicXkEDx6cz60NztERVdYLfDDw1CZKe7XZDsea6o6vTFKJMfXCvdixMShHolEIhlmhPnrqXJnzwe1BtRax3elRCKReABSfJBIPAlTs5jUlAweI9n5ULSHDuGkvqjv7c3tIi7EJ0RMZL1xcecM/5ZaaDdSZAsnwGsExi6BqNIHmHGd68cjJ4uLieYqWPEwXPhvmPMTx+OzbxG9HD68BfK3QsFOx2PGcjAECodF+HjRvLqn/hCK+AA9N7DuL8pkY3MvApMijJxKzwdFfEg8Qyy3/AsSzhC59s5oDTD9Wsj8WogzIP531twNu18W96V4KpEIvALAO7hn50NLrRD5xp8rPlecxQdjefd4s4qjjuedDkqzaejdofD2avjolp4fL94HW54U3yN1BQ7nAwyMO0PiuZjbRMxg6tkyckkikXTD7c4HEAU5irgukUgkHoAUHyQST8LUIsWHQWcEOx8KnSbGG4r73t7SJpol+4RCY5m4uM/Z4Hi8Xkxc55nDRq7zIXkJjFkkJs9dETXFcXvsUph1U2fnQ1gqpKyE/C3ifmOZY/K/sczRxFppgFnm1LzambJ08AoSt3sSKPqL250PJWKZuFAszS0w/2eut51xg8inP/yJuF+WLiKsFLFFOh8kEgdBCT3/TyqTGuETO2/XWAFPpcHhjxzbthkdj/cUmddf2uo779cVLXUiku74tyJ73xWFO8SyvQneu1aID1q7+Kh8VtlsA9MgW+JZ5G0RRQJdm7lLJBIJEOrnZucDQOxsKN47cgvUJBKJ5CSR4oNE4kmYWmTl8GAzkqvqCnc6ooP65XxoE5PD834Gq/4GKjU0ljset09unTCF4D9SnQ9zfgI3fwnqHr4+wyeK1x2VBn4RrrdZcLdYTrE38lbiToxl4B8lboemCiGnvAfxofSQmDjR6E+/74MiPvQ26djR88GF86G1AV5YInpcuEJxPijxL4HxML6HnO2ICeJ3l/6huH/wPVDrRE+I858UrhCJRCIISuxZfFA+V8LHdxYfivcJobj8iGNb5+rL041danUWH3pwPhRsF84um1X8r2d9L/rBdNpmBwSPgfMeFyJkwXYRWweO2KWMr+CxpIFtbC0Z/WSvF9+vYxYN9UgkEskwJCrAi/KGVswWN4rbsTNFPzRX59USiUQyChkS8WHMmDGkpaUxffp0Zs+eDUBNTQ0rV64kNTWVlStXUlsrJkNsNhv33nsvKSkpTJ06lX379g3FkCWS0YGpSTofBh27+DDSKlssZlGRM/48kUvaH+eDuU3ELsVMFxPsvhGOiWfomPw63hZMgPcIdT70hd5HRAfNvaPnbcYuhXv2wspHxH0l7sRYBn528UGjFRPxrsQHYzk0VUDMDGHbdo62OhVcOR9MrZ3z2JUJxcby7jntRz+Dkv2Q8bXr/TeUCAEhKFH0ylj2kHh9PTFlNRTvEa8r/UMhsky8EObcdrKvTCIZ3Siigqvvl8pM8X0fGN95u9ID4nFn0UL5DNJ6DUDskpP40N6DKJC7WUz+Rk2FHx8TEUybn3Q8brMJ8Tt+vvg8CEoEbBA/VzzebBcfytJFJJxzJJNE0hcFO4SQJcVsiUTigsRQH8xWG6X1vfQlOl0UMb14r/uOIZFIJMOIIXM+bNiwgQMHDrBnzx4AHn30UZYvX05WVhbLly/n0UcfBeCbb74hKyuLrKwsXnjhBe68886hGrJEMvKRzofBRzVCxYeqTJHXnTAf/GPEBHJfmO2xSwr+kd3EB5vBn1qrz8h1PvSHi5+FmTf2vk1YCgTEiCz2imPi/dFY7ohdAtG82lXskhJBFDVVxDgNmPOh1hFh8vX98K/Jonk22CcU7e/l+iIx3h8fE26Hg+93HldXjGXCQaNWw5Wvw7Sreh+P4gh5e7UQWab2sb1E4qkEJYK51dEjBUSz+7wtUJkhXA9qtRAf2hvF/3jJAbFdJ/HhmIg0ipx8+rFLivig8+3ZkZC3SQgJs24WAoVK3Vn8rMkRFaEJ84RQeeYvxfroaeI7RnE+NFV0fy0SSW+YWqD0oEPIkkgkki4khvoCkF/d7L6DRE4R32dFe9x3DIlEIhlGDJvYpTVr1nDTTTcBcNNNN/HZZ591rL/xxhtRqVTMnz+furo6Skt7yIeVSCS9Y2oBve9Qj8LDUGKXRpj4UHpQLKOnQ2As1Pez54PWSXzwixJ9DBTqCjD7xwOqkdvzYSBRqSBiopj4a60Tk4iK8wHEhUlThZhYbKmDj28XDZ87xIcpIp6pNhcsplMfhxKzYrM6GkvnbhbVxa9fIDLZW+uE0AGiwW1lJmz4K7xztehfofUWVchWC+x8AV5aIRpF22xgLHXESfWHoHhIu0I4bubfJRrmSiSS7gQniqVz0+mvfgUf3ixcU+ETxLqgeMd2yme784R9WbpwWvmEDZzzITDWdexSc40QVccsglm3wB0/in4wzsdV+g3FzxfLGTfCpc+LzwKfUKc+OYr40EPTbYmkKyUHwGqC+HlDPRKJRDJMSQwVrqi86ib3HUSrh+ipIgpRIpFIPIAhER9UKhVnn302s2bN4oUXXgCgvLyc6GiRLR4VFUV5ucgJLy4uJj4+vuO5cXFxFBd3nwR74YUXmD17NrNnz6aysnIQXoVEMgIxNUvnw2AzUp0PJQdE5WroWAiIhYb+9nxwdj5EiYgghfpC2nxjAAgYzc6HkyFioog8UX5PzpP0SvPq8sOw91VI/wAOfyz6PQSPAa9AiJgkGjQ757efLM6Tfs014n5dvojcaq6Ggm1iQjEqTWxTXwgZX4rbSmzFgruhrQF2/Be+eUC4OPa/BT/8ScS8BMVzUlz+Evx8D5zzd9DI94pE4pKgBLFU3E/NNQ7XQFOlcD44b1e0RzSA9wkTwqapRfy/F2yHpLPAOxiaexEfdj4Pb13ee5NnRXwIiBVui65s/Dtgg9QVwpURM10c1/lzqGCHcIUp4olGC9OuFt8vvqGO2KUm+/m+dD5I+ovSyFw6HyQSSQ9E+nuh16opqHGj8wEgbo6IGT2xzr3HkUgkkmHAkIgPW7ZsYd++fXzzzTc8++yzbNrUuUmlSqVCdZJNWu+44w727NnDnj17CA8PH8jhSiSjA3O7mKSU4sMgM8ycDzabqGrvbfIIxIRx9FRQa0Q8UENJ389xJT40VYr+EQCNFbQYxOezdD7YiZgkXAUl+8V9/y7OB7UWdr8Mu14S6wp3iiplRQgYc6ZY5v7Yfd8WM+x60dEsuiecJ/1aasT+QbgPQExmmlvtzbQ1YqIv40uInQ23fANXvCZ6MgBsegx8w0VPizGLYOtToPeHs37Tv9+HRCLpP2HjRPTS3tfFfeVzxDtYLDucD3bx4cDbYjnB3vC9rhCOfyfODSZeCD4hvccu5W6CEz/A8W973qa1QcQo+Ud3j106ugZ2vQDz73bkXYM4rnOj68KdED9HiBNd8QlzxC41ytglyUlSuAtCU8A3bKhHIpFIhilqtYqEEB/y3el8AFj4C/E9/s6V4tpMIpFIRjFDIj7ExsYCEBERwaWXXsquXbuIjIzsiFMqLS0lIiKiY9vCwsKO5xYVFXU8XyKRnAQme/WGTsYuDSod2sMwER/yt4kond4mj6wWMQEdPU3cD4wDS7uj2rQnLF16PvhFAjZRYWu1QlMVzboggNHd8+FkUH7Hx74QS+fYJZ8QWP5HMdHfUASBCZC3VYgBUfbnBUQLUSB7Q/d9H3oPvv417Hu99zG01AgXBQinQ6k91mnMItD7Ofo++IQIp8aeV8Qk54TzRRTT5EvFerVWVD1PWS3s5Je9CAvugZ/84KjAlkgkA4daI/7HinZBwU4oscc3XPyccEfFzhb3vYJg3DkOcUIRCxUh0S8KYmYK0aK9URQruKLR7tDa/ET377TmGuF8aqkFgz94BXSPXdrxXyGIrHy483rF+WCziWVlhiNyqSu+Yd2dD7UydknSDzoamcvIJYlE0jtjQn3c2/MBRMHRLd+Ic/B9b7j3WBKJRDLEDLr40NTUhNFo7Lj93XffMWXKFC666CJef11MkLz++utcfPHFAFx00UW88cYb2Gw2duzYQWBgYEc8k0QiOQlMLWIpnQ+DzDBzPiiRA0rutyuqsoRYFT1d3A+wC74NTpF3ptbufQbM7WLSWUGp4jeW2SeWLNSrRUVugHQ+CGJnign+rO/EfeeG0wBn/BwmXyaaSy++H9rqAZvD+QCQvETEpphaHessJtEQGoSdu6EU3r/ede+OllpRCQp28eGgaDLuFy5cLxV28cErEK58Q0xkgmMCE4TjJWKiuK00lA6IhlV/FUuJROIeZlwnJu+3PCni8kJTYMJ5/P/27ju+qvr+4/jrZickJIQQCElYYe89BQTEjYo4qNatuEdbre3PVm21tVXbqnXVirNuVFBxCyoCsvfeI0ACCYTseX5/fHJzE5Iwb5Kb5P18PPI495577rnfEw65934/5/P5cPcK+z8MVv7vF+/CZW/C+U9ZY2mAAxssk6HruZZl4M6YqK7vQ1aK/b1KXmKlkcpbOx2+/B1s/Mr+VgSFWzPp5KWWmVFcZH9bOoypXEotNNrq8Bdkwa5Ftq5NNRPEYc0hOw0Ksm17l58FUXwlwC++K3Wdvce1GVbXIxERH9cmugk70nJwavq9JaQpdDrLvge4M8XXfw7rZ9bs64qI1LJan/1JSUlh4sSJABQVFXHFFVdw9tlnM2jQIC677DKmTp1K27Ztef/99wE499xz+fzzz+nYsSNhYWG8+uqrtT1kkYahLPMhrG7H0dj4Ws+H3YttmXqUHgF7l9uydV9bRibY8uAOaN3Pbr9xgZXymPSy53lFeRAQ4rnvDj5kpZQFvTZlhxIc4Eeb5joPAZuEazvcvnQEhdsVw+W5XHDpq/aF5OB2z/q43p7bSWNgwQuwYaaVYDm00/Z3aIcFKXbOh5/+ZdkVoc3ggn9XfI2cdCuBkryktBnsSk9GRtPWnlTw0CjrAXLTLJvEcTegdut0pmVWuYNWIlLzgprA8Lvguz+BfxB0v6jq7Vwu6H6B3S4pAb9Ay0QozPE8JyzalrkHKwdCHQey9kP3Cy2rat8qaFtuEjerNAshY6f93QkOtyb2P/zd/h4172iv5X4PKa980GPXz1berXxZpvLCYiyo4Q6kxvaAlFX2t6tJ86P9pqSxc5cn7DC6bschIj6vbfMwcguL2Z+ZT2zTEBzHOeGy4Metyzmw4m17/4tOgg9vtO9e7hKJIiINQK0HHzp06MCKFZWvuG3evDnffVe52Y7L5eK5556rjaGJNGxlwQdlPtQuH8p8cBxP8OFoDYp3LSxtNl06udyii01U7VkGPS6yifDkpbavM/4EkaWZEcUFR5RdKpf5EGTlvham+jOgbTOCA/y9e2z1WftRNjkX3rL6bfwDbOI/LAZwrJ66W9vh9u8z7XrPOr9A6H059L7MGsQufMnWLX8bTvs1RLe37UpKrOdEZKI9nrHbmtd2t+xDmiaAU2y33RkPYdHQbkTlMY578CR/ASJySobfCas/skn4+P7H3t7Pz5rAp2+10kztR9n6siBAFX0f8jOhKBdadrcg86EjSh25SyCB/a1wB1J3L7IgxE//tPtVja988GHnAguuBlVTItIdYNi/zpYJA+y49yyF9G02jgHXet6XRNy2/QjN2nt6oIiIVMN9kdSDM9aw7UA2O9KzeeP6IQxuH+39F0saaxcPrJ1h77WF2XBwm5XB9dP3JRFpGOqk54OI1AF32aUgXXFeq3wp8yFjl/VfiGhtkzQFVTRScxzY/I1NRvmXxqcDQ6FVT7syHmzSqaTQJqXL9xMoyqtYdik8FnBZ8KG0MeiS9ECGddDVqRW0L70KM+IY5YlcLuh7hfVUKH/1VXAEXP4mnPdPuOJ9uOUn+P1uuPglaDuiNBvFsYwHlz/MetTz3PzDNjEYFm3lTNZ/ZvcTB9vjTVt7tnUHH0TEt/gHwkXP2RWTSeOO7znuCdjTf+/5exJaOqmSU0Xwwd3cObyVPffIJs/ZqZ7bIZHWaB6szA1YeafgpjbGI7kzLrIP2PtMdf0eAJpYT7iy/hXuvhbvXQVf3GdN7+c8Wf3zpXEqLoLtP3kCbSIiR9EpNhyXC2ZtSCW2aTBNQwL506drKC6pge9zweH2XWDhS7DiHctiLi6oHOQXEanHVHRbpLFQ2aU64kOZD7tLa2n3+6VN0KSut6tGy0vbbJNKI+6uuD5hECx7y67CObDR1jWNhyWvwaj7bPKrqKBi2SX/QGsOmrXPSvYAB0qaMjRJwYcKWvaEJi085a2O5sxHql7f5Zyq1weGWo31g9ssE+LgNiuD0v0Cy25wX+Ec2swmAFPXWvmndiNtfYXgQ+TxH5OI1K64PnDX0uPfvsu5lknVsVywonzZJbBm85EJVpPa3Ww6PLaa4MMB21/OAQsyBId7HgtsYldytu5rWRdHcmc+pKyx7IrYrtWP2122acMXtkwoDT4U51vwddU0WPUhnPVXZXqKx94VFmxXySUROQ4JzcL46p5RxEWGEBESyCcr9nDXO8t4fd52rhvRzvslmM59HDZ+be+dkYlW3vbAZoju4N3XERGpI8p8EGks1HC6bvhS5sPuJRYc6H2Z3U9ZXXmbTd/YsuMZFdfHD7TJo9R1nuDDuAdtQmpzacm84nxLGy4vvBVkpkD2forxJz8wgj4JUV47pAbBzw+ungFnPFQz+7/4JbjuC3udUffZ5N0nd8KC/8DhPbZNaGnmA1j6d0Bp+azyAREFH0QajiE3wyVTK2ZRlS+7VFIMU8+Ety6xBvbuzIZqgw/7rRxb/EALMpTvX9P/alu2rqYklPt195QGT5q1q37ckfEQ2Qb2r7f70UnQ7QJrpN35LAuu52eoWWdNyEo99ja+KDMFZv7KSgu2U+aDiByfzi0jiAgJBGBC7ziGdWjOnz9by1VTF5KRW+jdF4vuAENvsfewlj1tXdom776GiEgdUvBBpLFwl9hR5kMt86HMh+0/2sRQdJJd3b7kNfj4VijIgf0b4MObYOkb1uvhyMkf99WlyYst+BDeEnpOsgnrFe9Y74DiAs+ktVvTOMjYjZOVykFXUwa2iyEoQG89lbTsUTHLwJtCmnquaPYPhEtegZgu8MVv7d8cbPLPPQHY5VzPc91jCgyrWFJLRBqeoHCboM09aMGFgkzYtQC+fbhc2aWWFnzITbfa1G7Z+60k0k3fWWAjqDTzweUHw++whtPVZWi5//YkH0fwAaBNaVmmkCj7u3T5mzDgGlvXbqSNb/lbJ3jwclTpW+HJzrBrUV2P5MS9ewUc2AST34bwFnU9GhGph1wuF69fP5iHJnTn561p3D9tJY7j4DgOf/18HV+v2ee9F2vS3N4XDyj4ICINh2aARBqLsswHBR9qlfuq0q8egK3f1904slJh3yroONaugG/dz64yXfG21dheOwNWvW9NPKuaIIruYFfH715kH4ZjOttEds9JVv4i54Btd2TwIbY77F/PoX3bSSluysX91QS0zkV3gBu/sVrvme7Mh2ZWIsvlB53O9GzbtPTfS/0eRBo+l8v+FuSkWwk+gFa94Ofn7e++y9/eB9z9Ig7tsmVxoQUsmpSb2HVnPjRrZxlUdy7xBA2OFBBspZkO7QC/AGt0fzTu/YTHVn7Mzw+6nAc75ltQ/Hhs+KLqPhfikbkPcDzvGfVFYZ591hl2O3Q+89jbi4hUIyjAj+tGtOf+s7vy5Zp9vPnzDuZtSeOlH7dy8/+WcPObizn9idnM23zg1F+seUfP+7CISAOg4INIY6HgQx0pDT4sfR2Wv113w9gy25ZJY2152Rtwzad2O2OXXeXapAXcvgjG/F/l57tc0O40WPeZlV6K6WTre0+2cksr37P7/kcEH1r3hZJCwvYtIsOvGef0PEZTZak9I+62urJgmRGDb4aJL9kVV24hkTYpqJJLIo1DZIJd5e6e9DjtV9aEfv1nNtnv52fNMMFTeim7dKKlSYxnP+7Mhxbdju913dkPkYngf4yWdG2Glb5eFcEHsEyyolw4tN2zznHg7cth1l8qbpu2Bd6ZDPP+fXzjbKyK8kqX+XU7jhOVvsXO3xZH6SMiInICbhzZnpGdYnjiqw08//1mmoUFcl6vOOZtSWN/Zj6vzN1+6i/SvJOCDyLSoCj4INJYlDWcVs+HWlW+nra7RnVd2PKdlUhq1cfuh0VDwmC7fWiXBSCi2kCLztWfI6f/zho25h+2zAeA+P623x3z7H5p5kNJicO/v9vEnxZbqZ5gJ4+mMXGEBPrX1BHKiQoMhQlPQ9fz7Wrm2K7Q+9KK27hcVnpJwQeRxiG+P+xZbqX4QiKh8zmWjZC515PZ4M58yCjNfMjeb8vymQ8hTQEXxB5n8CGsNPhwrJJLYBPJIVEQ0arqx92vmbrOs27r97DxS1j1QcVt15UG4bf/dHzjbKzcQQf3hSz1xf4NtnR/ZhEROUUul4uHJnQnp6CYuZvTuGxQIs9e0Z+VD53JlUPb8v2GVNKyTjFQG9PR3nfLlzcUEanHFHwQaSzcwYeAkLodR6NTPviw8fjLQHhTcaFlPnQYY1etugWGWP3ujJ0WgHBfBV+dlj2gf2ld7ealmQ/uyWl3+Y3S4MP6fZn845uNfLE7mCxXEwDatW3nxYMSr+g4Dia/VfG8ONKgG6DvL2pvTCJSd+IHWK+HjV/Z3/mgMCvTB/Z+ARZkCAixMklQdfAhqInV2B962/G9bugJBB/8/OAX71jpuKq06GLL1LWedXP+YcuD2+DwXs96d2PqPUs9vbGKi+xHPNxBh/qW+XBgI+CyEiYiIl7SMTaCq4a2xd/PxZWDLRvQ5XIxsV88RSUO/561mX9+vaHaxtTbDmSTW1Bc/Qu4v2el1uGFayIiXnSMvGYRaTDys0qbSSrmWKvKZz4U5dpkTXT7ytvtWw0fXAtXT7eyF6fKcWD6rRZ42L8BslOh+4WVt4tMtNIZGbuh67mVHz/SGQ9ZH4D2Iz3rwltZU1IoK7u0N8MmKl68eiDhswbAth8Jj1bJpXpp6K11PQIRqS3xA2yZuQfaj7LbbYdbvx938MHlsuyH7T/Bwv96suWO7MFwPO8pbicSfHCPqTrBETa+1HXw2a9hxbtQmA29LrXMh53zrF9R5j7YvRASh8Kun2HXQkgaA9NvgZw0uOrj4x9/Q+cOOrjLL/m6Of+083L/BohKtCCaiIgXPXBeN345tC1tmnv+vnSLa0rXVhG8Nm972bq7xnXinYU7eWvBToID/GgeHsys9ancMjqJ351TTUm4NsMAF2yZBYmDavZARERqgYIPIo1FfgYEN63rUTRCrop392+w4ENmijVpbtnD1s9/DtI2wZ5l3gk+HNoJK96xgFNIlF2B2vW8yttFJcLmWda3IbLNsfcb2gxG31dxXURLK8UEEGBllvZm2ARFXGQIxPWFbT9WX59bRER8Q/NO9lkh/7CVfQBoMxzmPl0xuBDbDdbOsPes+IG2rnzPhxMVGm3L4w0+HEtsd9j5M2SlWHCh3Wkw/A5Y/7k1o+45CRa9bNue+Qi8chbsmAsJg2DtJ7a+uBBWvg+hUVW/fzYmZT0f6kHwISsVZv/VsnPCYyGmS12PSEQaoEB/PzrGhlda/7dJvVmdnMHXa1N4a8FOsguKmfrTNvokRILLxdKdB4mNCGb+lqM0pg5vYRcDbPoKTr+/Bo9CRKR26BJokcYiL6O0BrPUKnfmgzvlf39pDepvHoSXx1ujzpx0WP2hrXeXLzpV+1ba8uoZ8KvV1U+cRCZaYAosEHEyIsplNJSW9dqXkYe/n4uY8GCIK+0zUb4kh4iI+B4/P0+ZJXfZhzZDITiyYv+Gi16EO5dCWAwkLwb/oFO7wMGd+VBVZuDJiO0Gh5OhpAjO/xeM+b1lRCQOtv4PM38DPz5hGYEJgyxIvv0nu8q0ON9+UtfC1w/AT//yzpjqs/oUfFj2JpQUWvmw9C2eMlwiIrWgb2IUvxzalptHdSAtu4CpP23j8oGJTL99BDNuH8HyB8/k0oEJrNlzmJyCo5T463wWJC+FrP21N3gRkRqi4INIY5F3WJkPdal1f4ho7Wl+mLLaykDMewYWv2ITHS5/K3/kDXtX2P5a9qhY+ulIUeWyHY7V86E67lIcYBNQWOZDy4hg/P1c0OVcGP07u/JURER8m7v0Ukxp8CE0Cn6z3soWuQWFQfMk6HKO3W/S4ujvNccS1QYCQqGZt4IP3W3ZZji0KNdsuO1wyzJc9DIMuRUuedXG3fVc2DkfZj1a9j7Ginch96CVb3Kcyq+xZzksftU74/V17qBDoY8HH0qK7d+k3UjPuaRm0yJSB4YnNad7XFPaNg/jjxO64yr3HjmwXTRFJQ7Ldx2qfgedzgQc2PxNjY9VRKSmqeySSGORf9iuUJTalVna2LJ5R2vKmbrOGlke2GjBgfnP2ZWZSWMhI9maP3vD3pV2tZ+7Fnd1ygccvJL5YD0f9h3OpVVkaXPzoDC76lRERHxf3ystW7J8uZrqauZ3Pd+uND+VkksA/X4JHc/wXoZm6/6ACwbfWHH9gOss2NB9oqesFMDwu2DNdLswoPdka0S99A17rCALMnbBp3dDp7Ng6C22fu7TsOYj6DiuYiC/IaovPR92L7J/q/F/gvStFkxS5oOI1AGXy8U7U4bi7+ciPLjitFv/Ns1wuWDx9oMMT6r8/pmWlc/zSwL5fVhLAjZ8AX2vqK1hi4jUCGU+iDQWeYdVdqkupG22ZfMkaNHVgg5pm6C4AEb+2rIGht9pPRkiE06+7JLjVMya2LsCWvU+9vPcAYfgSAiJPLnXjmjluV1admnvoTziIo8R+BAREd8T0xHO/yf4H8c1Sh1GQ2CTUy+r5x948gHwqsR0hF+vtd4O5YW3gFH3VQw8gAXOL34JwltZICSutwUdXKVflTZ+ZSWZ1s7wPGfPMluufM974/ZVhbm2dAchfFXKGlsmDIYht8B5/7DbIiJ1IDI0sFLgwb2+S8sIFm1Pr/J5z83ewtS523kvqzdFG7+BgpyaHqqISI1S8EGkschX2aU64S790LoftBkChTmw7H+2rsu5Njly5qOWoRCVePJllzZ9DU/1tiv9MlMga5+n18LRuDMfTmXS54iyS47jsDcjz5P5ICIiDVNgKEx4yoLovqZp6xPbvmUPuHcDtB/pef/sXFpWyt2ceu9yy17MPQgHt9m6Fe9VXZapISnLfMit23EcS+o6CIqwizmCI2DQjdbHRETExwxqF83CbenMWp9SYX1aVj5vL9zBWT1asjl6DAHFuWSv/aqORiki4h0quyTSWCjzoW6Mug/6TIboDhAWbVdRuks5HFkKIDIRcg7Y1S3VlbioTvpWcIqtBnVwhK2LO47Mh5CmlvFwsv0eoGLwISCEw7lF5BYWE6fgg4hIw9f7sroegffF9bVll3Ms4LB/vd0vzIH96yAnze73mAhrPobkJZAwsC5GWjvKGk77eObD/vX22epU+o+IiNSC28YksWTHQa5/bTG9EyLpENMEP5eLHek55BeVcN9ZXSkuSiL9P39lz5x36Nl3Yl0PWUTkpOlSEJHGoCjfGhor86H2+Qda4AEgtJk18sw/DM3aQVCTitu6AwBHZj8czxWV2fttmbrWUwqiVa/jG+OYByrXxT4RAUEQ1rzs9t7DdmWkMh9ERKRe6nwmDLgWup0Psd1sXcvS99TkJZ732TMetgD+tw9DcSHsmNcwsyDKgg8+3vMhdR3Edq3rUYiIHFNcZCgf3TacX4/vTFiQP0t2HmTRjnRSM/O4fkR7OsaG06V1MzY1G03bAz9y95s/sykls+z5juPgNMT3GxFpkBR8EGkM8g7b8mRr+ov3JI21ZYtulR9zlz7KKNf3Yfnb8M/u1oz6aNzBh5S1sGuB7f94/72H3GyNPk9FeGnfB/9g9mbY5IQyH0REpF4KbQYTnralO/jQ/yq77w4+NGtnP+MehO1z4Lkh8Oo51h+ioXEHHQp9LPiwahq8dxWUlED2AcsedZe7FBHxcSGB/tw1rhPvThnGnN+OLfv54/mev2M9xl5BhCuXnC1zmfLmEvIKiwF4cMYahj02i6/X7FMQQkR8noIPIo1BfmnwQZkPdS9pnC2rujIvMsGW5YMPW3+AzD0w/Vb7cl2d7AO2TFkFuxZZf4na5G46HRDMvrLggxpOi4hIPde6v5VMTBpr2Yvb59r7rLs004DrbJvMveDyh92LTu31Xp8AX//hlIftVWU9H3ws+LDhc1j3CWydZVkPAC2U+SAiDUd4l9PBL5CHuu9j24FsHv98NTunXsPaBV+TV1TMlDeXMOgv3/LfH7fW9VDFV+1ZbsF6kTqk4INIY5CXYUv1fKh7CQNh8BToVUWN7IjWNnFxqFzwIXWNBY22/QAr36t+v+7gw6GdkJ8BiXUXfNibkYefC1pEBNfuGERERLyt+0Vwx2KI6QQJgyF9i10UkDTGHvfzh6unw13L7ap7d0mmk7VnBexdeYqD9rLC0kbTvhZ8OLjDlj+/4OnLEVtFZqmISH0VHA5thpKQNp9fDE5ky4KZtNk1ncfC3mHe/WN4fFJvEqPD+Mc3G8gtKK7r0YovWvhf+OL+uh6FNHIKPog0Bsp88B1+/nDuE9CyirIA/gHQtLUn86G4CPZvhAHXWFPnrd9Xv9/s/RAU4blf28GHpqWBE/9g9mXkEhMeTKC/3mJERKSe8/OD5kl2e+it8It34Z7V1hPCLSQSIlpC674WfDjZEhgF2XYBQVbKqY7au3w18+HQTvAPgs3fwqKXITgSIuLqelQiIt6VNBZSVvHoGbE83mktAJ2LNxK2+ycuG5TIvWd2Ia+whB837a/jgYpPKsyBgqy6HoU0cpoZEmkMyno+KPjg82I6WdNogPSt1ig8toeVdNiztPrnZR+AdiPsdliMp8l1bRk8xSZk/ANIzcynZVP1exARkQYmpCl0OcfTo+lIrftBbnrF8onlLXkd3rq0+uBE5r6KS19R1nA6v27HUV5BDmSnwsAbrPdGYS4MugFcrroemYiId5X2DPRf+S4tk7+Ffr+0QOusR6Ewl8Hto4kMDeSLVXu5851l3PPuMg7nFbJi1yF+/f5yLnxuLnsO5dbxQUidKcy19/HioroeiTRiAXU9ABGpBcp8qD9a9Yb5z9kX/NQ1tq5ld5vI2PilBZKODCIV5kFBJsQPhG0/WtZDbX/5Do+FzmcCkHI4n9ZqNi0iIo1N67623LMMotpUfCwjGb78PRRmQ1aqZUocKXOvLfMO2Xt7oI+8l5Y1nPahyatDO20ZPwDO+VvdjkVEpCa16g3NO8K3D9n9fldD+9Pho5vg9QkE/vIjxnWN5aNlyQD4ueDz1fsoKCohLMgfF3DNKws5t1ccIYH+3DiyvTLUG5PCbFsWZEFoVJ0OxdvW7Mlgz6E8xnev4jPVKcgrLMbfz1Xl/5P3F+3irQVW9vF353RjWFJzr752Q6W/OCKNgTIf6o+4PlBSaI0TU9Zak8uYzpb5gAN7l1d+Tk5pv4fwWLj4vzD2gdoccSX7M/OIbap+DyIi0si07Al+gZBcRabiV7/3TAC4Ly44UvmMB18qveSLmQ+HSvs9NGtbt+MQEalpfn5w0yw48y8w/E5IHAy9L4VLpsLuRbB2Ouf0spJzN57WnnenDOPCPq15fFJv5v9+HC9fM4gd6Tk8M2sTf/9yPTe9sZiMnMJKL7NqdwY3vLaIP3+6lux8710l/83aFIY99h2zN6R6bZ9yAtwXDvhI6SXHcSguOXZ5yozcQl75aRtpWZU/e5SUODz51QYueHYuN72xmBd/2FLtflYnZ/DduhRW7DrEmj0Zx3ztb9emMPgv3/LAx6uqHNMjM9dyKLeQZk2CCApQtuXxUuaDSGOgzIf6I66PLfettPJL0UkQGGqlHACSl0BJEbQbCf6Bti67tL5nkxbQ9dzaH3M5hcUlpGUXEBvhI1drioiI1JaAYIjvD/OesYsILnnFmoXuWwVrZ8Dgm2HhfyBlTVkZjQrcmQ9g2RG+MrFe1vPBhzIf3M2mo3zkdyQiUpNCImH4HRXXdb8I/G6GtC2ccUYsn9wxgh6tI/H3czG4fXTZZsOSmrPogTPw93Px6Yo9/GH6akY/OZs/nNedSwYkADbheuMbi4kICWDWhlS+XZfC1GsGktQinGLHqXQFuHsC19+v+snX4hKH/87ZyuNfrqfEgT98vJpvfj2KsKCqpyEzcgqZv/UAwzrEEBkWWOU2eYXF7ErPoVPLiCofB0g5nMe361II8vfjgr6tCQ7wr3bbRsEdfMiv2+CD4zj86r3lfLUmhaAAP777zWhiwqu+YPFQTgFXTV3IquQMnpu9mT+c340L+8Tj5+eipMTh/g9X8sGS3VwyIIG8wmL+9sV6svOL+PX4zrjKVYDIzi/i8v/MJ7tcM/ZxXWN58aoBVWY1uP8fBAX4MX3ZHn5/TjeaNQkqe3zqT9vIzCvi3SlD6dE60ou/nYZPwQeRxiDvMASFW7Nj8W3N2lvj6D3LLQDhDjo0aW5fsH943JpGnf8UDLzOHssuzXxoElMXI67gQFY+joMyH0REpHG65FX4+XmY/yys+wT6XgHz/m2fw8b8nwUhUo4n88GH+j64Jy5KiqxmtL8PfIU8tAMCQizrU0SkMfLztxJ/B7fhcrnonRBV7aaRoTaZ/4vBbeiTEMVDn6zmdx+upFd8JO1iwvjzZ2vp3DKcabcOZ/3eTG5/eykXvzCP8OAAHAdm3Tu6LGiQlpXP1a8sJLegmOd/2Z+urSpf4JhfVMwvX17Aou0HOadnKyYPbsM1ryzkkc/W8tCEHoQEeuYlUg7n8a9vNjJtyW6KShx+ObQNj17Uq9I+n5u9medmbyanoJiHJ3Tn2hHtK21TXOJw1dQFbEyxifYDWQXcenrScf06M3ILeXXuNn4xuE2l/oW7D+Zw7wcrcOHiiiFtmNCndbX7WbA1jaahgXSLO/qFnwVFJSzbeZDtadlM7JdAUEANFaYpzCl9weya2f9x+mhpMtOX7+HsHq34cs0+pi9L5saRlftUlpQ43PzmEjbsy+SRC3swbWkyv3pvBf/5YSvDkpozf0sa6/dlcve4TvxqfGeKiktoEhTAv2dtZnNqFn84vzvxUaEAfL5qL9kFxTx+SW+aNwlidfJh/vXtRm54fTGndWzOLwa3ISIkkMN5hQQH+PHIzLV0ig3nyUv7cOFzc3l13naSD+aSkVsAwJxNBzi7RysFHk6CD3xyFJEal5+hrIf6ws8P4nrD8rftCsPTf+95LL4/rPnYSjHtXlwu+ODOfKj74EPqYbs6UpkPIiLSKEXGw5mPwtpP7D27/ShY/SEMnmK1llv2OErwYa9dgFCQ6VtNp8uXWyrO953gQ1QbNZgWkcYtugOkbzuhp3Rv3ZT/XDWQsf/4ngc+XkW3uKbsTM/hzRsG0zQkkMHto/no1uH838erKC5xmLcljWlLdnP1sHYkH8rl+lcXsT0tm6ahgVz03Fw+uHk4vRIqTsa+v3g3i7Yf5K8Te/GLwYm4XC6uG9GOV+du58eNB3j7piG0bd6EzamZXPrifLLyi7hiSBu2p+XwyfI9/OG87hUCFDvTcvjnNxsZ0TEGPxf86bO1xDYN4dzSclPp2QVs2Z/FtgPZbEzJ4olLevPpyr289OMWrhrWlvDgyu9by3YeZPaG/dwxpiO5BcVc9coCVu7OYPb6VN67eVjZ62/Zn8Xkl34mr7CYmPBg7nxnGV1bRVTKvigpcXj8qw28+MMWIkMDmXnXaSQ0C6vy3yCnoIgrX17Asp2H7LmOBYZqRFnZpcyTenpeYTGFxSVEhFSdjXI8MnIL+evn6+jfJornr+zPxBfm8cHi3dxwWvsKmQoAby3cyYJt6fx9Ui8uH9SGK4e0ZcaKZN6Yv4O3ft5JhxZNeOryvlzULx6AAH8//japF21jwnjq2018uy6FXvGRXNw/gU9W7KF9TBMuHZCAy+ViXLeWhAT68cIPW/hx437W7jnMhD6tuemNxcRFhpJ8KJfXrx9Mn8Qo+rWJ4pnvNhHo7yKpRThFJQ4T+rTmN2d2PunfQ2Omng8ijUFVTYrFd7XqbYGHhMHQe7Jn/dg/wmVvQNI42FOunnRZ5kOL2h1nFVIzbYKipTIfRESksXK5oMdFsGUWfHKnrRtyiy1b9oD96y2DIG0LPNHRLigAOLwXWvW0iwx8reeD+yKWwry6HcvGr+GNC2HvSpVcEhGJbm/BB+fYNfQrPK1JEL87uyuLdxzkzZ93cEGf1ozs5PkumRgdxps3DOHtm4bSv00UL8/ZxvRlyZz/zBySD+XyyrWDmHnXaUSFBnHPe8uYviyZBz5eRVZ+EXmFxTw/ezMD2jYrCzwAPDShB2/fNITDuYXc/+FKtuzP4uqpC/H38+OLu0fx5wt7cvOoDhzOK+L1edt5cMZq3lu0k7zCYl74YQv+LhdPXNKbF385gH6JUdz7wQo2p2axOTWTCf/+iUtfnM/9H66kd0IklwxI4NfjO3Mwx17r/UW7+HHjfjalZJJTUETK4TxufH0xz3y3ietfW8T5z85h/d5MbhrZnhW7M3j4E7tIoLjE4Tfvr6CouIQPbx3OB7cMI8jfj7cW7ASslNDPW9PILypmxopkXvxhCxP7xVNc4nDH28vIKyyu9LsvKi7h1v8tZcWuQ/x1Yi/aNQ9j5sq9lbZzcxyHL1bt5ZIX5h21b4bjOCQfqqI8ojvz4STKLu1My+Hcp+dw+hPfs3zXoWq3+3lrGnuqeu1SX67eS1p2AX88vzt+fi4uHZDAhpRMvt+wv8LvaF9GHn/7fB0jO8Vw2cBEAPz8XEzsl8DHt41g3SNn8+U9o8oCD24ul4vbTu/I7HtP5/rT2lNQXMIfpq9m4bZ0LikNPLjdPDqJ5Q+eyZ1jOzJ9+R7ueW85bZs3ITjQj/N7xzG6s/0/uGV0EvFRobx+/WC+vGcU3/56NE9e2oe4yNAT/j2KMh9EGof8w8p8qE/aj4Qlr8J5/7BMCLfmSfaTsga2fGepk0FNLPMhIMRKOtSx1EyblFDmg4iINGo9L7beD1tmwVmPefo3tOwBxQWQthlWvW/v4SvegYSBlvkQP8AuJvCVzIfiInCKISTKPk8W1WHwIS8DPrnDE5jpNL7uxiIi4guatbcr2vdvgJ/+CWf99biz4S8flEjb5k1IaBZKQrPqJ1SnjOrALf9byj3vLadbXFOeu6IfHVrY985/XNaHK19ewD3vLQcg5XA+MeFB7M3I48lL+1S6qn14Ugz/d143fv/RKs7814+EBwfw1o1D6Bhr+xvWoTnxUaE89sV6/FyWEfDHGWsoLnGYPCixrBzS81cO4Nxn5jDxubnkFBbTLCyIP5zXjR83HeBXZ3TC5XLRNzGKyYMSeXfRrgqT+y4XRAQHUFTicMvoJF78YQvtY5rw9k1DGNgumuAAf56dvZkurSJIzy5g+a5DPD25L51LMx3O7dWKD5fs5r6zujB9eTIPfLyaK4e0YcmOg3SKDeefl/Xhy9X7uO3tpdz0xmIu6hvP2r2HiY0I5rzecXy8NJkfNu7nLxN7csWQNiQfyuGF77eQlpVP89IeCBk5hXy/MZUerSP56+frmLU+lQA/F/e8u5wv7h5J66jK/15Tf9rGozPXcemABP5wXndP34xyDadLShyyCooIC/RnQ0omB7MLadYksFIZoaz8Il6bu42pP23DAcKDA7j8P/OZ0Kc1E/vFMzypedm/7fuLd/HbaSsJCvDjllEduOeMzvgd0QtkwdZ0YsKD6JsYBcCEPq35y8x1XPfaIlo1DeHTO0+jRUQwj3+1nsJih79c1KvSuQNH7zECEB8Vyu/P6UZJicN/ftzKx8t2l/U1OdJtp3fk42XJpGbm85+rBpT9+7qd1aMVZ/VoddTXk+On4INIY5B3GMKij72d+Iau58H9263RdFVa9wenBPaugLbDLfMhLMYnSg+kHM7H5YKY8KBjbywiItJQxfWFlr0gphMMvdWzvmUPW+76GVa+b7fXz4RznrCAQ0QrCG9pDad9gbvJdGgkZFC3wYfZj9nv5eKXYcELVTftFhFpTKJL+x78+LiV+IsfAENuPq6nulwuhiU1P+Z247u34rdnd6FzbARju8ZWmFge0TGGf1zaB5cLDuYU8shnawG4aWR7hlez78mDEpm/JY3iEocHJ3Sv0F/Bz89VekV6Mn+d2It9GXnMWp/K9rQc7hjbsWy7VpEhPH9lf/7741a6t27K5MFtiI8KrdRD4G+TevOnC3uQejifvRl57M3IZduBbFYnH+bSgQmc1aMVF/ePp010WFmZpV+N78yq5Az+9Kkdy1k9WnJBuR4PVw1ry/Tle7jlf0tYvP2gBVBKMyEev6Q3LpeLc3rF8fik3vz2w5XM2XSAIH8/CopLePq7TRQUlXBBn9ZcOcQuSjivV2uem72FL9fsK1v3fx+vYuYqC5gE+rt48PzujOrcgguf/Yl73l3OO1OGVpiILygq4b9zthIXGcJHy5L5em0KY7q0YOm2A/xYbP0K8nIOM/mFeSzfdagssON231lduH2M5/f7h49XMX35HkZ2iuHhC3oQGRrI375Yz1dr9jFtyW56tG7K69cPZv3eTH7/0SpO6xhDdJMgnpm1mZTD+UwZ3YEWEcE0LS3VtGBbOoPbR5cFFCJDA5lxxwiW7jjIgzPW8PCna7hqaFs+WprMracn0aZ51eWqjpefn4tbT086ar+P0CB/3rpxCAdzCisFHsT7FHwQaQzyD0OzdnU9CjkR1QUewHo/ACQvLQ0+7PeJfg8A+zPzaN4kmAB/VfUTEZFGzOWCm3+wEkrlLw5o0Q1a9oTP77MMiI7jYfM3sHW2TfRHxJUGH3wk88Hd7yEkqvR+HQUfiotg6evQ5xfQ+1L7ERFp7KJLJ9vXTLflxq+OO/hwvPz9rKRNdSaVXlnuOA7hwf50aBHOoHbVX/jocrl45hf9qn188uA2TC7tf9ChRTjDO1b9PXdoh+YM7XDs4ElwgD+J0WEkRlc9oX3kxLO/n43vzfnb6d+2GUPaN69wFX7/Ns2498zO/HfONkIC/fjothFc/coCCopKuLCvJ0hx6cBE2sU0wd/PRd+EKJIP5fLHGavZmZ7DIxf2LNuuW1wEHWPD+dMna5m9fj8D2jZj5qq9XDu8HfFRoQzt0Lysp8YjF/Xk1++v4NlZm7n7jE5l+/h0xR5SDufz2nWDaNk0hMe+WM9361PpFAWUvo2/P3cdq9ITuH1MUtlxx0WG8r+fd/DEVxv4cMlu2sU04f/O7cpnK/dy/Yj2PDihe9lrPHlpH/4ysSczlu3hgemr+POna1m+6xDtmofxn6sGEBbkT9vmYfx71mbeW7yLNtFhfPvr0aQcziP5UC5TRlUMDHVuGUHnlhEcyMrnya83MnPlXmIjgrntOBuEe0Pb5k1oe+xTSLxAwQeRxkA9HxqW8FhomgDb51ggYvdCaDeyrkcFWMPp2Aj1exAREcHPv/I6/wCY/Db8d4xN7F/wDPyrJ8x/1h5vGgcRLWHfqtoda3XcwYaQyIr3a1vqWqtb3XFc3by+iIgvimoLuKw8XkAobP/JU5q3lrlcLi4fVENNk2tZZGggd4ztVOVjLpeLO8Z24obTOpBXWEyzJkF8fNsI8gqLCQ6o+L5fPgiTGB3Ga9cNxnGcCsEMl8vFy1cP5I35O/hkxR6+XZdCu+Zh/O6crhWabgNc3D+BOZsO8PR3Gzm9Swt6J0Qybclu/v7lerq0jGB05xa4XC7euH4wAEUZ++Bf9tyczEM8cUlvLu5fsQzRgLbNaB/ThI0pmXy9NoUlOw5S7DhcO7xdpWMPDvDnskGJbD2QzYs/bAHg7ZuG0KS0ofdvzuzCsKTmLNt5iCe+2sC0JbsJCrCLEod0qDogdfPoJDJyC2kVGcqEPnGn1NhafJeCDyKNgXo+NDydz4TFr8DGLy2rZfyf63pEAKRk5hGrZtMiIiLVa9YWbvgGctKhaWsrt7juE3ssIg7CW0F2KpQUVx3AqE3uBtOhURXv17Rtc+CbP8LEl6BFZ9i9yNYnDKyd1xcRqQ8CQ+x95HAyjPwNzH4Utv4AXc+t65E1eKFB/oQG2Xt0TPjxf/+tqpdBu5gmPDihO/ef04Vv16bSpVVEpcCD258v7MEPG/fz5NcbGNs1lj99upY+iVE8NrFyn4SAEs979i1DW0L/yv0P/P1c/Gp8ZwD+88MWHvtiPeO7tzxq6aO7xnXk67X7GNQ2muFJFTNThifFMKxDc75dl8KzszaR0CyMqLBAOsdWXdoo0N+PB87rXuVj0nAo+CDS0BUX2lVqwapj16Cc8zh0OQ/2rYB+V1k2hA9IPZxPj7jIY28oIiLSmDVPsh+ASS9bY+qUNZAw2K7yd0ogfRvEVF/qgn2r4Z1fwKWv1tykfFnmQ1TF+zVp70o7roJMmPMPuPg/sHux9beKalvzry8iUp9Ed7BMuuF3wtynYdn/oPNZdR+8lhMWHODPeb3jjrpNREggN4/qwGNfrGfB1nTGdGnBK9cOqjKoUdZsGqAg65ivf9PIDoQFBzCmS4ujbhcWFMBX94wioJoG0C6Xi9+M78Ivpy4gJTOfG05rX6kJtTQuKsot0tDlZ9pSwYeGxT8QOp1hV7j4SOChuMThQFa+Mh9EREROREAwdDkHRt1rZZk6nwMuf1jy6tGft+hlyNgJH94I+ceeVDgplXo+5NfM67g5Dnxyh31u7TkJVk+DjGRIXgwJgyr2zxARERj/J7jkFcuCGHE3bJgJ718NRQV1PTKpIVcNa0tMeBCB/i7+UkXGQ5nCHM/t4wg++Pm5uGpoWxKaHbvhc6C/X/WvC5zWKYbv7z2d1Q+fxf+d2+2Y+/M5uxfD25fr/5GXKPgg0tC532SCwut2HNLgZeUXUeJYjUwRERE5SZHx0P1CWPomrPsMFk2tvE1hLqz+COL6wsHt8P1jtn72Y5ZF4S1FpVdNussuFeVWu6lX7JwPe1fA6N/CuIcsGPHl/XBgIyQMqNnXFhGpj+IHQIfRdnv0fXD232H9ZzDz17B/I2z61v6WSoMRFhTAa9cN5u2bhtI6KrT6DctnPtTURQpH0S6mSVlpqnpnw+dW4vrAxroeSYOg4INIQ+d+kwlW8EFqVl5hMWAfhkREROQUDL0V8jPgvSttAillreexkmJYNc0eP/MRSBpjNb4LsuGHv8PiY2RMnIhKZZdqOPPh5xfstXpfbr0xTrsH1n1qjyUMqtnXFhFpCIbeAiPvhWVvwnOD4K1J8O4VkHe4rkcmXtQzZyF9cn4++kbu4ENAyHFlPkg5aVtKl5vqdhwNhGaIRBq6sswHlV2SmpVbYMGH0CDFtUVERE5JwiCbPAoOh1l/geVvwVl/sT4Pr0+A3HTrf9D2NNj8Lcx/3jIGcCB1nffGUVZ2qbSfkzd7PhQXwqoPYMW70LIHBDe1q3WH3wlBpSUfxj0IbUfY1YdthnnvtUVEGrIxD4BTDAGhEBgK3zwIPz8Pp/+urkcm3jLrEXD5QZezKz92eI+VDaI046VJrIIPJyrdHXzYXLfjaCAUfBBp6Mp6PijzQWpWbmnmQ2hgPU2tFBER8RUuF4z7o91OXgIr34PTfw8f3QR+AXDuk9B+NPj5QcteUFJoZZjAvjAX5ln971NVeETZpUIvBR8Kc+1K3C2zLIiyYy6UFEG3C+C0X1XctuM4+xERkePj5wdnPOy5v+Idey+RhsFxIH2758KAIy18CX56CiY8bffDW0BOem2Nrv5zHEjbarcPKPjgDQo+iDR06vkgtcQdfAhR8EFERMR7+v7SSg893QdyDsAVH0DnMz2Pt+ppy9Uf2tIpsRrFcb1P/bUrNZz2UvBh2g2wZTac/xQMuBYy99kFMy06e2f/IiLiEdfHu/2ApG7lHrTSiyVFVT+ekQw4kLHb7jeJhUM7a214Nc5xYMGL0PlsiG5/9G2/eQhadIW+vzj+/WelQGG23VbZJa9QbQyRhk49H6SW5BUo+CAiIuJ1Hc+wAESH0+HC5ysGHgCadwT/ICvF1KSFrdu//vj3//l9sPKDqh8r6/nQtOJ9txOpIZ6faZkTWfthw0wY+RsYeJ1leTSNU+BBRKSmtOptE6qZ++p6JOIN6aVX5RdmV2wq7Za515ZlwYeYOmk4XWMydsOXv4PFU4++XX4mzHsGZtxuFzwcL3e/h2btLfNh41e2DzlpCj6INHTq+SC1RGWXREREaoB/AFz0HFwyFfpdWcXjgXZVH0C3CeAXCKmlDaqzD8Du0lIbjgMlJRWfu3eFlWeY/Rd7HOxL97K3bFt3sCEgBPyDKwYffnwSnuwM+zcc+xgcB14eDzNug53zbV3ns47v+EVE5NTE9bHlxi/hn91PbCJWfE/6Ns/t7AOVHy8LPuyyZXgsFOVCSXHNj602pKyxZeoxLrRIXmrZoMHhMO06Tzbnsbj7PXQ+2zJMZv4Glv3PemnISVHwQaShU88HqSV5hTahERqk4IOIiEitallaeql1f4jpbE2nHQfevRJeHgtf/xH+M9Jul+/bsKj0qsGD22D3Irv96d0WJPh4iudzZGCo9ZBwf3FP3wo/PG6TGd/92daVlNgkSPkv98VFUFQA2+fA/nWwfiZs/saaoMb1rbFfh4iIlNOqly2/eQgOJ1cswbRoqk2sSv1xsFzwISet4mOOA4fLBR9c/hDazO43lKbTKatsmbru6NvtXmjL0//PSlUd2lX9to4D23+C7/8G+1bZhRxJY+wxdxBn9+JTG3cjpp4PIg1dQZb94QwIruuRSAOnzAcREZE60qonrChdxnaDXQtg1Qew62eI7W5lB8Ka2yTFrEfgrL9AXoZt0/0iKymw4h0IDLNAQcJgeywsxvbvH2TZD4W5FmSY+Rtb1/8qWPQyTD3TrjAsKbTtY7pAt/Nh+TvWEDMq0SZAivJg+dvQZhgEBNXVb0tEpHEJaQrRHTzlelJW29JxYPZfLYOu75VWBk98n/vfEawXVHn5hz39CjKS7X3d3f8zP6v6JtX1iTvz4fBuK//oLg15pF2L7IIMd2+sjJ0Q07Hydo4D066HNR+VrnBZScsWXexucCQU5ljT9u4XePVQGgsFH0QauvwsZT1IrVDDaRERkTrS9wq72CSuL7TuC6unwUc3QcteMOV7yzZoMxS+ewTmPwu9LoE9y+zL9Ii7wS8AVk2zEkoBoXDFe/Da+ZC6xoIOLpcti/ItkLFlFpz3D+g9GTZ/a1cUDrkZIhMtqLHxS5jzDyv1kbresh4G3QRrp0P2fmg7vG5/XyIijU2r3jZp3ao37F1pE677N3gmr1PWQMsesPR12PQNTHrZst6q8tNTUFwAo39ba8OXctK3QXhL6+ORfUTmQ/m+HiWFENgMgktLcBdk194Ya9K+1RZQKciyHleJgz2PpW+zzyHRHSyjs8u59tkEKmY+HNgMaZutJNXhZAs8jLgbQqLguz9B8yR7XlhzC8xtn2PBh28egrlP2z4uf9PKXcoxKfgg0tAVZKnfg9QKT8NpVfQTERGpVaHNYMgUuz3kVohOsoBD/2usZ0SXc+yxMx6C5W9ZiY39G6B5J2jdzyaQUtfCjrkw8HoIi4au53mCD2DL3QstI6LHRBh4gwUl7l5ReTyjf2sTIBGtYP1n9mV9yC02EbLkNct8EBGR2jP0Nvt7HxBszXqzUmDHT57HN39jmWxLXrX7K9+HAddU3o/jwPznLOg84DoIb1E74xePg9sgYZC9vx5ZdunIvgSBoZ7Mh4LM2hlfTSrIsZ4MvS+3jM3UtZ7gw/J3YPotdjskCvIOQeIgaNoaXH5WPikzBT7/Daz71LPPgFCI7QFjHwQ/f/tp1cuWdyyG4Kb2f2b5W5ZZ2u40+xzTvFNtH329peCDSEOXn6nMB6kVynwQERHxAf4B0PVc+zlSSKQFFVZ+YJMQI++1AEKLLnDrPNi73EoUgJVN+vHxcsGHYNi3wQIbE545enkOlwuaxpXuZ4LnysDBN9tnUwUfRERqV5sh9rO9NOCwbzVsnwsRre3q7p/+ZVeMD7sDtv4AC16E/ld7/tbvmGdXjicMhOxUW7fsDRj5m7o5nsYqP8sCR637woYvKpddcjebDgixUoeBYRDUxPNcX7VrERzYCP2uPPp2+9dZE+nOZ8PaT2Dr97D5O4jrDT89bZ8vhtxs5/O+w9BmuJUVi2ht5+8Pf7NSk6f/HySNhW0/WDnICU/Z5yewDAi3sGhbxg+ARf+1EpIX/Bui29fEb6HB0uWpIg1dQZYn0i1Sg3ILiwn0dxHor7cWERERn9V7MuRn2Jf3nhd71rtcdlWse5KiVW8rOeDuGxbUxCYzLnu9+vrKx9KyO1zyijWvFhGR2teyhy33rbRst3YjoNMZFnhoOwLG/9kmb1PXwrYfPc/74rfwyR2eK8abtYfFr0JJsffHWJgH718NBzZ5f9/13YGNtoxO8vRyKs+d+dCiqy0DQz0Xo+b7cObD93+18yt9W9WPO44t9660ZateENsV1nwM62fCrEftc8zFL1l25o3fwZ1LoEXpBRVRbSzzIXmJlX48/X7Lihh1L9y1tGLppqrED7Blr0sUeDgJmiESaeiU+SC1JK+wWFkPIiIivi5pLDRpYRMTsd2q387lgpG/ti/xAGP/CFe8b1/4RUSkfgptBpFtrAReVooFHHpPhranwcQXrdRMr0utp8B3f4KSEivTt2+V9Xn48Umb9B73oE3m7pjn/THuXw9rZ9iV/VLRlu9s2XaE/TtkH5n5sM9KDkUm2P3AMIhqa8uvH4C0LbU63CqVlNhy/efw3lVQXGiZD04J/Px8xW0dB77/OzzZ2c6HOf+0fg7N2ttFEn6BcOUHcPMcuP5LCzKAZTtEd/DsJyrRjj1lrfWjOlExnWDC0zD+kZM75kZOwQeRhi5fmQ9SO/IKiwlV8EFERMS3+QfA5f+Dif859rYDr4fxf7Lb7UZAh9E1OzYREal5CQPg0A5IGmcB5tiucN1Mz8RtYIhNsiYvsQbUq6ZZzfzoDlayr80wC2S7/KwRr7e5Swelbz36diUl8Ew/WPqG98fgqzZ+DXF9IaIlNImpnPmQuRci4uwxsMyHsGi4+hO7MPXDG479Gof3wI75Xh86AHOfgad6Wu+F+c/Buk/sHCvItIDXsv9BVmlZL8eBmb+2rIiiPHhnsjWHnvgS+PlZAOzmH6HjOCu75M7qqUpkImTts95TcX1PfNwuFwy41n7vcsIUfBBp6AqyrEGOSA3LLSgmNEjBBxEREZ/XZqjVixYRkcbnvH/CXcvgqo8gNKrqbXpfZtkQX/zW+j+0HwVDbrXH2g6357Xq7ekh4U3u0kHpW61O/3NDqy7Hk7XPtqmJMfii7DTYvQg6n2X3w6KrLrvUNA7CygUfwEoMDbsd9izzTO5X5/P74I0LICfd7hcXWTPnwjzPNod2QUG25/6S12HqmZ59F+bCd4/A7sWQe8iCJvOfh2/+aAGEuU/DztKsmdmP2fLC5ywL4sXTYNlblmWz+BXrwXDnEmg3Es58xI7Fffwtux/f7y4q0XNbn39qnYIPIg1dfpbKLkmtyC0sJiRAwQcRERERERGfFRZdsSRNVVwu69HT75d2f+D10GeyNaHuOcnWtR9pk+GFud4dX1nwYZs1FN6/Dnb+XHm7gzts6e6DUFe+fRim31bzr7P5W8ApF3yIqVh2qaTEJvbdTcTByi25JY2z5ZZZ1b9G7iHY9LWV2Fo1zdat/hCm3wLznvFs8+IIeHOivWZBtpXo2rUA3rrEMizWfQZznoSXx8ETSfD2pfDV7613QuIQ+Pk5K7MUnWRNs5vGQ8cz4MZvoUkszLgNZj9qmTln/AnCY+HazyyAcjIiS4MPwZFWsklqVUBdD0BEapDjWPqayi5JLcgtLCFEmQ8iIiIiIiL1X0RLOP9f9uN2wb89t9uNgnn/hl0LvVuWz112KWOXBTcADm6vvN0hd/Bhs819uFzHt/+SEtv2aNuXFFv/i+Ox7lPIPXh8256K9Z/ZxHxcP7sf1txe1z3W2Y9aH4/2I60kFngyH8AyVcJiLPjQ8xJrMh4YCkFhFV+juMD2vfx/MGQKrHzXHpv7jAWhlrxmz921AJa/ZcGGnDQY/Tv44e+2XfoW6y819FbbttOZEBwBLbrB2un23OgOcNqvrNF04hD792jd10op7V5kZb8GXHv8/65H4y4pFtfbO/uTE6LMB5GGrDDXosnKfJBakFdQTGig3lZEREREREQavDZDweXv/b4P7swHHFg/025WFXxwZz4UZFqj5eNRUgLP9LWr8quzZxn8Nd6Wx5KfZY2Mc9IsI8Bbious6bb7uHLSYeOXlnXiV/qdu0kM4FgAYuPXMOcf0P8a6H151ZkPfn6QNMYyG/7dH57oYI2ck5d6tln1gWUGjL4f9q6wMWz9HrpfBIXZ1jPi5+ctS6HNMPjsHvjmQSvRNeb3FmRY8hps+tYyNEb+Bsb/GdqdZo2eA4Kg2wWW6dDnCuh6HoREQuezK46zzRAYdlvFwMipiEwAvwCI7++d/ckJ0SyRSENWkGVLZT5ILcgrUsNpERERERGRRiGkKSQMgg1fVL9NUQFsm2OT6ccrc681HwYryQNwsIqeD+7MB4C0Tce370M77OfnF6Aov+pttsyGolzb5lhSVgOO3U7fcnxjOJYDm+GFYfD+1fDpPbZu1QeWkdDvSs927gBDVgr8+Dg0awfnPmlX9pcFH0KpIGmsBSucEjjrMfs3/OgmC178b5IFGvpMhl6XQngrG4NTAmP/CGc8bAGZnHQY9Vu4+L8w5BbLhjj3Cdv/oBshOxXyM6DLuVUfX2AI3LUcRt1rJcDu3Ww9RmpSYChcPQNG3FOzryNVUtklkYYsP9OWwRF1Ow5pFHILigltpuCDiIiIiIhIo9BzEnxxH6Sstbr8IVHgH2BlkJa9CbNKSwGN+QOMvq/qfRQXWu+CpnF2//Be6DgO1nxk9wObVFN2aSdEtoGMndb3of2oY483ZY0tc9Jgzcc2SR/azEoSBQTZY3tKMwHWfAxnPmrHVZ19qzy307ZaKSG/gFObg5nzpGV/dL/QMg/2roRl/7Mxturl2a51P/ALhI9uhpRVFnhwH0OTIxpOu/WcZD0aek7yNGx+40LryRASZcc7+Gbbz80/wMe32D5iOkLM3dZ0PHOPBToAzvpLxf13HAdRbS1jo8Pp1R+je5xH3q5J7U6rndeRSpT5INKQKfNBapEaTouIiIiIiDQiPS6y0kuz/wJP9YKPb7YeBDPugE/utIbCbYbD3KchO63qfcx92kohHdplE+P5GdCqpzUHBivfk5UCBTkVn3dwh5XnCWxi2QLHI2U14LIeANNvtQbJL4+Dl06HwjzbJnmZTewXF8CS14++v70rrGwQLkjbbE2Y377cgi/lLX7VgghHchzrwfDDE/aTmQJrpkOvS+D8p2wu59VzYN9KyzAor3mSTf6nrLIASt8rPI+Ft7Tmzq37VnxOQDAMvskCD2ABgsvfgslvw282wPA7PcGAiFZw9XT4xTvlnh/kCTxUxc/feoSc9yQENal+O2lUlPkg0pBs+NJS7DqfZffzS4MP6vkgtSCvsFgNp0VERERERBqL8FibwF7/mV3xv3qalfXZ8p2V5jn9dzYp//xQ+PEJOOdvlfex+kMoyrPm1YOn2Lqm8RDdHlLX2fzGmo+sXFJsN3u8uBAO74Zml9sk/IGNxzfelNWWnXD672D+czbZnncIZv7GgiADr7P9Dr3VJvQXvwKn3QP+gVXvb98qC1SkbYUdcz19InbM9Vxpv2uR9UYIDLPj27fKMg6CI2HV+xXHvvR1K/nU95cWIBh+l43zgn9Dv6sqv/7gKZY10qJLxcl+/0C4adbx/U66nX982x2vjuO8uz+p9xR8EGlIvvszlBR5gg9lmQ8quyQ1L7dAPR9EREREREQalcFTLEhw2RvWP2DLd9YLYOwD9niLLtYIeeF/oMdEy1ZwO7AJUtdCaLRNvLsfi4iD9iOtUXDzTrbu4HZP8CFjt/UiiGoLMZ1tsj8/E+Y+A9n74bx/ehozl7dvNcT1th4D5fsM7JhnDZvdDY7j+1tQ453J1vS605mw4h0rhzTiLst2KCqw4x5ysz1n6/e2DAi1clPdL4K2w2HBCxZoiG4Pc5+C5h1h249QUgiJQ2HiS9BtggU6vn7AjidhoO1r9G+tN4JfNd+zXS7P71nERyn4INJQlJRA+la7YiA/02oMlvV8UOaD1CzHccgtVPBBRERERESkUelytl0A6XLBJa9YA+rR91fc5sxHrLzQRzdasKKkyLIXcg/a45e9br0Hvn7Q7jdtbf0HwFOuKX2bPcc/0NNsullb6H6BZU/8szvkH7b1kQk2aV9efpY1ri5fnqhsfH+BrT/A138Al5/1VwgMteDGd3+yzAh38+vVH0KXc2Dzd1CcD21HWLmord9Dk1gYdht8+zDsnA8BITbmobfC+D9bs+bwFpB7yMo6le8nMez20tfuab9LsKVL37GlflPwQaShyNxr6XlgaXxth1vEH9TzQWpcQXEJJQ6EquySiIiIiIhI4+KeLI/vbz9HCo6ASS/DO7+wCf7yEgZZs+jhd1rpI7DMB7ewaKvm8NO/4Kv/swwCv9LpzKi29tyrPobP77Ogx55llnnw8/PQcTxc+Jw1wU5da89p2bPy+JrGwS+nwWvnWz8I9wWcQ26212w3Esb8nwUHZtwOS9+07S7/nwVe0rfY9kljYNid1m8hvKVtu2e59Vnw87fAA0BoVNW/w2G3Hes3LVLvKPgg0lC43+zA3mxb94f5z0PLXhXfuEVqQF5hCQAhynwQERERERGRIyUOhvs2Q16GTcRn77dgQ9cJ9viYB2DzLDicXLF6g8sFMZ2sufOAayAnzTIH4gdCZKJtkzQG7lxst/OzrK/DwW2w8l0ozIEmLSwjAxe06lX1+Fr3g+u/snJObkNuhaSx0KKrJ8By55LKz41OKh3HOAt0tB9l96+dCZn7LENDpJFS8EGkoUjfasuAUAs+/PwcZOyEiz6tutahiBflFRYDEBKoc01ERERERESq4HJ5rvoPjoAJT3seCwiGqz6CjF2VnzfpZQsKxHQ69msEh3v6IEQnwQ9/s2oQ7UbC+f+EqMTqn9vqiKwIPz9Pn4mjSRoL5zwOPS6quD4gWIEHafQUfBBpKNK2gH8QdDgdtsyGdZ9C1/M9EXeRGpRbYMEH9XwQERERERGRkxIeW7EPglvzpJPb35jfw6AbrXRTdU2bvSEgyNN4WkQq0CWqIg1F+lZLLUwYYI2QQqLg/KfqelTSSOQWKvggIiIiIiIiPia8Rc0GHkTkqBR8EGko0rZYSmGHsRASCZe84mlmJFLD3MGHEDWcFhERERERERERVHZJpGEoKbFmSp3OsMyH+3d4miGJ1II8lV0SEREREREREZFylPkg0hAcToaiPMt8AAUepNblFbkbTiv4ICIiIiIiIiIiynxoPPatgk/vgeKCyo+17gcXPFPrQxIvWvKaLRMG1ekwpPHKLSgBlPkgIiIiIiIiIiJGmQ+NxZLXIGU1NI2v+OPyg6WvQ/q2uh6hnKiM3TDv37DyfZj/LPS6FFr1rOtRSSOlhtMiIiIiIiIiIlJevcl8+PLLL7n77rspLi7mxhtv5He/+11dD6n+KCmhaO1nrAgayD9z7qnwUAtnL09xLc76mbiG31E345NjKy4Elz/4+dntbx+Gn18AxyZ8CQiFMx6uyxFKI+dpOK2YtoiIiIiIiIiI1JPgQ3FxMbfffjvffPMNCQkJDBo0iAsuuIDu3bvX9dDqBWfPUgKy9zHNuYT8iJIKj20oiGFdSRtaLp1OtIIPpyYnHUKiLEDgLWlbYMGLsOwtCGsOXc6GHfMsi6X/1TDiHkjfCoFhEJngvdc9Qnp2ARm5hZXWhwT6ERcZWmOvK75n+4Fs3lqwg0sGJNKlVUTZejWcFhERERERERGR8upF8GHhwoV07NiRDh06ADB58mRmzJih4MNx2vLje7Rz/Og/fjKPndarwmNFxSW8/ffhXHngfbYu+QYnsEkdjbK+cvDPS6fpti9otv5dcloOIHXwbykJKPd7LCkiMCcFV1GuZ1VwJI7Ln5C0NTj+wbhKiglJW0NxUAR+hdmEpK3DVZxH8KEtOH4BHO5wPoHZewhd/Cr5zbtxYOyzHO54AeQDTWJsp3syauQIv1mbwnOzN1NY7FT5+MR+8Vw/or1XYy6+yHHgUE4hadn5NfYaRcUOqZn55BYUla2LDAsiPNif1MP5FBaXHOXZNa+g2OGtn3eQmV/E1J+20TE2HBcuHBz2ZuQBajgtIiIiIiIiIiKmXgQfkpOTSUxMLLufkJDAggUL6nBE9UdxiUPAps9ZFdiLi4dX7gcQ4O9Ht7FX4P/lu3T49JI6GGHDUOj4M71kKOP2LqP9Jyf3e0xxogilgAICWFDSnlyasdGZyP+KxrF/dbPSrRzIccEugJ+8NfxjuqBPa8Z2ja20fkNKJv/9cSsfL0uutbE0Bi6XLR2n6vV1qV9iFH++sCefr9rL1v3ZZesHtG1Gv8RmBPo38CiUiIiIiIiIiIgcl3oRfDgeL730Ei+99BIA+/fvr+PR+A5/FxRf8DxNiovw96t65nLQ0NFs9v+AzIOptTy6hqEgKIqciHaEhcSwJO8AUWnLKzzuuPzID4mhKDAcAJfjEFhwCL/iAjKbdQOnBJdTTEFIiwrP8wO6Ao/WzmFUKzYimH5tmlX7+KUDEtiUmlWLI6o7kaGBxIQH4aqhKIC/y0WLiGCaBNufZsdxyMgtJDOviNimwQQH+E5WQc/4yLoegoiIiIiIiIiI+LB6EXyIj49n165dZfd3795NfHx8hW2mTJnClClTABg4cGCtjs+nuVwk9Rt9zM06DjqzFgbTGLQCKmeYNGQdWoTToUV4XQ+jQXK5XESFBREVFlTXQxERERERERERETkh9aI+xqBBg9i0aRPbtm2joKCAd999lwsuuKCuhyUiIiIiIiIiIiIiIlWoF5kPAQEBPPvss5x11lkUFxdz/fXX06NHj7oeloiIiIiIiIiIiIiIVKFeBB8Azj33XM4999y6HoaIiIiIiIiIiIiIiBxDvSi7JCIiIiIiIiIiIiIi9YeCDyIiIiIiIiIiIiIi4lUKPoiIiIiIiIiIiIiIiFcp+CAiIiIiIiIiIiIiIl6l4IOIiIiIiIiIiIiIiHiVgg8iIiIiIiIiIiIiIuJVCj6IiIiIiIiIiIiIiIhXKfggIiIiIiIiIiIiIiJepeCDiIiIiIiIiIiIiIh4lYIPIiIiIiIiIiIiIiLiVQo+iIiIiIiIiIiIiIiIVyn4ICIiIiIiIiIiIiIiXqXgg4iIiIiIiIiIiIiIeJWCDyIiIiIiIiIiIiIi4lUKPoiIiIiIiIiIiIiIiFcp+CAiIiIiIiIiIiIiIl6l4IOIiIiIiIiIiIiIiHiVy3Ecp64H4W0xMTG0a9eurofhU/bv30+LFi3qehgiJ0znrjQEOo+lvtM5LPWRzltpCHQeS32m81fqI5230hDU9nm8fft2Dhw4UOVjDTL4IJUNHDiQxYsX1/UwRE6Yzl1pCHQeS32nc1jqI5230hDoPJb6TOev1Ec6b6Uh8KXzWGWXRERERERERERERETEqxR8EBERERERERERERERr1LwoZGYMmVKXQ9B5KTo3JWGQOex1Hc6h6U+0nkrDYHOY6nPdP5KfaTzVhoCXzqP1fNBRERERERERERERES8SpkPIiIiIiIiIiIiIiLiVQo++Khdu3YxZswYunfvTo8ePXj66acBSE9PZ/z48XTq1Inx48dz8OBBAN566y169+5Nr169GD58OCtWrCjb15dffkmXLl3o2LEjf/vb36p9zddff51OnTrRqVMnXn/99bL1DzzwAImJiYSHh9fQ0UpD4kvn7umnn06XLl3o27cvffv2JTU1tYaOWhoaXzqP33vvPXr37k2PHj24//77a+iIpaHx5jl8/fXXExsbS8+ePY/6mtWd688++ywdO3bE5XJx4MCBGjhaaSh86by99tprad++fdlniOXLl3v/gKVB8qXzeNasWfTv35+ePXtyzTXXUFRUVANHLA2Jt87f6vZTFX1+kFPlS+etPj/IyfKl89jrnx8c8Ul79uxxlixZ4jiO4xw+fNjp1KmTs2bNGue+++5zHnvsMcdxHOexxx5zfvvb3zqO4zhz58510tPTHcdxnM8//9wZPHiw4ziOU1RU5HTo0MHZsmWLk5+f7/Tu3dtZs2ZNpddLS0tz2rdv76SlpTnp6elO+/bty/Y3f/58Z8+ePU6TJk1q/Lil/vOlc3f06NHOokWLavyYpeHxlfP4wIEDTmJiopOamuo4juNcffXVzrffflvjxy/1n7fOYcdxnB9++MFZsmSJ06NHj2pf72jn+tKlS51t27Y5bdu2dfbv318jxysNgy+dt9dcc43zwQcf1MhxSsPmK+dxcXGxk5CQ4GzYsMFxHMf54x//6Lz88ss1cszScHjr/K1uP0fS5wfxBl86b/X5QU6Wr5zHNfH5QZkPPiouLo7+/fsDEBERQbdu3UhOTmbGjBlcc801AFxzzTVMnz4dgOHDh9OsWTMAhg4dyu7duwFYuHAhHTt2pEOHDgQFBTF58mRmzJhR6fW++uorxo8fT3R0NM2aNWP8+PF8+eWXZfuLi4ur6UOWBsKXzl2Rk+Ur5/HWrVvp1KkTLVq0AOCMM87gww8/rOnDlwbAW+cwwKhRo4iOjj7q6x3tXO/Xrx/t2rXz8hFKQ+RL563IyfKV8zgtLY2goCA6d+4MwPjx4/UZQo7JW+dvdfs5kj4/iDf40nkrcrJ85Tyuic8PCj7UA9u3b2fZsmUMGTKElJSUskBAq1atSElJqbT91KlTOeeccwBITk4mMTGx7LGEhIQqT7rj3U7kRPjCuXvdddfRt29fHnnkERzH8dqxSeNRl+dxx44d2bBhA9u3b6eoqIjp06eza9cubx+iNHCncg4fL32OEG/zhfP2gQceoHfv3vzqV78iPz//JI9EGrO6PI9jYmIoKipi8eLFAEybNk2fIeSEeOv8Lb+fI+nzg3ibL5y3+vwgp6ouz+Oa+PwQcErPlhqXlZXFpEmTeOqpp2jatGmFx1wuFy6Xq8K62bNnM3XqVH766afaHKZIJb5w7r711lvEx8eTmZnJpEmTePPNN7n66qu9tn9p+Or6PG7WrBkvvPACl19+OX5+fgwfPpwtW7Z4Zd/SONT1OSxyMnzhvH3sscdo1aoVBQUFTJkyhb///e88+OCDXtu/NHx1fR67XC7efffdssmvM888E39/f6/sWxo+b52/R9uPiLf5wnmrzw9yqur6PK6Jzw/KfPBhhYWFTJo0iSuvvJKLL74YgJYtW7J3714A9u7dS2xsbNn2K1eu5MYbb2TGjBk0b94cgPj4+AoRqt27dxMfH8+CBQvKGuB88skn1W4ncjJ85dx1LyMiIrjiiitYuHBhzR64NCi+ch5PmDCBBQsWMH/+fLp06VKW/ihyLN44h6uza9eusnP4xRdf1OcI8RpfOW/j4uJwuVwEBwdz3XXX6TOEnBBfOY+HDRvGnDlzWLhwIaNGjdJnCDku3jp/q9qPPj9ITfGV81afH+RU+Mp57PXPD6fUMUJqTElJiXPVVVc5d999d4X19957b4VGI/fdd5/jOI6zY8cOJykpyZk7d26F7QsLC5327ds7W7duLWsgsnr16kqvl5aW5rRr185JT0930tPTnXbt2jlpaWkVtlHDaTkevnLuFhYWljUmKygocCZNmuS88MILNXDE0hD5ynnsOI6TkpLiOI7jpKenO3369Clr/CRyNN46h922bdt21Ianx3Ouq2GkHIsvnbd79uwpG9Pdd9/t3H///ad6eNJI+NJ57P4MkZeX54wdO9b57rvvTvXwpIHz1vlb3X6OpM8P4g2+dN7q84OcLF86j739+UHBBx81Z84cB3B69erl9OnTx+nTp48zc+ZM58CBA87YsWOdjh07OuPGjSubnLrhhhucqKiosm0HDBhQtq+ZM2c6nTp1cjp06OA8+uij1b7m1KlTnaSkJCcpKcl55ZVXytbfd999Tnx8vONyuZz4+HjnoYceqrHjlvrPV87drKwsp3///k6vXr2c7t27O3fddZdTVFRUswcvDYavnMeO4ziTJ092unXr5nTr1s155513au6gpUHx5jk8efJkp1WrVk5AQIATHx/vvPzyy1W+ZnXn+tNPP+3Ex8c7/v7+TlxcnHPDDTfU7MFLveVL5+2YMWOcnj17Oj169HCuvPJKJzMzs2YPXhoMXzqP7733Xqdr165O586dnX/96181etzSMHjr/K1uP1XR5wc5Vb503urzg5wsXzqPvf35weU46sAqIiIiIiIiIiIiIiLeo54PIiIiIiIiIiIiIiLiVQo+iIiIiIiIiIiIiIiIVyn4ICIiIiIiIiIiIiIiXqXgg4iIiIiIiIiIiIiIeJWCDyIiIiIiIiIiIiIi4lUKPoiIiIiIiFf5+/vTt2/fsp/t27ef0PO///57zj///JoZnIiIiIiI1IqAuh6AiIiIiIg0LKGhoSxfvryuhyEiIiIiInVImQ8iIiIiIlLjlixZwujRoxkwYABnnXUWe/fuBWDz5s2cccYZ9OnTh/79+7NlyxYAsrKyuOSSS+jatStXXnkljuMA8Oc//5lBgwbRs2dPpkyZUrZeRERERER8i4IPIiIiIiLiVbm5uWUllyZOnEhhYSF33nkn06ZNY8mSJVx//fU88MADAFx55ZXcfvvtrFixgnnz5hEXFwfAsmXLeOqpp1i7di1bt25l7ty5ANxxxx0sWrSI1atXk5uby2effVZnxykiIiIiItVT2SUREREREfGqI8surV69mtWrVzN+/HgAiouLiYuLIzMzk+TkZCZOnAhASEhI2XMGDx5MQkICQFnfiNNOO43Zs2fz+OOPk5OTQ3p6Oj169GDChAm1d3AiIiIiInJcFHwQEREREZEa5TgOPXr0YP78+RXWZ2ZmVvuc4ODgstv+/v4UFRWRl5fHbbfdxuLFi0lMTOThhx8mLy+vxsYtIiIiIiInT2WXRERERESkRnXp0oX9+/eXBR8KCwtZs2YNERERJCQkMH36dADy8/PJycmpdj/uQENMTAxZWVlMmzatxscuIiIiIiInR8EHERERERGpUUFBQUybNo3777+fPn360LdvX+bNmwfAm2++yTPPPEPv3r0ZPnw4+/btq3Y/UVFR3HTTTfTs2ZOzzjqLQYMG1dYhiIiIiIjICXI5juPU9SBERERERERERERERKThUOaDiIiIiIiIiIiIiIh4lYIPIiIiIiIiIiIiIiLiVQo+iIiIiIiIiIiIiIiIVyn4ICIiIiIiIiIiIiIiXqXgg4iIiIiIiIiIiIiIeJWCDyIiIiIiIiIiIiIi4lUKPoiIiIiIiIiIiIiIiFcp+CAiIiIiIiIiIiIiIl71/4tXQs+5KRf6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(27,9), facecolor='white')\n", + "sns.lineplot(data=df07_b, x=\"date\", y='critical_staffing_shortage_today_yes', palette='pastel')\n", + "sns.lineplot(data=df07_a, x=\"date\", y='deaths_covid', palette='pastel')\n", + "plt.title('Relación entre falta de personal médico y decesos, 2021')\n", + "plt.xlabel('Fecha')\n", + "plt.ylabel('Total Personal/Desesos')\n", + "plt.legend(['Falta personal', 'Deceso covid'], loc='upper right')\n", + "plt.show() " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.4 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "a42ccb73e7d9bfdf27e036f1d2b8b681e55fc0743cc5586bc2474d4a60f4b886" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/COVID-19_Reported_Patient_Impact_and_Hospital_Capacity_by_State_Timeseries.csv b/data/COVID-19_Reported_Patient_Impact_and_Hospital_Capacity_by_State_Timeseries.csv similarity index 100% rename from COVID-19_Reported_Patient_Impact_and_Hospital_Capacity_by_State_Timeseries.csv rename to data/COVID-19_Reported_Patient_Impact_and_Hospital_Capacity_by_State_Timeseries.csv diff --git a/PI2_DATA02.md b/data/PI2_DATA02.md similarity index 100% rename from PI2_DATA02.md rename to data/PI2_DATA02.md diff --git a/src/img01.png b/src/img01.png new file mode 100644 index 00000000..293558c3 Binary files /dev/null and b/src/img01.png differ diff --git a/src/img02.png b/src/img02.png new file mode 100644 index 00000000..5f1cfa5e Binary files /dev/null and b/src/img02.png differ diff --git a/src/img03.png b/src/img03.png new file mode 100644 index 00000000..5c9fd81b Binary files /dev/null and b/src/img03.png differ diff --git a/src/img04.png b/src/img04.png new file mode 100644 index 00000000..366e5913 Binary files /dev/null and b/src/img04.png differ diff --git a/src/img05.png b/src/img05.png new file mode 100644 index 00000000..b281480c Binary files /dev/null and b/src/img05.png differ diff --git a/src/img06.png b/src/img06.png new file mode 100644 index 00000000..35aac0cc Binary files /dev/null and b/src/img06.png differ diff --git a/src/img06m.png b/src/img06m.png new file mode 100644 index 00000000..324aa6c0 Binary files /dev/null and b/src/img06m.png differ diff --git a/src/img07.png b/src/img07.png new file mode 100644 index 00000000..859c82e5 Binary files /dev/null and b/src/img07.png differ diff --git a/src/img08.png b/src/img08.png new file mode 100644 index 00000000..4fcf7296 Binary files /dev/null and b/src/img08.png differ diff --git a/src/logoHn.png b/src/logoHn.png new file mode 100644 index 00000000..d97c7468 Binary files /dev/null and b/src/logoHn.png differ