-
Notifications
You must be signed in to change notification settings - Fork 395
/
Copy pathbaseline_of_kubernetes_process_resource_ratio.yml
66 lines (60 loc) · 3.63 KB
/
baseline_of_kubernetes_process_resource_ratio.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
name: Baseline Of Kubernetes Process Resource Ratio
id: 427f81cf-ce6a-4a24-a73d-70c50171ea66
version: 2
date: '2024-09-24'
author: Matthew Moore, Splunk
type: Baseline
status: production
description: This baseline rule calculates the average and standard deviation of the
ratio of various process resources in a Kubernetes environment. It uses metrics
from the Kubernetes API and the Splunk Infrastructure Monitoring Add-on. The rule
generates a lookup table with the average and standard deviation of the resource
ratios for each process. This baseline can be used to detect anomalies in process
resource utilization, which may indicate security threats such as resource exhaustion
attacks, cryptojacking, or compromised process behavior.
search: "| mstats avg(process.*) as process.* where `kubernetes_metrics` by host.name
k8s.cluster.name k8s.node.name process.executable.name span=10s | eval cpu:mem =
'process.cpu.utilization'/'process.memory.utilization' | eval cpu:disk = 'process.cpu.utilization'/'process.disk.operations'
| eval mem:disk = 'process.memory.utilization'/'process.memory.utilization' | eval
cpu:threads = 'process.cpu.utilization'/'process.threads' | eval disk:threads =
'process.disk.operations'/'process.threads' | eval key = 'k8s.cluster.name' + \"\
:\" + 'host.name' + \":\" + 'process.executable.name' | fillnull | stats avg(cpu:mem)
as avg_cpu:mem stdev(cpu:mem) as stdev_cpu:mem avg(cpu:disk) as avg_cpu:disk stdev(cpu:disk)
as stdev_cpu:disk avg(mem:disk) as avg_mem:disk stdev(mem:disk) as stdev_mem:disk
avg(cpu:threads) as avg_cpu:threads stdev(cpu:threads) as stdev_cpu:threads avg(disk:threads)
as avg_disk:threads stdev(disk:threads) as stdev_disk:threads count latest(_time)
as last_seen by key | outputlookup k8s_process_resource_ratio_baseline"
how_to_implement: "To implement this detection, follow these steps: 1. Deploy the
OpenTelemetry Collector (OTEL) to your Kubernetes cluster. 2. Enable the hostmetrics/process
receiver in the OTEL configuration. 3. Ensure that the process metrics, specifically
Process.cpu.utilization and process.memory.utilization, are enabled. 4. Install
the Splunk Infrastructure Monitoring (SIM) add-on.(ref: https://splunkbase.splunk.com/app/5247)
5. Configure the SIM add-on with your Observability Cloud Organization ID and Access
Token. 6. Set up the SIM modular input to ingest Process Metrics. Name this input
\"sim_process_metrics_to_metrics_index\". 7. In the SIM configuration, set the Organization
ID to your Observability Cloud Organization ID. 8. Set the Signal Flow Program to
the following: data('process.threads').publish(label='A'); data('process.cpu.utilization').publish(label='B');
data('process.cpu.time').publish(label='C'); data('process.disk.io').publish(label='D');
data('process.memory.usage').publish(label='E'); data('process.memory.virtual').publish(label='F');
data('process.memory.utilization').publish(label='G'); data('process.cpu.utilization').publish(label='H');
data('process.disk.operations').publish(label='I'); data('process.handles').publish(label='J');
data('process.threads').publish(label='K') 9. Set the Metric Resolution to 10000.
10. Leave all other settings at their default values."
known_false_positives: none
references: []
tags:
analytic_story:
- Abnormal Kubernetes Behavior using Splunk Infrastructure Monitoring
detections:
- Kubernetes Process with Resource Ratio Anomalies
product:
- Splunk Enterprise
- Splunk Enterprise Security
- Splunk Cloud
security_domain: network
deployment:
scheduling:
cron_schedule: 0 2 * * 0
earliest_time: -30d@d
latest_time: -1d@d
schedule_window: auto