-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgridmetrics.h
319 lines (291 loc) · 11.2 KB
/
gridmetrics.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#pragma once
#include <datastorage.h>
#include <meridionalsolvercase.h>
#include <vtkStructuredGrid.h>
#include <vtkXMLStructuredGridReader.h>
#include <gridreader.h>
#include <diffop.h>
#include <correlationscax.h>
namespace yams
{
template <typename T>
inline auto distance(const MeridionalGridPoint<T> &gp1, const MeridionalGridPoint<T> &gp2) -> T
{
return sqrt((gp1.y - gp2.y) * (gp1.y - gp2.y) + (gp1.x - gp2.x) * (gp1.x - gp2.x));
}
template <typename T>
inline auto compute_abscissas(MeridionalGrid<T> &g)
{
size_t ni = g.nRows();
size_t nj = g.nCols();
for (auto i = 0; i < ni; i++)
{
for (auto j = 0; j < nj; j++)
{
g(i, j).m = i == 0 ? 0. : g(i - 1, j).m + distance(g(i, j), g(i - 1, j));
g(i, j).l = j == 0 ? 0. : g(i, j - 1).l + distance(g(i, j), g(i, j - 1));
}
}
}
inline auto fz = [](const auto &gp) { return gp.x; };
inline auto fr = [](const auto &gp) { return gp.y; };
inline auto fm = [](const auto &gp) { return gp.m; };
inline auto fl = [](const auto &gp) { return gp.l; };
inline auto fphi = [](const auto &gp) { return gp.phi; };
template <typename T>
inline auto compute_angles(MeridionalGrid<T> &g)
{
size_t ni = g.nRows();
size_t nj = g.nCols();
T drqdm, dzqdm, drqdl, dzqdl;
for (auto i = 0; i < ni; i++)
{
for (auto j = 0; j < nj; j++)
{
drqdm = D1_O2_i(g, i, j, fr, fm);
dzqdm = D1_O2_i(g, i, j, fz, fm);
g(i,j).phi = atan2(drqdm, dzqdm); // Stream line angle
drqdl = D1_O2_j(g, i, j, fr, fl);
dzqdl = D1_O2_j(g, i, j, fz, fl);
g(i,j).gam = atan2(dzqdl, drqdl); // Span line angle
// if(i==0)
// {
// g(i,j).phi = atan2( (g(i+1,j).y-g(i,j).y) , (g(i+1,j).x-g(i,j).x) );
// }
// else if(i==ni-1)
// {
// g(i,j).phi = atan2( (g(i,j).y-g(i-1,j).y) , (g(i,j).x-g(i-1,j).x) );
// }
// else
// {
// g(i,j).phi = 0.5 * ( atan2( (g(i+1,j).y-g(i,j).y) , (g(i+1,j).x-g(i,j).x) ) +
// atan2( (g(i,j).y-g(i-1,j).y) , (g(i,j).x-g(i-1,j).x) ));
// }
// if(j==0)
// {
// g(i,j).gam = atan2( (g(i,j+1).x-g(i,j).x) , (g(i,j+1).y-g(i,j).y) );
// }
// else if(j==nj-1)
// {
// g(i,j).gam = atan2( (g(i,j).x-g(i,j-1).x) , (g(i,j).y-g(i,j-1).y) );
// }
// else
// {
// g(i,j).gam = 0.5 * ( atan2( (g(i,j+1).x-g(i,j).x) , (g(i,j+1).y-g(i,j).y) ) +
// atan2( (g(i,j).x-g(i,j-1).x) , (g(i,j).y-g(i,j-1).y) ));
// }
g(i,j).cgp = std::cos( g(i,j).gam + g(i,j).phi);
g(i,j).sgp = std::sin( g(i,j).gam + g(i,j).phi);
}
}
}
template <typename T>
inline auto compute_curvature(MeridionalGrid<T> &g, bool interpolate = true)
{
size_t nim = g.nRows()-1;
size_t nj = g.nCols();
for (auto i = 1; i < nim; i++)
{
for (auto j = 0; j < nj; j++)
{
g(i,j).cur = D1_O2_i(g, i, j, fphi, fm);// TODO check why Aungier put -DphiDm
// g(i,j).cur = 2 * ( atan2( (g(i+1,j).y-g(i,j).y) , (g(i+1,j).x-g(i,j).x) ) -
// atan2( (g(i,j).y-g(i-1,j).y) , (g(i,j).x-g(i-1,j).x) ) ) /
// (g(i+1,j).m - g(i-1,j).m);
}
}
for (auto j = 0; j < nj; j++)
{
if( interpolate )
{
g(0, j).cur = 2. * g(1, j).cur - g(2, j).cur;
g(nim, j).cur = 2. * g(nim - 1, j).cur - g(nim - 2, j).cur;
}
else
{
// g(0, j).cur = D1_O1_i_fw(g, 0 , j, fphi, fm);
// g(nim, j).cur = D1_O1_i_bw(g, nim, j, fphi, fm);
g(0, j).cur = 0.;
g(nim, j).cur = 0.;
}
}
}
template <typename T>
inline auto compute_geom_values(MeridionalGrid<T> &g)
{
compute_abscissas(g);
compute_angles(g);
compute_curvature(g);
}
template <typename T>
inline auto compute_curvature(MeridionalGrid<T> &g,const Array2d<Grid2dMetricsPoint<T>> &g_metrics)
{
size_t ni = g.nRows();
size_t nj = g.nCols();
T d_ksi = 1. / (ni - 1.);
T d_eth = 1. / (nj - 1.);
// for (auto i = 1; i < ni-1; i++)
// {
// for (auto j = 0; j < nj; j++)
// {
// // g(i,j).cur = D1_O2_i(g, i, j, fphi, fm);// TODO check why Aungier put -DphiDm
// g(i,j).cur = D1_O2_dx1(g,g_metrics, i, j, d_ksi, d_eth, fphi);// TODO check why Aungier put -DphiDm
// }
// }
// for (auto j = 0; j < nj; j++) // extrapolate on bounds
// {
// g(0, j).cur = 2. * g(1, j).cur - g(2, j).cur;
// g(ni-1, j).cur = 2. * g(ni - 2, j).cur - g(ni - 3, j).cur;
// }
for (auto i = 0; i < ni; i++)
{
for (auto j = 0; j < nj; j++)
{
g(i,j).cur = D1_O2_dx1(g,g_metrics, i, j, d_ksi, d_eth, fphi);// TODO check why Aungier put -DphiDm
}
}
}
template <typename T>
inline auto compute_grid_metrics(MeridionalGrid<T> &g, Array2d<Grid2dMetricsPoint<T>> &g_metrics, const auto &f_m, const auto &f_l)
{
compute_abscissas(g);
compute_metrics(g,f_m,f_l,g_metrics);
compute_angles(g);
// compute_curvature(g,g_metrics);
compute_curvature(g);
}
template <typename T>
auto make_grid_info(vtkStructuredGrid* sgrid)
{
auto dims =sgrid->GetDimensions();
size_t ni = dims[0];
size_t nj = dims[1];
double ksi = 1. / (ni-1.);
double eth = 1. / (nj-1.);
auto g = read_vtk_grid<T>(sgrid);
auto g_metrics = Grid2dMetrics<T>{ni,nj};
compute_grid_metrics(g,g_metrics,fm,fl);
auto gi = GridInfo<T>{
.g = std::make_shared< MeridionalGrid<T> >(g),
.g_metrics = std::make_shared< Grid2dMetrics<T> >( g_metrics ),
.d_ksi = ksi,
.d_eth = eth,
.ni = ni,
.nj = nj,
};
return std::make_shared<GridInfo<T>>( gi );
}
template <typename T>
auto make_grid_info(const std::string &fname)
{
vtkNew<vtkXMLStructuredGridReader> reader;
reader->SetFileName(fname.c_str());
reader->Update();
vtkSmartPointer<vtkStructuredGrid> sgrid {reader->GetOutput()};
return make_grid_info<T>( sgrid );
}
template <typename T, typename F>
auto make_solver_case( vtkStructuredGrid* sgrid, const std::vector< std::tuple< BladeInfo<T> , F > > &bld_info_lst )
{
SolverCase<T> solver_case{};
solver_case.gi = make_grid_info<T>(sgrid);
size_t iB{};
auto &g = *(solver_case.gi->g);
for(const auto &[ bld_info, f_k] : bld_info_lst)
{
solver_case.bld_info_lst.push_back(bld_info);
for( auto i{bld_info.i1} ; i <= bld_info.i2; i++ )
{
auto m = ( i - bld_info.i1 ) / T( bld_info.i2 - bld_info.i1 );
for( size_t j{}; j < solver_case.gi->nj; j++ )
{
auto l = j / T(solver_case.gi->nj -1 );
g(i,j).k = f_k(m,l);
g(i,j).iB = iB;
}
}
iB++;
}
return solver_case;
}
template <typename T>
auto apply_blade_info(SolverCase<T> &solver_case, bool correlation = true)
{
auto nj = solver_case.gi->nj;
auto &g = *(solver_case.gi->g);
size_t iB{};
const auto deg= 180 / std::numbers::pi_v<T>;
for(auto &bld_info : solver_case.bld_info_lst)
{
for( auto i{bld_info.i1} ; i <= bld_info.i2; i++ )
{
for( size_t j{}; j < nj; j++ )
{
auto u = ( g(i,j).m - g(bld_info.i1,j).m ) / ( g(bld_info.i2,j).m - g(bld_info.i1,j).m );
auto v = ( g(i,j).l - g(i,0).l ) / ( g(i,nj-1).l - g(i,0).l );
if(bld_info.k)
g(i,j).k = bld_info.k(u,v);
if(bld_info.tb)
{
auto r = g(i, j).y;
auto tb_= bld_info.z_ * bld_info.tb(u, v) / std::cos( g(i,j).k ); // projected total thickness
g(i, j).th_ = tb_ / r; // effective tangential span
}
if(bld_info.eps)
{
g(i, j).eps = bld_info.eps(u, v);
}
g(i,j).iB = iB;
}
}
// compute effective deviation
if(bld_info.compute_dev && correlation)
{
auto i1 = bld_info.i1;
auto i2 = bld_info.i2;
std::vector<T> dev(nj), v(nj);
for (size_t j{}; j < nj; j++)
{
auto v_ = (g(i2, j).l - g(i2, 0).l) / (g(i2, nj - 1).l - g(i2, 0).l);
auto k1 = g(i1, j).k * deg;
auto k2 = g(i2, j).k * deg;
auto gam = bld_info.gauge ? bld_info.gauge(v_) : 0.5 * (k1 + k2);
auto sng = gbs::sgn(gam);
k1 *= sng;
k2 *= sng;
gam*= sng;
auto b1 = std::max<T>(0,g(i1, j).bet * deg * sng);
auto th = k1 - k2;
auto cax = g(i2, j).m - g(i1, j).m;
auto c = cax / std::cos(gam);
auto s = g(i2, j).y * 2 * std::numbers::pi_v<T> / bld_info.z_;
auto sig = c / s;
auto a = bld_info.max_cam_pos ? bld_info.max_cam_pos(v_) : 0.44;
auto tb = bld_info.max_thickness ? bld_info.max_thickness(v_) : 0.1 * c;
auto Vm1 = g(i1, j).Vm;
auto Vm2 = g(i2, j).Vm;
auto Ksh = bld_info.Ksh;
v[j] = v_;
dev[j] = dev_cmp_ax(b1, k1, sig, th, gam, a, c, tb, Vm1, Vm2, Ksh) / deg * sng;
}
gbs::BSCfunction<T> f_dev = gbs::interpolate(dev, v, 1);
bld_info.dev = f_dev;
}
iB++;
}
}
template <typename T>
auto make_solver_case( vtkStructuredGrid* sgrid, const std::vector< BladeInfo<T> > &bld_info_lst )
{
SolverCase<T> solver_case{};
solver_case.gi = make_grid_info<T>(sgrid);
size_t iB{};
auto &g = *(solver_case.gi->g);
for(const auto &bld_info : bld_info_lst)
{
solver_case.bld_info_lst.push_back(bld_info);
}
apply_blade_info(solver_case,false);
return solver_case;
}
} // namespace yams