@@ -21,7 +21,6 @@ format:
2121 toc-location : right
2222 embed-resources : true
2323execute :
24- eval : false
2524 engine : jupyter
2625include-in-header :
2726 - text : |
@@ -824,11 +823,12 @@ brklyn_qns_soft_summary = brklyn_qns_soft_fit.summary()
824823brklyn_qns_soft_summary.index = brklyn_qns_soft_summary.index.astype(str) + " - soft"
825824
826825brklyn_qns_fits_summary = pd.concat([brklyn_qns_ozs_summary, brklyn_qns_hard_summary, brklyn_qns_soft_summary])
827- beta_summary = summarize_predictor(brklyn_qns_fits_summary, 'beta')
826+ intercept_summary = summarize_predictor(brklyn_qns_fits_summary, 'beta_intercept')
827+ betas_summary = summarize_predictor(brklyn_qns_fits_summary, 'betas')
828828sigma_summary = summarize_predictor(brklyn_qns_fits_summary, 'sigma')
829829rho_summary = summarize_predictor(brklyn_qns_fits_summary, 'rho')
830830
831- brklyn_qns_summary = pd.concat([beta_summary , sigma_summary, rho_summary])
831+ brklyn_qns_summary = pd.concat([intercept_summary, betas_summary , sigma_summary, rho_summary])
832832display(HTML(style_dataframe(brklyn_qns_summary, 3).to_html()))
833833```
834834
@@ -1010,7 +1010,7 @@ to obtain satisfactory R-hat values.
10101010#| output: false
10111011bym2_multicomp_ozs_file = os.path.join('stan', 'bym2_multicomp.stan')
10121012bym2_multicomp_ozs_mod = CmdStanModel(stan_file=bym2_multicomp_ozs_file)
1013- bym2_multicomp_ozs_fit = bym2_multicomp_ozs_mod.sample(data=bym2_multicomp_data, iter_warmup=8000, iter_sampling=2000 )
1013+ bym2_multicomp_ozs_fit = bym2_multicomp_ozs_mod.sample(data=bym2_multicomp_data, iter_warmup=9000 )
10141014```
10151015* Tabulate summary statistics.*
10161016``` {python}
@@ -1054,7 +1054,7 @@ all iterations hit this limit.
10541054a_seed = bym2_multicomp_ozs_fit.metadata.cmdstan_config['seed']
10551055bym2_multicomp_soft_file = os.path.join('stan', 'bym2_multicomp_soft.stan')
10561056bym2_multicomp_soft_mod = CmdStanModel(stan_file=bym2_multicomp_soft_file)
1057- bym2_multicomp_soft_fit = bym2_multicomp_soft_mod.sample(data=bym2_multicomp_data, max_treedepth=13, iter_warmup=8000, iter_sampling=2000 , seed=a_seed)
1057+ bym2_multicomp_soft_fit = bym2_multicomp_soft_mod.sample(data=bym2_multicomp_data, max_treedepth=13, iter_warmup=9000 , seed=a_seed)
10581058```
10591059
10601060The following table compares the results for the hierarchical parameters ` beta ` , ` rho ` , and ` sigma ` .
@@ -1066,11 +1066,11 @@ bym2_multicomp_soft_summary = bym2_multicomp_soft_fit.summary()
10661066bym2_multicomp_soft_summary.index = bym2_multicomp_soft_summary.index.astype(str) + " b) soft"
10671067bym2_multicomp_summary = pd.concat([bym2_multicomp_ozs_summary, bym2_multicomp_soft_summary])
10681068
1069- beta_intercept_summary = summarize_predictor(bym2_multicomp_summary, 'beta_intercept')
1069+ intercept_summary = summarize_predictor(bym2_multicomp_summary, 'beta_intercept')
10701070betas_summary = summarize_predictor(bym2_multicomp_summary, 'betas')
10711071sigma_summary = summarize_predictor(bym2_multicomp_summary, 'sigma')
10721072rho_summary = summarize_predictor(bym2_multicomp_summary, 'rho')
1073- nyc_summary = pd.concat([beta_intercept_summary, beta_summary , sigma_summary, rho_summary])
1073+ nyc_summary = pd.concat([intercept_summary, betas_summary , sigma_summary, rho_summary])
10741074
10751075display(HTML(style_dataframe(nyc_summary, 2).to_html()))
10761076```
0 commit comments