-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheleroProtocol.py
302 lines (253 loc) · 10.7 KB
/
eleroProtocol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from conf import conf
class eleroProtocol():
flash_table_encode = [0x08, 0x02, 0x0d, 0x01, 0x0f, 0x0e, 0x07, 0x05, 0x09, 0x0c, 0x00, 0x0a, 0x03, 0x04, 0x0b, 0x06]
flash_table_decode = [0x0a, 0x03, 0x01, 0x0c, 0x0d, 0x07, 0x0f, 0x06, 0x00, 0x08, 0x0b, 0x0e, 0x09, 0x02, 0x05, 0x04]
# for each command we define a tuple with the type and 2 command bytes
eleroCmds = { "Check": (0x6A,0x00,0x00), # ask blind for status
"Stop": (0x6A,0x10,0x00),
"Up": (0x6A,0x20,0x00),
"Tilt": (0x6A,0x24,0x00), # go to stored position tilt
"Down": (0x6A,0x40,0x00),
"Int": (0x6A,0x44,0x00), # go to stored position Intermediate
"Async": (0x6A,0xE1,0x00), # enter asynchronous programming mode (if already bound)
"P1": (0x70,0x80,0x00), # these three commands start the remote/blind binding => P button
"P2": (0xF8,0x00,0x00), # the remote and blind address should be defined in conf.py
"P3": (0x78,0x00,0x00), # they are called as a group via mqtt using the command "Prog"
"Pup": (0x78,0x20,0x00), # up press during remote binding - repeat until blind pauses/stops
"Pdown": (0x78,0x40,0x00), # down press during remote binding - repeat until blind pauses/stops
"Pdone": (0x78, 0x00,0x00), # an ack sent automatically when blind sends programming complete
"Pdel": (0x45,0x92,0x08) # delete the binding in the blind for this remote/channel
}
eleroState = [
"Unknown",
"Top",
"Bottom",
"Intermediate",
"Tilt",
"Blocking",
"Overheated",
"Timeout",
"StartUp",
"StartDown",
"MovingUp",
"MovingDown",
"Stopped",
"Top", # actually top & tilt
"Bottom", # actually bottom & intermediate
"Off",
"On",
]
def __init__(self):
self.gIndex = {} # create a counter for each defined remote
for remote in conf.remote_addr:
self.gIndex[''.join('{:02X}'.format(a) for a in remote)]=1
# translate nibbles using flash_table_decode
def decode_nibbles(self, msg):
for i in range(0, len(msg)):
nh = (msg[i] >> 4) & 0x0F
nl = msg[i] & 0x0F
dh = self.flash_table_decode[nh]
dl = self.flash_table_decode[nl]
msg[i] = ((dh << 4) & 0xFF) | ((dl) & 0xFF)
# subtract a value from each nibble in payload between [start; start+len]
def sub_r20_from_nibbles(self, msg, r20, start, length):
for i in range(start, length):
d = msg[i]
ln = (d - r20) & 0x0F
hn = ((d & 0xF0) - (r20 & 0xF0)) & 0xFF
msg[i] = hn | ln
r20 = (r20 - 0x22) & 0xFF
# xor the msg bytes with 2 values (decoding)
def xor_2byte_in_array_dec(self, msg, xor_b0, xor_b1):
for i in range(0, len(msg), 2):
msg[i + 0] = msg[i + 0] ^ xor_b0
msg[i + 1] = msg[i + 1] ^ xor_b1
#decode a message
def decode_msg(self, msg):
self.decode_nibbles(msg)
self.sub_r20_from_nibbles(msg, 0xFE, 0, 2) # subtract initial value always 0xFE
self.xor_2byte_in_array_dec(msg, msg[0], msg[1])
self.sub_r20_from_nibbles(msg, 0xBA, 2, 8) # 0xBA is just 0xFE - 2*0x22
# bit counting for parity
def count_bits(self, byte):
ones = 0
mask = 1
for i in range(0, 8):
if mask & byte:
ones += 1
mask <<= 1
return ones & 0x01
# parity calculation
def calc_parity(self, msg,index=-1, exp=None):
if (index>=0): # by default we assume this is done already
num = (0x00 - (index * 0x708F)) & 0xFFFF
msg[0]=((num&0xFF00)>>8)
msg[1]=(num&0xFF)
p = 0
for i in range(0, len(msg), 2):
a = self.count_bits( msg[0 + i] )
b = self.count_bits( msg[1 + i] )
p |= a ^ b
p <<= 1
msg[7] = ((p << 3)) & 0xFF
# add a value to each nibble in payload between [start; start+len]
def add_r20_to_nibbles(self, msg, r20, start, length):
for i in range(start, length):
d = msg[i]
ln = (d - r20) & 0x0F
hn = ((d & 0xF0) - (r20 & 0xF0)) & 0xFF
msg[i] = hn | ln
r20 = (r20 - 0x22) & 0xFF
# add values payload bytes
def add_r20_to_nibbles(self, msg, r20, start, length):
for i in range(start, length):
d = msg[i]
ln = (d + r20) & 0x0F
hn = ((d & 0xF0) + (r20 & 0xF0)) & 0xFF
msg[i] = hn | ln
r20 = (r20 - 0x22) & 0xFF
# xor bytes in an array with 2 values (encoding - skip first 2)
def xor_2byte_in_array_enc(self, msg, xor_b0, xor_b1):
for i in range(2, len(msg), 2):
msg[i + 0] = msg[i + 0] ^ xor_b0
msg[i + 1] = msg[i + 1] ^ xor_b1
# encode the nibbles using the table
def encode_nibbles(self, msg):
for i in range(0, len(msg)):
nh = (msg[i] >> 4) & 0x0F
nl = msg[i] & 0x0F
dh = self.flash_table_encode[nh]
dl = self.flash_table_encode[nl]
msg[i] = ((dh << 4) & 0xFF) | ((dl) & 0xFF)
# encode a message
def encode_msg(self, msg):
xor_val0 = msg[0]
xor_val1 = msg[1]
self.calc_parity(msg)
self.add_r20_to_nibbles(msg, 0xFE, 0, 8)
self.xor_2byte_in_array_enc(msg, xor_val0, xor_val1)
self.encode_nibbles(msg)
def interpretMsg(self, msg):
try:
length=msg[1]
cnt=msg[2]
typ=msg[3]
chl=msg[7]
src=[msg[8],msg[9],msg[10]]
bwd=[msg[11],msg[12],msg[13]]
fwd=[msg[14],msg[15],msg[16]]
dests=[]
for i in range(msg[17]):
if (typ>0x60):
dests.append([msg[18+i*3],msg[19+i*3],msg[20+i*3]])
destsLen=msg[17]*3
else:
dests.append([msg[18+i]])
destsLen=msg[17]
payload=msg[20+destsLen:28+destsLen]
self.decode_msg(payload)
if (msg[-2]>127):
rssi=(msg[-2]-256)/2-74
else:
rssi=(msg[-2])/2-74
lqi=msg[-1]&0x7F
crc=msg[-1]>>7
return(length,cnt,typ,chl,src,bwd,fwd,dests,payload,rssi,lqi,crc)
except Exception as e:
print("badpkt="+''.join('{:02X}:'.format(a) for a in msg))
return(0,0,0,0,0,0,0,0,0,0,0,0)
# all messages are generated with this so it's a bit of a mess
def generate_msg(self, addr, index, blind_id, command):
msg=[]
hexcmd=self.eleroCmds[command][0]
if (hexcmd<0x60):
msg.append(0x1B) # msg_len
else:
msg.append(0x1D) # msg_len
msg.append(index) # pck cnt
msg.append(hexcmd) # typ of command
msg.append(0x10) # pck_inf2 = always 0x10?
if (command[0]=="P"):
msg.append(0x00) # hop_info = 0
else:
msg.append(0x05) # hop_info = 5
msg.append(0x01) # sys_addr = 1
msg.append(blind_id[3])
msg.append(addr[0]) # source addr[0]
msg.append(addr[1]) # source addr[1]
msg.append(addr[2]) # source addr[2]
msg.append(addr[0]) # backward addr[0]
msg.append(addr[1]) # backward addr[1]
msg.append(addr[2]) # backward addr[2]
msg.append(addr[0]) # forward addr[0]
msg.append(addr[1]) # forward addr[1]
msg.append(addr[2]) # forward addr[2]
msg.append(0x01) # dest_count = 1
if (hexcmd < 0x60):
msg.append(blind_id[3])
msg.append(0x00)
msg.append(0x01) # not sure about this
elif (command=='P1'): # special case - destination unknown
msg.append(blind_id[3]) # dest = channel
msg.append(0x00)
msg.append(0x00)
msg.append(0x00)
msg.append(0x03) # not sure about this
elif (command=="P2"):
msg.append(blind_id[0]) # dest = 3 byte address
msg.append(blind_id[1])
msg.append(blind_id[2])
payload=[0]*10 # empty unecoded payload
else:
msg.append(blind_id[0]) # dest = 3 byte address
msg.append(blind_id[1])
msg.append(blind_id[2])
if (command=='P3'):
msg.append(0x04)
msg.append(0x01)
elif (command=='Pdone'):
msg.append(0x08)
msg.append(0x01)
elif ((command=='Pup') or (command=='Pdown')):
msg.append(0x00)
msg.append(0x01)
else:
msg.append(0x00)
msg.append(0x04) # not sure about this
if (command!="P2"):
code = (0x00 - (index * 0x708F)) & 0xFFFF
payload=[]
payload.append((code >> 8) & 0xFF)
payload.append(code & 0xFF)
payload.append(self.eleroCmds[command][1]) # actual command
payload.append(self.eleroCmds[command][2])
payload.append(0)
if (command=='P1') or (command=='P3'):
payload.append(2)
else:
payload.append(0)
payload.append(0)
payload.append(0)
self.encode_msg(payload);
return(msg + payload)
def construct_msg(self, remote_addr,blind_addr,command):
rIndex=''.join('{:02X}'.format(a) for a in remote_addr)
msg=self.generate_msg(remote_addr, self.gIndex[rIndex], blind_addr, command)
self.gIndex[rIndex]=(self.gIndex[rIndex]+1)&0xFF
return(msg)
# for most commands we'll use the first remote which "knows" the blind
# but for programming we want the last - so we can "learn" an existing blind on a new software remote
def getTarget(self, blind, firstOne=True):
targetBlind=0
targetRemote=0
remIndex=0
for remote in conf.remote_blind_id:
for b in remote:
baddr=''.join('{:02X}:'.format(a) for a in b[0:3])
if (baddr == blind):
targetBlind=b
targetRemote=conf.remote_addr[remIndex]
if (firstOne and targetBlind):
break # retrun first match
remIndex+=1
return(targetBlind,targetRemote)