You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/lapack/base/dgttrf/docs/types/index.d.ts
+23-23
Original file line number
Diff line number
Diff line change
@@ -27,7 +27,7 @@
27
27
*
28
28
* - if equal to zero, then the factorization was successful.
29
29
* - if less than zero, then the k-th argument had an illegal value, where `k = -StatusCode`.
30
-
* - if greater than zero, then the leading principal minor of order `k` is not positive, where `k = StatusCode`. If `k < N`, then the factorization could not be completed. If `k = N`, then the factorization was completed, but `D(N) <= 0`, meaning that the matrix `A` is not positive definite.
30
+
* - if greater than zero, then U( k, k ) is exactly zero the factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations, where `k = StatusCode`.
31
31
*/
32
32
typeStatusCode=number;
33
33
@@ -39,10 +39,10 @@ interface Routine {
39
39
* Computes an LU factorization of a real tri diagonal matrix A using elimination with partial pivoting and row interchanges.
40
40
*
41
41
* @param N - order of matrix `A`
42
-
* @param DL - the `N-1` subdiagonal elements of `A`
43
-
* @param D - the `N` diagonal elements of `A`
44
-
* @param DU - the `N-1` superdiagonal elements of `A`
45
-
* @param DU2 - the `N-2` elements of the second superdiagonal of `A`
42
+
* @param DL - sub diagonal elements of `A`. On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the LU factorization of `A`.
43
+
* @param D - diagonal elements of `A`. On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the LU factorization of `A`.
44
+
* @param DU - super diagonal elements of `A`. On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`.
45
+
* @param DU2 - On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`.
46
46
* @param IPIV - vector of pivot indices
47
47
* @returns status code
48
48
*
@@ -68,21 +68,21 @@ interface Routine {
68
68
* Computes an LU factorization of a real tri diagonal matrix A using elimination with partial pivoting and row interchanges and alternative indexing semantics.
69
69
*
70
70
* @param N - order of matrix `A`
71
-
* @param DL - the `N-1` subdiagonal elements of `A`
72
-
* @param strideDL - stride of the subdiagonal elements of `A`
73
-
* @param offsetDL - offset of the subdiagonal elements of `A`
74
-
* @param D - the `N` diagonal elements of `A`
75
-
* @param strideD - stride of the diagonal elements of `A`
76
-
* @param offsetD - offset of the diagonal elements of `A`
77
-
* @param DU - the `N-1` superdiagonal elements of `A`
78
-
* @param strideDU - stride of the first superdiagonal elements of `A`
79
-
* @param offsetDU - offset of the first superdiagonal elements of `A`
80
-
* @param DU2 - the `N-2` elements of the second superdiagonal of `A`
81
-
* @param strideDU2 - stride of the second superdiagonal elements of `A`
82
-
* @param offsetDU2 - offset of the second superdiagonal elements of `A`
71
+
* @param DL - sub diagonal elements of `A`. On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the LU factorization of `A`.
72
+
* @param strideDL - stride length for `DL`
73
+
* @param offsetDL - starting index of `DL`
74
+
* @param D - diagonal elements of `A`. On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the LU factorization of `A`.
75
+
* @param strideD - stride length for `D`
76
+
* @param offsetD - starting index of `D`
77
+
* @param DU - super diagonal elements of `A`. On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`.
78
+
* @param strideDU - stride length for `DU`
79
+
* @param offsetDU - starting index of `DU`
80
+
* @param DU2 - On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`.
81
+
* @param strideDU2 - stride length for `DU2`
82
+
* @param offsetDU2 - starting index of `DU2`
83
83
* @param IPIV - vector of pivot indices
84
-
* @param strideIPIV - `IPIV` stride length
85
-
* @param offsetIPIV - index offset for `IPIV`
84
+
* @param strideIPIV - stride length for `IPIV`
85
+
* @param offsetIPIV - starting index of `IPIV`
86
86
* @returns status code
87
87
*
88
88
* @example
@@ -105,10 +105,10 @@ interface Routine {
105
105
* LAPACK routine to compute an LU factorization of a real tri diagonal matrix A using elimination with partial pivoting and row interchanges.
106
106
*
107
107
* @param N - order of matrix `A`
108
-
* @param DL - the `N-1` subdiagonal elements of `A`
109
-
* @param D - the `N` diagonal elements of `A`
110
-
* @param DU - the `N-1` superdiagonal elements of `A`
111
-
* @param DU2 - the `N-2` elements of the second superdiagonal of `A`
108
+
* @param DL - sub diagonal elements of `A`. On exit, `DL` is overwritten by the multipliers that define the matrix `L` from the LU factorization of `A`.
109
+
* @param D - diagonal elements of `A`. On exit, `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the LU factorization of `A`.
110
+
* @param DU - super diagonal elements of `A`. On exit, `DU` is overwritten by the elements of the first super-diagonal of `U`.
111
+
* @param DU2 - On exit, `DU2` is overwritten by the elements of the second super-diagonal of `U`.
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/lapack/base/dgttrf/lib/base.js
+15-15
Original file line number
Diff line number
Diff line change
@@ -29,22 +29,22 @@ var abs = require( '@stdlib/math/base/special/abs' );
29
29
* Computes an LU factorization of a real tri diagonal matrix A using elimination with partial pivoting and row interchanges.
30
30
*
31
31
* @private
32
-
* @param {NonNegativeInteger} N - order of `A`
33
-
* @param {Float64Array} DL - sub diagonal elements of `A`
34
-
* @param {integer} strideDL - stride of the sub diagonal elements of `A`
35
-
* @param {NonNegativeInteger} offsetDL - offset of the sub diagonal elements of `A`
36
-
* @param {Float64Array} D - diagonal elements of `A`
37
-
* @param {integer} strideD - stride of the diagonal elements of `A`
38
-
* @param {NonNegativeInteger} offsetD - offset of the diagonal elements of `A`
39
-
* @param {Float64Array} DU - diagonal elements of `A`
40
-
* @param {integer} strideDU - stride of the first super diagonal elements of `A`
41
-
* @param {NonNegativeInteger} offsetDU - offset of the first super diagonal elements of `A`
42
-
* @param {Float64Array} DU2 - diagonal elements of `A`
43
-
* @param {integer} strideDU2 - stride of the second super diagonal elements of `A`
44
-
* @param {NonNegativeInteger} offsetDU2 - offset of the second super diagonal elements of `A`
32
+
* @param {NonNegativeInteger} N - order of matrix A
33
+
* @param {Float64Array} DL - sub diagonal elements of A. On exit, DL is overwritten by the multipliers that define the matrix L from the LU factorization of A.
34
+
* @param {integer} strideDL - stride length for `DL`
35
+
* @param {NonNegativeInteger} offsetDL - starting index of `DL`
36
+
* @param {Float64Array} D - diagonal elements of A. On exit, D is overwritten by the diagonal elements of the upper triangular matrix U from the LU factorization of A.
37
+
* @param {integer} strideD - stride length for `D`
38
+
* @param {NonNegativeInteger} offsetD - starting index of `D`
39
+
* @param {Float64Array} DU - super diagonal elements of A. On exit, DU is overwritten by the elements of the first super-diagonal of U.
40
+
* @param {integer} strideDU - stride length for `DU`
41
+
* @param {NonNegativeInteger} offsetDU - starting index of `DU`
42
+
* @param {Float64Array} DU2 - On exit, DU2 is overwritten by the elements of the second super-diagonal of U.
43
+
* @param {integer} strideDU2 - stride length for `DU2`
44
+
* @param {NonNegativeInteger} offsetDU2 - starting index of `DU2`
45
45
* @param {Int32Array} IPIV - vector of pivot indices
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/lapack/base/dgttrf/lib/dgttrf.js
+5-5
Original file line number
Diff line number
Diff line change
@@ -29,11 +29,11 @@ var base = require( './base.js' );
29
29
/**
30
30
* Computes an LU factorization of a real tri diagonal matrix A using elimination with partial pivoting and row interchanges.
31
31
*
32
-
* @param {NonNegativeInteger} N - order of `A`
33
-
* @param {Float64Array} DL - sub diagonal elements of `A`
34
-
* @param {Float64Array} D - diagonal elements of `A`
35
-
* @param {Float64Array} DU - diagonal elements of `A`
36
-
* @param {Float64Array} DU2 - diagonal elements of `A`
32
+
* @param {NonNegativeInteger} N - order of matrix A
33
+
* @param {Float64Array} DL - sub diagonal elements of A. On exit, DL is overwritten by the multipliers that define the matrix L from the LU factorization of A.
34
+
* @param {Float64Array} D - diagonal elements of A. On exit, D is overwritten by the diagonal elements of the upper triangular matrix U from the LU factorization of A.
35
+
* @param {Float64Array} DU - super diagonal elements of A. On exit, DU is overwritten by the elements of the first super-diagonal of U.
36
+
* @param {Float64Array} DU2 - On exit, DU2 is overwritten by the elements of the second super-diagonal of U.
37
37
* @param {Int32Array} IPIV - vector of pivot indices
38
38
* @throws {RangeError} first argument must be a nonnegative integer
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/lapack/base/dgttrf/lib/ndarray.js
+15-15
Original file line number
Diff line number
Diff line change
@@ -29,22 +29,22 @@ var base = require( './base.js' );
29
29
/**
30
30
* Computes an LU factorization of a real tri diagonal matrix A using elimination with partial pivoting and row interchanges and alternative indexing semantics.
31
31
*
32
-
* @param {NonNegativeInteger} N - order of `A`
33
-
* @param {Float64Array} DL - sub diagonal elements of `A`
34
-
* @param {integer} strideDL - stride of the sub diagonal elements of `A`
35
-
* @param {NonNegativeInteger} offsetDL - offset of the sub diagonal elements of `A`
36
-
* @param {Float64Array} D - diagonal elements of `A`
37
-
* @param {integer} strideD - stride of the diagonal elements of `A`
38
-
* @param {NonNegativeInteger} offsetD - offset of the diagonal elements of `A`
39
-
* @param {Float64Array} DU - diagonal elements of `A`
40
-
* @param {integer} strideDU - stride of the first super diagonal elements of `A`
41
-
* @param {NonNegativeInteger} offsetDU - offset of the first super diagonal elements of `A`
42
-
* @param {Float64Array} DU2 - diagonal elements of `A`
43
-
* @param {integer} strideDU2 - stride of the second super diagonal elements of `A`
44
-
* @param {NonNegativeInteger} offsetDU2 - offset of the second super diagonal elements of `A`
32
+
* @param {NonNegativeInteger} N - order of matrix A
33
+
* @param {Float64Array} DL - sub diagonal elements of A. On exit, DL is overwritten by the multipliers that define the matrix L from the LU factorization of A.
34
+
* @param {integer} strideDL - stride length for `DL`
35
+
* @param {NonNegativeInteger} offsetDL - starting index of `DL`
36
+
* @param {Float64Array} D - diagonal elements of A. On exit, D is overwritten by the diagonal elements of the upper triangular matrix U from the LU factorization of A.
37
+
* @param {integer} strideD - stride length for `D`
38
+
* @param {NonNegativeInteger} offsetD - starting index of `D`
39
+
* @param {Float64Array} DU - super diagonal elements of A. On exit, DU is overwritten by the elements of the first super-diagonal of U.
40
+
* @param {integer} strideDU - stride length for `DU`
41
+
* @param {NonNegativeInteger} offsetDU - starting index of `DU`
42
+
* @param {Float64Array} DU2 - On exit, DU2 is overwritten by the elements of the second super-diagonal of U.
43
+
* @param {integer} strideDU2 - stride length for `DU2`
44
+
* @param {NonNegativeInteger} offsetDU2 - starting index of `DU2`
45
45
* @param {Int32Array} IPIV - vector of pivot indices
0 commit comments