|
| 1 | +# nanmvariance |
| 2 | + |
| 3 | +> Compute a moving [unbiased sample variance][sample-variance] incrementally, ignoring `NaN` values. |
| 4 | +
|
| 5 | +<section class="intro"> |
| 6 | + |
| 7 | +For a window of size `W`, the [unbiased sample variance][sample-variance] is defined as |
| 8 | + |
| 9 | +<!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2" alt="Equation for the unbiased sample variance."> --> |
| 10 | + |
| 11 | +```math |
| 12 | +s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2 |
| 13 | +``` |
| 14 | + |
| 15 | +<!-- <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} ( x_i - \bar{x} )^2" data-equation="eq:unbiased_sample_variance"> |
| 16 | + <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/mvariance/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for the unbiased sample variance."> |
| 17 | + <br> |
| 18 | +</div> --> |
| 19 | + |
| 20 | +<!-- </equation> --> |
| 21 | + |
| 22 | +where `n` is the number of non-`NaN` values in the window, and `\bar{x}` is the arithmetic mean of the non-`NaN` values. |
| 23 | + |
| 24 | +</section> |
| 25 | + |
| 26 | +<!-- /.intro --> |
| 27 | + |
| 28 | +<section class="usage"> |
| 29 | + |
| 30 | +## Usage |
| 31 | + |
| 32 | +```javascript |
| 33 | +var incrnanmvariance = require( '@stdlib/stats/incr/nanmvariance' ); |
| 34 | +``` |
| 35 | + |
| 36 | +#### incrnanmvariance( window\[, mean] ) |
| 37 | + |
| 38 | +Returns an accumulator `function` which incrementally computes a moving [unbiased sample variance][sample-variance], ignoring `NaN` values. The `window` parameter defines the number of values over which to compute the moving [unbiased sample variance][sample-variance]. |
| 39 | + |
| 40 | +```javascript |
| 41 | +var accumulator = incrnanmvariance( 3 ); |
| 42 | +``` |
| 43 | + |
| 44 | +If the mean is already known, provide a `mean` argument. |
| 45 | + |
| 46 | +```javascript |
| 47 | +var accumulator = incrnanmvariance( 3, 5.0 ); |
| 48 | +``` |
| 49 | + |
| 50 | +#### accumulator( \[x] ) |
| 51 | + |
| 52 | +If provided an input value `x`, the accumulator function returns an updated [unbiased sample variance][sample-variance]. If not provided an input value `x`, the accumulator function returns the current [unbiased sample variance][sample-variance]. |
| 53 | + |
| 54 | +```javascript |
| 55 | +var accumulator = incrnanmvariance( 3 ); |
| 56 | + |
| 57 | +var s2 = accumulator(); |
| 58 | +// returns null |
| 59 | + |
| 60 | +// Fill the window... |
| 61 | +s2 = accumulator( 2.0 ); // [2.0] |
| 62 | +// returns 0.0 |
| 63 | + |
| 64 | +s2 = accumulator( NaN ); // [2.0, NaN] |
| 65 | +// returns 0.0 |
| 66 | + |
| 67 | +s2 = accumulator( -5.0 ); // [2.0, NaN, -5.0] |
| 68 | +// returns 24.5 |
| 69 | + |
| 70 | +// Window begins sliding... |
| 71 | +s2 = accumulator( 3.0 ); // [NaN, -5.0, 3.0] |
| 72 | +// returns 32.0 |
| 73 | + |
| 74 | +s2 = accumulator( NaN ); // [-5.0, 3.0, NaN] |
| 75 | +// returns 32.0 |
| 76 | + |
| 77 | +s2 = accumulator(); |
| 78 | +// returns 32.0 |
| 79 | +``` |
| 80 | + |
| 81 | +</section> |
| 82 | + |
| 83 | +<!-- /.usage --> |
| 84 | + |
| 85 | +<section class="notes"> |
| 86 | + |
| 87 | +## Notes |
| 88 | + |
| 89 | +- Input values are **not** type checked. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function. |
| 90 | +- NaN input values are ignored. If the window contains only NaN values, the variance is calculated as if the window were empty. |
| 91 | +- As `W` values are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided non-NaN values. |
| 92 | +- The implementation uses [Welford's algorithm][welford-algorithm]. |
| 93 | + |
| 94 | +</section> |
| 95 | + |
| 96 | +<!-- /.notes --> |
| 97 | + |
| 98 | +<section class="examples"> |
| 99 | + |
| 100 | +## Examples |
| 101 | + |
| 102 | +<!-- eslint no-undef: "error" --> |
| 103 | + |
| 104 | +```javascript |
| 105 | +var randu = require( '@stdlib/random/base/randu' ); |
| 106 | +var incrnanmvariance = require( '@stdlib/stats/incr/nanmvariance' ); |
| 107 | + |
| 108 | +var accumulator; |
| 109 | +var v; |
| 110 | +var i; |
| 111 | + |
| 112 | +// Initialize an accumulator: |
| 113 | +accumulator = incrnanmvariance( 5 ); |
| 114 | + |
| 115 | +// For each simulated datum, update the moving unbiased sample variance... |
| 116 | +console.log( '\nValue\tSample Variance\n' ); |
| 117 | +for ( i = 0; i < 100; i++ ) { |
| 118 | + if ( randu() < 0.2 ) { |
| 119 | + v = NaN; |
| 120 | + } else { |
| 121 | + v = randu() * 100.0; |
| 122 | + } |
| 123 | + console.log( '%d\t%d', v.toFixed( 4 ), accumulator( v ).toFixed( 4 ) ); |
| 124 | +} |
| 125 | +console.log( '\nFinal variance: %d\n', accumulator() ); |
| 126 | +``` |
| 127 | + |
| 128 | +</section> |
| 129 | + |
| 130 | +<!-- /.examples --> |
| 131 | + |
| 132 | +<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. --> |
| 133 | + |
| 134 | +<section class="related"> |
| 135 | + |
| 136 | +* * * |
| 137 | + |
| 138 | +## See Also |
| 139 | + |
| 140 | +- <span class="package-name">[`@stdlib/stats/incr/mvariance`][@stdlib/stats/incr/mvariance]</span><span class="delimiter">: </span><span class="description">compute a moving unbiased sample variance incrementally.</span> |
| 141 | +- <span class="package-name">[`@stdlib/stats/incr/nanmmean`][@stdlib/stats/incr/nanmmean]</span><span class="delimiter">: </span><span class="description">compute a moving arithmetic mean incrementally, ignoring NaN values.</span> |
| 142 | +- <span class="package-name">[`@stdlib/stats/incr/nanmstdev`][@stdlib/stats/incr/nanmstdev]</span><span class="delimiter">: </span><span class="description">compute a moving corrected sample standard deviation incrementally, ignoring NaN values.</span> |
| 143 | +- <span class="package-name">[`@stdlib/stats/incr/nanvariance`][@stdlib/stats/incr/nanvariance]</span><span class="delimiter">: </span><span class="description">compute an unbiased sample variance incrementally, ignoring NaN values.</span> |
| 144 | + |
| 145 | +</section> |
| 146 | + |
| 147 | +<!-- /.related --> |
| 148 | + |
| 149 | +<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> |
| 150 | + |
| 151 | +<section class="links"> |
| 152 | + |
| 153 | +[sample-variance]: https://en.wikipedia.org/wiki/Variance |
| 154 | +[welford-algorithm]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm |
| 155 | + |
| 156 | +<!-- <related-links> --> |
| 157 | + |
| 158 | +[@stdlib/stats/incr/mvariance]: https://github.com/stdlib-js/stats-incr-mvariance |
| 159 | + |
| 160 | +[@stdlib/stats/incr/nanmmean]: https://github.com/stdlib-js/stats-incr-nanmmean |
| 161 | + |
| 162 | +[@stdlib/stats/incr/nanmstdev]: https://github.com/stdlib-js/stats-incr-nanmstdev |
| 163 | + |
| 164 | +[@stdlib/stats/incr/nanvariance]: https://github.com/stdlib-js/stats-incr-nanvariance |
| 165 | + |
| 166 | +<!-- </related-links> --> |
| 167 | + |
| 168 | +</section> |
| 169 | + |
| 170 | +<!-- /.links --> |
0 commit comments