-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviscomplex.py
281 lines (228 loc) · 11.8 KB
/
viscomplex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import torch
from PIL import Image
import cv2
import numpy as np
from pathlib import Path
from transformers import CLIPProcessor, CLIPModel
from scipy.stats import entropy
import logging
import shutil
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
import psutil
import pickle
class SuperResImageSelector:
def __init__(self, input_folder: str, output_folder: str = None):
self.input_folder = Path(input_folder)
if output_folder is None:
self.output_folder = self.input_folder.parent / (self.input_folder.name + "_filtered")
else:
self.output_folder = Path(output_folder)
# System resource detection
self.total_ram = psutil.virtual_memory().total / (1024**3)
self.available_ram = psutil.virtual_memory().available / (1024**3)
self.cpu_count = psutil.cpu_count(logical=False)
# Calculate optimal batch sizes
self.processing_batch_size = min(32, max(8, self.cpu_count * 2))
max_images_in_memory = int((self.available_ram * 0.7) / 0.01)
self.distance_batch_size = min(5000, max_images_in_memory)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.temp_dir = Path("temp_" + datetime.now().strftime("%Y%m%d_%H%M%S"))
self.temp_dir.mkdir(exist_ok=True)
self._setup_logging()
# Default brightness threshold
self.max_brightness = 200
def _setup_logging(self):
self.logger = logging.getLogger('SuperResImageSelector')
self.logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
self.logger.addHandler(handler)
self.logger.info(f"System resources detected:")
self.logger.info(f"Total RAM: {self.total_ram:.1f}GB")
self.logger.info(f"Available RAM: {self.available_ram:.1f}GB")
self.logger.info(f"CPU cores: {self.cpu_count}")
self.logger.info(f"Processing batch size: {self.processing_batch_size}")
self.logger.info(f"Distance calculation batch size: {self.distance_batch_size}")
def _save_checkpoint(self, data, step_name):
checkpoint_path = self.temp_dir / f"{step_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pkl"
with open(checkpoint_path, 'wb') as f:
pickle.dump(data, f)
self.logger.info(f"Saved checkpoint: {checkpoint_path}")
return checkpoint_path
def _load_latest_checkpoint(self, step_name):
checkpoints = list(self.temp_dir.glob(f"{step_name}_*.pkl"))
if not checkpoints:
return None
latest_checkpoint = max(checkpoints, key=lambda x: x.stat().st_mtime)
with open(latest_checkpoint, 'rb') as f:
return pickle.load(f)
def calculate_complexity(self, image_path: Path) -> dict:
"""Calculate image complexity metrics"""
try:
img = cv2.imread(str(image_path))
if img is None:
return None
# Convert to HSV to get brightness
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
brightness = np.mean(hsv[:, :, 2]) # V channel represents brightness
# Skip overly bright images
if brightness > self.max_brightness:
return None
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Calculate entropy
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist_norm = hist.ravel() / hist.sum()
img_entropy = entropy(hist_norm)
# Calculate edge density
edges = cv2.Canny(gray, 100, 200)
edge_density = np.count_nonzero(edges) / edges.size
# Calculate sharpness using Laplacian variance (32-bit for efficiency)
laplacian = cv2.Laplacian(gray, cv2.CV_32F)
sharpness = np.var(laplacian)
# Calculate overall complexity score
complexity_score = (
0.4 * img_entropy +
0.4 * edge_density +
0.2 * (sharpness / 1000) # Normalized and weighted
)
return {
'entropy': img_entropy,
'edge_density': edge_density,
'sharpness': sharpness,
'brightness': brightness,
'complexity_score': complexity_score
}
except Exception as e:
self.logger.error(f"Error calculating complexity for {image_path}: {e}")
return None
def get_clip_features(self, image_path: Path) -> torch.Tensor:
"""Extract CLIP features from image"""
try:
image = Image.open(image_path).convert('RGB')
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
with torch.no_grad():
features = self.model.get_image_features(**inputs)
# Convert to float32 and normalize
features = features.float().cpu().flatten()
features = features / (torch.norm(features) + 1e-8)
return features
except Exception as e:
self.logger.error(f"Error getting CLIP features for {image_path}: {e}")
return None
def analyze_image(self, image_path: Path) -> dict:
try:
complexity_metrics = self.calculate_complexity(image_path)
if complexity_metrics is None:
return None
clip_features = self.get_clip_features(image_path)
if clip_features is None:
return None
return {
'path': image_path,
'clip_features': clip_features,
**complexity_metrics
}
except Exception as e:
self.logger.error(f"Error analyzing {image_path}: {e}")
return None
def select_images(self, min_distance: float = 0.15, complexity_threshold: float = 0.4):
try:
# Load or analyze images
results = self._load_latest_checkpoint("analysis") or []
if not results:
image_paths = [p for p in self.input_folder.glob('*')
if p.suffix.lower() in {'.jpg', '.jpeg', '.png', '.bmp'}]
self.logger.info("Analyzing images...")
with ThreadPoolExecutor(max_workers=self.cpu_count) as executor:
futures = [executor.submit(self.analyze_image, path)
for path in image_paths]
results = [f.result() for f in tqdm(futures) if f.result() is not None]
self._save_checkpoint(results, "analysis")
if not results:
self.logger.error("No valid images found")
return []
# Sort by complexity and filter
results.sort(key=lambda x: x['complexity_score'], reverse=True)
complex_images = [r for r in results if r['complexity_score'] >= complexity_threshold]
if not complex_images:
self.logger.warning(f"No images meet complexity threshold {complexity_threshold}")
complex_images = results[:1000] # Take top 1000 by complexity
self.logger.info(f"Selected {len(complex_images)} complex images")
# Convert all features to numpy array (float32)
features = np.vstack([img['clip_features'].numpy() for img in complex_images]).astype(np.float32)
features = features / (np.linalg.norm(features, axis=1, keepdims=True) + 1e-8)
# Calculate pairwise distances
self.logger.info("Calculating pairwise distances...")
similarities = np.dot(features, features.T)
np.clip(similarities, -1.0, 1.0, out=similarities) # Numerical stability
distances = 1.0 - similarities
distances = distances.astype(np.float32) # Convert to float32
# Select diverse images
selected_indices = []
available = set(range(len(complex_images)))
# Start with most complex image (index 0 since already sorted)
selected_indices.append(0)
available.remove(0)
self.logger.info("Selecting diverse images...")
while available:
curr_distances = distances[list(available)][:, selected_indices]
min_dists = np.min(curr_distances, axis=1)
valid = min_dists >= min_distance
if not np.any(valid):
break
valid_indices = np.array(list(available))[valid]
idx = valid_indices[0] # Take first valid image (highest complexity)
selected_indices.append(idx)
available.remove(idx)
if len(selected_indices) % 100 == 0:
self.logger.info(f"Selected {len(selected_indices)} images...")
selected_paths = [complex_images[i]['path'] for i in selected_indices]
self.logger.info(f"Total selected: {len(selected_paths)} images")
return selected_paths
except Exception as e:
self.logger.error(f"Error in selection process: {e}")
raise
def copy_selected_images(self, min_distance: float = 0.15, complexity_threshold: float = 0.4):
try:
self.output_folder.mkdir(parents=True, exist_ok=True)
selected_paths = self.select_images(min_distance, complexity_threshold)
if not selected_paths:
self.logger.error("No images were selected")
return
for path in selected_paths:
try:
shutil.copy2(path, self.output_folder)
self.logger.info(f"Copied {path.name}")
except Exception as e:
self.logger.error(f"Error copying {path}: {e}")
except Exception as e:
self.logger.error(f"Error in copy process: {e}")
def cleanup(self):
"""Clean up temporary files and directories"""
try:
shutil.rmtree(self.temp_dir)
self.logger.info(f"Cleaned up temporary directory: {self.temp_dir}")
except Exception as e:
self.logger.error(f"Error cleaning up: {e}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Select images suitable for super resolution')
parser.add_argument('input_folder', help='Input folder containing images')
parser.add_argument('--min_distance', type=float, default=0.15,
help='Minimum CLIP distance between selected images')
parser.add_argument('--complexity_threshold', type=float, default=0.4,
help='Minimum complexity score for selection')
parser.add_argument('--max_brightness', type=float, default=200,
help='Maximum average brightness value (0-255)')
args = parser.parse_args()
selector = SuperResImageSelector(args.input_folder)
selector.max_brightness = args.max_brightness
try:
selector.copy_selected_images(args.min_distance, args.complexity_threshold)
finally:
selector.cleanup()