-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisdistinct.py
371 lines (302 loc) · 16.7 KB
/
visdistinct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import shutil
import logging
from pathlib import Path
import torch
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
import numpy as np
from typing import List, Set, Tuple
from datetime import datetime
import sys
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
from tqdm import tqdm
import psutil
import cpuinfo
import math
class DistanceImageSelector:
@staticmethod
def _get_cpu_info():
"""Get detailed CPU information and recommend optimal parameters"""
try:
cpu = cpuinfo.get_cpu_info()
physical_cores = psutil.cpu_count(logical=False)
logical_cores = psutil.cpu_count(logical=True)
total_memory_gb = psutil.virtual_memory().total / (1024**3)
architecture = cpu.get('arch', 'unknown')
brand = cpu.get('brand_raw', 'unknown')
is_ryzen = 'ryzen' in brand.lower()
is_intel = 'intel' in brand.lower()
is_threadripper = 'threadripper' in brand.lower()
max_batch_by_memory = int((total_memory_gb * 16) / 2)
if is_ryzen or is_threadripper:
base_batch_size = 32
elif is_intel:
base_batch_size = 24
else:
base_batch_size = 16
batch_size = min(base_batch_size * math.ceil(physical_cores / 6), max_batch_by_memory)
if is_threadripper:
num_workers = logical_cores - 2
elif is_ryzen:
num_workers = physical_cores - 1
else:
num_workers = max(1, min(physical_cores - 1, logical_cores // 2))
return {
'brand': brand,
'architecture': architecture,
'physical_cores': physical_cores,
'logical_cores': logical_cores,
'total_memory_gb': total_memory_gb,
'recommended_batch_size': int(batch_size),
'recommended_workers': num_workers
}
except Exception as e:
return {
'brand': 'unknown',
'architecture': 'unknown',
'physical_cores': 4,
'logical_cores': 8,
'total_memory_gb': 8,
'recommended_batch_size': 16,
'recommended_workers': 4
}
def _setup_logging(self):
"""Setup logging configuration"""
try:
self.logger = logging.getLogger('DistanceImageSelector')
self.logger.handlers.clear()
self.logger.setLevel(logging.INFO)
c_handler = logging.StreamHandler()
f_handler = logging.FileHandler('image_selector.log')
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
c_handler.setFormatter(formatter)
f_handler.setFormatter(formatter)
self.logger.addHandler(c_handler)
self.logger.addHandler(f_handler)
except Exception as e:
raise Exception(f"Failed to setup logging: {str(e)}")
def __init__(self, input_folder: str, output_folder: str = None, batch_size: int = None, num_workers: int = None):
"""Initialize the image selector"""
try:
self._setup_logging()
self.input_folder = Path(input_folder)
if output_folder is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_folder = self.input_folder / f"distinct_images_{timestamp}"
self.output_folder = Path(output_folder)
cpu_info = self._get_cpu_info()
self.logger.info(f"Detected CPU: {cpu_info['brand']}")
self.logger.info(f"Architecture: {cpu_info['architecture']}")
self.logger.info(f"Physical cores: {cpu_info['physical_cores']}")
self.logger.info(f"Logical cores: {cpu_info['logical_cores']}")
self.logger.info(f"Total memory: {cpu_info['total_memory_gb']:.1f} GB")
self.batch_size = batch_size if batch_size is not None else cpu_info['recommended_batch_size']
self.num_workers = num_workers if num_workers is not None else cpu_info['recommended_workers']
self.logger.info(f"Using batch size: {self.batch_size}")
self.logger.info(f"Using workers: {self.num_workers}")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.logger.info(f"Using device: {self.device}")
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.logger.info("Successfully loaded CLIP model")
self.supported_formats = {'.jpg', '.jpeg', '.png', '.bmp', '.webp'}
except Exception as e:
raise Exception(f"Failed to initialize: {str(e)}")
def _is_valid_image(self, file_path: Path) -> bool:
"""Check if file is a valid image"""
try:
if file_path.suffix.lower() not in self.supported_formats:
return False
with Image.open(file_path) as img:
img.verify()
return True
except Exception as e:
self.logger.warning(f"Invalid image file {file_path}: {e}")
return False
def _get_image_features(self, image_path: Path) -> torch.Tensor:
"""Extract CLIP features from image"""
try:
image = Image.open(image_path).convert('RGB')
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
with torch.no_grad():
features = self.model.get_image_features(**inputs)
# Always ensure 2D output (batch_size, features)
features = features.squeeze()
if features.ndim == 1:
features = features.unsqueeze(0)
return features.cpu()
except Exception as e:
self.logger.error(f"Error processing image {image_path}: {e}")
raise
def _process_batch(self, image_paths: List[Path]) -> dict:
"""Process a batch of images"""
try:
batch_features = {}
for path in image_paths:
try:
features = self._get_image_features(path)
batch_features[path] = features
except Exception as e:
self.logger.error(f"Error processing {path}: {e}")
return batch_features
except Exception as e:
self.logger.error(f"Error processing batch: {e}")
return {}
def _extract_features(self, image_paths: List[Path]) -> dict:
"""Extract features from all images using batched processing"""
try:
features_dict = {}
total_images = len(image_paths)
batches = [image_paths[i:i + self.batch_size]
for i in range(0, len(image_paths), self.batch_size)]
start_time = time.time()
processed_count = 0
with tqdm(total=total_images, desc="Processing images") as pbar:
with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
try:
future_to_batch = {
executor.submit(self._process_batch, batch): batch
for batch in batches
}
for future in as_completed(future_to_batch):
try:
batch = future_to_batch[future]
batch_features = future.result()
features_dict.update(batch_features)
processed_count += len(batch)
pbar.update(len(batch))
elapsed_time = time.time() - start_time
images_per_second = processed_count / elapsed_time
remaining_images = total_images - processed_count
eta_seconds = remaining_images / images_per_second if images_per_second > 0 else 0
self.logger.info(
f"Processed {processed_count}/{total_images} images. "
f"Speed: {images_per_second:.2f} img/s. "
f"ETA: {eta_seconds/60:.1f} minutes"
)
except Exception as e:
self.logger.error(f"Error processing batch: {e}")
continue
except Exception as e:
self.logger.error(f"Error in thread pool execution: {e}")
raise
return features_dict
except Exception as e:
self.logger.error(f"Error in feature extraction: {e}")
return {}
def select_by_distance(self, min_distance: float = 0.15, max_images: int = None) -> List[Path]:
"""Select images that are at least min_distance apart"""
try:
image_paths = [f for f in self.input_folder.iterdir() if self._is_valid_image(f)]
if not image_paths:
self.logger.error("No valid images found in input folder")
return []
features_dict = self._extract_features(image_paths)
if not features_dict:
self.logger.error("No features were successfully extracted")
return []
try:
features_list = list(features_dict.values())
features_matrix = torch.stack(features_list)
# Debug info
self.logger.info(f"Initial feature matrix shape: {features_matrix.shape}")
# Ensure 2D matrix
if features_matrix.ndim > 2:
features_matrix = features_matrix.view(features_matrix.size(0), -1)
self.logger.info(f"Reshaped feature matrix shape: {features_matrix.shape}")
# Normalize features with better numerical stability
norms = torch.norm(features_matrix, p=2, dim=1, keepdim=True)
features_matrix = features_matrix / (norms + 1e-8)
# Calculate pairwise distances with better numerical stability
similarities = torch.mm(features_matrix, features_matrix.t())
similarities = torch.clamp(similarities, min=-1.0, max=1.0)
distances = 1.0 - similarities
distances = torch.clamp(distances, min=0.0, max=1.0)
self.logger.info(f"Distance matrix shape: {distances.shape}")
self.logger.info(f"Distance range: [{distances.min().item():.3f}, {distances.max().item():.3f}]")
# Initialize selection
selected_indices = []
selected_paths = []
available_indices = set(range(len(image_paths)))
paths_list = list(features_dict.keys())
# Start with the most central image
try:
center_distances = distances.mean(dim=1)
center_idx = int(center_distances.argmin().item())
selected_indices.append(center_idx)
selected_paths.append(paths_list[center_idx])
available_indices.remove(center_idx)
self.logger.info(f"Selected initial center image: {paths_list[center_idx].name}")
while available_indices:
# Convert available indices to tensor for indexing
available_idx_tensor = torch.tensor(list(available_indices), dtype=torch.long)
selected_idx_tensor = torch.tensor(selected_indices, dtype=torch.long)
# Calculate distances to selected images
current_distances = distances[available_idx_tensor][:, selected_idx_tensor]
min_distances, _ = current_distances.min(dim=1)
# Find valid candidates
valid_mask = min_distances >= min_distance
if not valid_mask.any():
self.logger.info(f"No more images found with minimum distance {min_distance}")
break
# Among valid candidates, select the one with maximum minimum distance
valid_distances = min_distances[valid_mask]
best_local_idx = valid_distances.argmax()
global_idx = int(available_idx_tensor[valid_mask].index_select(0, best_local_idx.unsqueeze(0)).item())
selected_indices.append(global_idx)
selected_paths.append(paths_list[global_idx])
available_indices.remove(global_idx)
if len(selected_paths) % 10 == 0:
self.logger.info(f"Selected {len(selected_paths)} images...")
if max_images and len(selected_paths) >= max_images:
self.logger.info(f"Reached maximum number of images: {max_images}")
break
self.logger.info(f"Selected {len(selected_paths)} images with minimum distance {min_distance}")
return selected_paths
except Exception as e:
self.logger.error(f"Error in image selection: {e}")
self.logger.error(f"Current state - Selected: {len(selected_indices)}, Available: {len(available_indices)}")
raise
except Exception as e:
self.logger.error(f"Error in feature processing: {e}")
return []
except Exception as e:
self.logger.error(f"Error in selection process: {e}")
return []
def copy_distinct_images(self, min_distance: float = 0.15, max_images: int = None):
"""Copy distinct images to output folder"""
try:
self.output_folder.mkdir(parents=True, exist_ok=True)
selected_paths = self.select_by_distance(min_distance, max_images)
if not selected_paths:
self.logger.error("No images were selected")
return
self.logger.info(f"Copying {len(selected_paths)} images to {self.output_folder}")
for path in selected_paths:
try:
shutil.copy2(path, self.output_folder)
self.logger.info(f"Copied {path.name}")
except Exception as e:
self.logger.error(f"Error copying {path}: {e}")
except Exception as e:
self.logger.error(f"Error in copy process: {e}")
def main():
"""Main function to run the script"""
try:
if len(sys.argv) < 2:
print("Usage: python script.py input_folder [output_folder] [min_distance] [max_images]")
sys.exit(1)
input_folder = sys.argv[1]
output_folder = sys.argv[2] if len(sys.argv) > 2 else None
min_distance = float(sys.argv[3]) if len(sys.argv) > 3 else 0.15
max_images = int(sys.argv[4]) if len(sys.argv) > 4 else None
selector = DistanceImageSelector(input_folder, output_folder)
selector.copy_distinct_images(min_distance=min_distance, max_images=max_images)
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()