@@ -133,7 +133,7 @@ def setup():
133133 return nexus
134134
135135def variable_sweep (problem ):
136- number_of_points = 20
136+ number_of_points = 5
137137 outputs = carpet_plot (problem , number_of_points , 0 , 0 ) #run carpet plot, suppressing default plots
138138 inputs = outputs .inputs
139139 objective = outputs .objective
@@ -153,7 +153,7 @@ def variable_sweep(problem):
153153 plt .xlabel ('wing area (m^2)' )
154154 plt .ylabel ('cruise_altitude (km)' )
155155
156-
156+ '''
157157 #now plot optimization path (note that these data points were post-processed into a plottable format)
158158 wing_1 = [95 , 95.00000149 , 95 , 95 , 95.00000149 , 95 , 95 , 95.00000149 , 95 , 106.674165 , 106.6741665 , 106.674165 , 106.674165 , 106.6741665 , 106.674165 , 106.674165 , 106.6741665 , 106.674165 , 105.6274294 , 105.6274309 , 105.6274294 , 105.6274294 , 105.6274309 , 105.6274294 , 105.6274294 , 105.6274309 , 105.6274294 , 106.9084316 , 106.9084331 , 106.9084316 , 106.9084316 , 106.9084331 , 106.9084316 , 106.9084316 , 106.9084331 , 106.9084316 , 110.520489 , 110.5204905 , 110.520489 , 110.520489 , 110.5204905 , 110.520489 , 110.520489 , 110.5204905 , 110.520489 , 113.2166831 , 113.2166845 , 113.2166831 , 113.2166831 , 113.2166845 , 113.2166831 , 113.2166831 , 113.2166845 , 113.2166831 , 114.1649262 , 114.1649277 , 114.1649262 , 114.1649262 , 114.1649277 , 114.1649262 , 114.1649262 , 114.1649277 , 114.1649262 , 114.2149828]
159159 alt_1 = [11.0 , 11.0 , 11.000000149011612, 11.0 , 11.0 , 11.000000149011612, 11.0 , 11.0 , 11.000000149011612, 9.540665954351425 , 9.540665954351425 , 9.540666103363037 , 9.540665954351425 , 9.540665954351425 , 9.540666103363037 , 9.540665954351425 , 9.540665954351425 , 9.540666103363037 , 10.023015652305284, 10.023015652305284, 10.023015801316896, 10.023015652305284, 10.023015652305284, 10.023015801316896, 10.023015652305284, 10.023015652305284, 10.023015801316896, 10.190994033521863, 10.190994033521863, 10.190994182533474, 10.190994033521863, 10.190994033521863, 10.190994182533474, 10.190994033521863, 10.190994033521863, 10.190994182533474, 10.440582829327589, 10.440582829327589, 10.4405829783392 , 10.440582829327589, 10.440582829327589, 10.4405829783392 , 10.440582829327589, 10.440582829327589, 10.4405829783392 , 10.536514606250261, 10.536514606250261, 10.536514755261873, 10.536514606250261, 10.536514606250261, 10.536514755261873, 10.536514606250261, 10.536514606250261, 10.536514755261873, 10.535957839878783, 10.535957839878783, 10.535957988890395, 10.535957839878783, 10.535957839878783, 10.535957988890395, 10.535957839878783, 10.535957839878783, 10.535957988890395, 10.52829047]
@@ -168,7 +168,7 @@ def variable_sweep(problem):
168168 opt_2 = plt.plot(wing_2, alt_2, 'k--', label='optimization path 2')
169169 init_2 = plt.plot(wing_2[0], alt_2[0], 'ko', label= 'initial points')
170170 final_2 = plt.plot(wing_2[-1], alt_2[-1], 'kx', label= 'final points')
171-
171+ '''
172172 plt .legend (loc = 'upper left' )
173173 plt .show ()
174174
0 commit comments