-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
49 lines (39 loc) · 1.46 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
#visual recognition
import json
from watson_developer_cloud import VisualRecognitionV3
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
# Define a flask app
app = Flask(__name__)
cf_port = os.getenv("PORT")
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('base.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['image']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
visual_recognition = VisualRecognitionV3('2018-03-19',iam_apikey='VOvZFOP5_ApeO-IoCqXhh-pqonte77nWUvTBsK-3f4Bu')
with open(file_path, 'rb') as images_file:
classes = visual_recognition.classify(images_file,threshold='0.6',classifier_ids='ClassificationModel_1874427257').get_result()
a=json.loads(json.dumps(classes, indent=2))
preds=a['images'][0]['classifiers'][0]['classes'][0]['class']
return preds
return None
if __name__ == '__main__':
if cf_port is None:
app.run(host='0.0.0.0', port=5000, debug=True)
else:
app.run(host='0.0.0.0', port=int(cf_port), debug=True)