-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
300 lines (288 loc) · 11.2 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from io import BytesIO
from flask import Flask, request, jsonify
from flask_cors import CORS
from PIL import Image
import os
import ImageTools as it
from exam1 import quantize_image
import exam2 as e2
import exam3 as e3
import exam4 as e4
import exam5 as e5
import exam6 as e6
import exam7 as e7
import exam8 as e8
import exam9 as e9
import exam10 as e10
import exam11 as e11
app = Flask(__name__)
cors = CORS(app, resources={
r"/process_image": {"origins": "http://localhost:*"}})
"""
1. 只是一个课程作业而已,没必要加多个路由模块了,直接前端传参区分得了......
2. 参数有效性验证能省则省吧,反正前端有alert,也看不出来啥
"""
@app.route('/process_image', methods=['POST'])
def process_image():
try:
# 从请求中获取上传的图像文件
# 将 FileStorage 对象的内容读取为字节流
uploaded_image = request.files['image']
image_bytes = BytesIO(uploaded_image.read())
image = Image.open(image_bytes)
uploaded_image2 = None
image2 = None
if len(request.files) == 2:
print('has 2 images')
uploaded_image2 = request.files['image2']
image_bytes2 = BytesIO(uploaded_image2.read())
image2 = Image.open(image_bytes2)
# 功能序号
fid = int(request.form['fid'])
print(f'fid is: {fid}')
# 最终文件路径 + 文件名
os.makedirs('static/image_out', exist_ok=True)
# save_path = os.path.join('static/image_out', it.gen_timestamp_name() + '.jpg')
url_parts = ['static/image_out', it.gen_timestamp_name() + '.jpg']
save_path = '/'.join(url_parts)
print(f'result is: {save_path}')
# 依据前端传入的fid=n参数,判断调用exam-n中的函数
if fid == 1:
# 灰度级量化
levels = int(request.form['levels'])
print(f'target level: {levels}')
# 对图像进行灰度级量化
quantized_image = quantize_image(image, levels)
it.save_image(quantized_image, save_path)
elif fid == 2:
# 反转变换
e2.point_op_reverse(image, save_path)
elif fid == 3:
# 对数变换
c = float(request.form['input1'])
print(f'c: {c}')
e2.point_op_log(image, save_path, c)
elif fid == 4:
# 幂次变换
c = float(request.form['input1'])
gamma = float(request.form['input2'])
print(f'c: {c}, gamma: {gamma}')
e2.point_op_powertrans(image, save_path, c, gamma)
elif fid == 5:
# 对比度拉伸
min = int(request.form['input1'])
max = int(request.form['input2'])
print(f'min: {min}, max: {max}')
e2.point_op_contrast_stretching(image, save_path, min, max)
elif fid == 6:
# 灰度级切片
min = int(request.form['input1'])
max = int(request.form['input2'])
print(f'min: {min}, max: {max}')
e2.point_op_gray_slice(image, save_path, min, max)
elif fid == 7:
# 位平面切片
bit = int(request.form['input1'])
print(f'bit: {bit}')
e2.point_op_bitplane_slice(image, save_path, bit)
elif fid == 8:
# 代数运算:加减乘除
op = request.form['input1']
print(f'op: {op}')
e2.image_cal1(image, image2, save_path, op)
elif fid == 9:
# 代数运算:非运算
e2.image_cal2(image, save_path)
elif fid == 10:
# 代数运算:与、或、异或运算
op = request.form['input1']
print(f'op: {op}')
e2.image_cal3(image, image2, save_path, op)
elif fid == 11:
# 直方图均衡化
e2.histogram_eq(image, save_path)
elif fid == 12:
# 线性平滑滤波器
kernel_size = int(request.form['input1'])
print(f'kernel_size: {kernel_size}')
e2.linear_smoothing_filter(image, kernel_size, save_path)
elif fid == 13:
# 中值滤波器
kernel_size = int(request.form['input1'])
print(f'kernel_size: {kernel_size}')
e2.middle_smoothing_filter(image, kernel_size, save_path)
elif fid == 14:
# 锐化滤波器
order = int(request.form['input1'])
print(f'order: {order}')
e2.sharpen_filter(image, save_path, order)
elif fid == 15:
# 以下四个为彩色空间变换
e3.rgb2cmy(image, save_path)
elif fid == 16:
e3.rgb2hsi(image, save_path)
elif fid == 17:
e3.rgb2yuv(image, save_path)
elif fid == 18:
e3.rgb2ycbcr(image, save_path)
elif fid == 19:
# 补色
e3.com_color(image, save_path)
elif fid == 20:
# 灰度变换
alpha = int(request.form['input1'])
beta = int(request.form['input2'])
e3.grayscale_transform(image, alpha, beta, save_path)
elif fid == 21:
# 傅里叶变换
e4.fourier_transform(image, save_path)
elif fid == 22:
# 快速傅里叶变换
e4.fast_fourier_transform(image, save_path)
elif fid == 23:
# 理想低通滤波器
cf = int(request.form['input1'])
e5.ideal_low_filter(image, cf, save_path)
elif fid == 24:
# 巴特沃斯低通滤波器
cf = int(request.form['input1'])
order = int(request.form['input2'])
e5.butterworth_low_filter(image, cf, order, save_path)
elif fid == 25:
# 理想高通滤波器
cf = int(request.form['input1'])
e5.ideal_high_filter(image, cf, save_path)
elif fid == 26:
# Butterworth高通滤波器
cf = int(request.form['input1'])
order = int(request.form['input2'])
e5.butterworth_high_filter(image, cf, order, save_path)
elif fid == 27:
# 添加高斯噪声
mean = int(request.form['input1'])
std = int(request.form['input2'])
e6.add_gaussian_noise(image, save_path, mean, std)
elif fid == 28:
# 添加椒盐噪声
salt_prob = float(request.form['input1'])
pepper_prob = float(request.form['input2'])
e6.add_salt_and_pepper_noise(
image, save_path, salt_prob, pepper_prob)
elif fid == 29:
# 添加波动噪声
intensity = int(request.form['input1'])
e6.add_uniform_noise(image, save_path, intensity)
elif fid == 30:
# 算术均值滤波器
kernel_size = int(request.form['input1'])
e6.ArithmeticMean_filter(image, kernel_size, save_path)
elif fid == 31:
# 中值滤波器
kernel_size = int(request.form['input1'])
e6.Median_filter(image, kernel_size, save_path)
elif fid == 32:
# 高斯滤波器
kernel_size = int(request.form['input1'])
sigma = int(request.form['input2'])
e6.Gaussian_filter(image, kernel_size, sigma, save_path)
elif fid == 33:
# 最大值滤波器
kernel_size = int(request.form['input1'])
e6.Max_filter(image, kernel_size, save_path)
elif fid == 34:
# 最小值滤波器
kernel_size = int(request.form['input1'])
e6.Min_filter(image, kernel_size, save_path)
elif fid == 35:
# 带阻滤波器
center_frequency = int(request.form['input1'])
bandwidth = int(request.form['input2'])
e6.bandstop_filter(image, center_frequency, bandwidth, save_path)
elif fid == 36:
# 带通滤波器
low_frequency = int(request.form['input1'])
high_frequency = int(request.form['input2'])
e6.bandpass_filter(image, low_frequency, high_frequency, save_path)
elif fid == 37:
# 陷波滤波器
center_frequency = int(request.form['input1'])
bandwidth = int(request.form['input2'])
e6.notch_filter(image, center_frequency, bandwidth, save_path)
elif fid == 38:
# 哈夫曼编码
e7.huffman_process(image, save_path)
elif fid == 39:
# LZW编码
e7.lzw_process(image, save_path)
elif fid == 40:
# DCT有损压缩
e7.dct_process(image, save_path)
elif fid == 41:
# DFT有损压缩
e7.dft_process(image, save_path)
elif fid == 42:
# 膨胀操作
e8.dilate(image, save_path)
elif fid == 43:
# 腐蚀操作
e8.erode(image, save_path)
elif fid == 44:
# 开操作
e8.opening(image, save_path)
elif fid == 45:
# 闭操作
e8.closing(image, save_path)
elif fid == 46:
# 边界提取
e8.boundary_extraction(image, save_path)
elif fid == 47:
# 区域填充
e8.region_filling(image, save_path)
elif fid == 48:
# 灰度不连续分割
e9.rgb_image_segmentation1(image, save_path)
elif fid == 49:
# 基于像素阈值的分割
e9.rgb_image_segmentation2(image, save_path)
elif fid == 50:
# 区域生长
e9.region_growing(image, save_path)
elif fid == 51:
# sobel算子边缘检测
e9.sobel_edge_detection(image, save_path)
elif fid == 52:
# prewitt算子边缘检测
e9.prewitt_edge_detection(image, save_path)
elif fid == 53:
# 链码表示
chain_code = e10.get_chain_code(image)
return jsonify({'success': 'image processed',
'result': chain_code}), 200
elif fid == 54:
# 多边形近似
num_vertices = int(request.form['input1'])
e10.polygon_approximation(image, num_vertices, save_path)
elif fid == 55:
# 区域骨架
e10.region_skeleton(image, save_path)
elif fid == 56:
# 边界描述
perimeter, diameter = e10.calculate_boundary(image)
result = f'边界周长: {perimeter} 边界直径: {diameter}'
return jsonify({'success': 'image processed',
'result': result}), 200
elif fid == 57:
# 图像检索
e11.main(image, save_path)
else:
raise Exception('no function mapped')
# flask 的静态资源目录 本地嘛 就这条件 凑合吧
base_url = 'http://localhost:5000/'
return jsonify({'success': 'image processed',
'save_path': base_url + save_path}), 200
except Exception as e:
print('-----server error-----\n', e)
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.config['JSON_AS_ASCII'] = False
app.run(debug=True)