-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrotten_oranges.cpp
132 lines (103 loc) · 3.45 KB
/
rotten_oranges.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*
Given a matrix of dimension r*c where each cell in the matrix can have values 0, 1 or 2 which has the following meaning:
0 : Empty cell
1 : Cells have fresh oranges
2 : Cells have rotten oranges
So, we have to determine what is the minimum time required to rot all oranges. A rotten orange at index [i,j] can rot other fresh orange at indexes [i-1,j], [i+1,j], [i,j-1], [i,j+1] (up, down, left and right) in unit time. If it is impossible to rot every orange then simply return -1.
Input:
The first line of input contains an integer T denoting the number of test cases. Each test case contains two integers r and c, where r is the number of rows and c is the number of columns in the array a[]. Next line contains space separated r*c elements each in the array a[].
Output:
Print an integer which denotes the minimum time taken to rot all the oranges (-1 if it is impossible).
Constraints:
1 <= T <= 100
1 <= r <= 100
1 <= c <= 100
0 <= a[i] <= 2
Example:
Input:
2
3 5
2 1 0 2 1 1 0 1 2 1 1 0 0 2 1
3 5
2 1 0 2 1 0 0 1 2 1 1 0 0 2 1
Output:
2
-1
Explanation:
Testcase 1:
2 | 1 | 0 | 2 | 1
1 | 0 | 1 | 2 | 1
1 | 0 | 0 | 2 | 1
Oranges at positions {0,0}, {0, 3}, {1, 3} and {2, 3} will rot oranges at {0, 1}, {1, 0}, {0, 4}, {1, 2}, {1, 4}, {2, 4} during 1st unit time. And, during 2nd unit time, orange at {1, 0} got rotten and will rot orange at {2, 0}. Hence, total 2 unit of time is required to rot all oranges
*/
#include<bits/stdc++.h>
using namespace std;
bool isValid(int x, int y, int m, int n){
return (x>=0 && x<m && y>=0 && y<n);
}
int orangesRotting(vector<vector<int>>& grid) {
int m=grid.size();
if(!m) return -1;
int n=grid[0].size();
queue<pair<int, pair<int, int> > > q; // < time, < coord x, coord y > >
for(int i=0; i<m;i++){
for(int j=0;j<n;j++){
if(grid[i][j]==2){
q.push({0, {i, j}});
}
}
}
pair<int, pair<int, int> > tmp;
while(!q.empty()){
tmp=q.front();
q.pop();
int i=tmp.second.first;
int j=tmp.second.second;
if(isValid(i-1, j, m, n) && grid[i-1][j]==1){ // top
grid[i-1][j]=2;
q.push({tmp.first+1, {i-1, j}});
}
if(isValid(i, j+1, m, n) && grid[i][j+1]==1){ // right
grid[i][j+1]=2;
q.push({tmp.first+1, {i, j+1}});
}
if(isValid(i+1, j, m, n) && grid[i+1][j]==1){ // down
grid[i+1][j]=2;
q.push({tmp.first+1, {i+1, j}});
}
if(isValid(i, j-1, m, n) && grid[i][j-1]==1){ // left
grid[i][j-1]=2;
q.push({tmp.first+1, {i, j-1}});
}
}
int resultTime=tmp.first;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(grid[i][j]==1){
resultTime=-1; break;
}
}
}
return resultTime;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int t;
cin>>t;
while(t--){
int m,n;
cin>>m>>n;
vector<vector<int> > grid(m, vector<int> (n, 0));
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
int ch;
cin>>ch;
grid[i][j]=ch;
}
}
cout<<orangesRotting(grid)<<endl;
}
return 0;
}