-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlevenshtein.py
50 lines (41 loc) · 1.59 KB
/
levenshtein.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
def levenshtein_distance(x, y):
D = np.zeros((len(x)+1,len(y)+1))
for i in range(1, len(x)+1):
D[i,0] = D[i-1,0] + 1
for j in range(1, len(y)+1):
D[0,j] = D[0,j-1] + 1
for i in range(1, len(x)+1):
D[i,j] = min(D[i-1,j] + 1, D[i,j-1] + 1, D[i-1,j-1]+(x[i-1] != y[j-1]))
print ("Distancia Levenhstein: ", D[len(x),len(y)])
return 0
levenshtein_distance("algoritmo","lagortimo")
def levenshtein_restringida(x,y):
D = np.zeros((len(x)+1,len(y)+1))
for i in range(1, len(x)+1):
D[i,0] = D[i-1,0] + 1
for j in range(1, len(y)+1):
D[0,j] = D[0,j-1] + 1
for i in range(1, len(x)+1):
for j in range(1,len(y)+1):
D[i,j] = min(D[i-1,j] + 1, D[i,j-1] + 1, D[i-1,j-1]+(x[i-1] != y[j-1]))
if i and j and x[i-1]==y[j-2] and x[i-2]==y[j-1]:
D[i,j] = min( D[(i,j)], D[i-2,j-2]+1)
print ("Distancia Levenhstein restringida: ", D[len(x),len(y)])
return 0
levenshtein_restringida("algoritmo","lagortimo")
'''FALTA SABER IMPLEMENTAR LA INTERMEDIA
def levenshtein_intermedia(x,y):
D = np.zeros((len(x)+1,len(y)+1))
for i in range(1, len(x)+1):
D[i,0] = D[i-1,0] + 1
for j in range(1, len(y)+1):
D[0,j] = D[0,j-1] + 1
for i in range(1, len(x)+1):
for j in range(1,len(y)+1):
D[i,j] = min(D[i-1,j] + 1, D[i,j-1] + 1, D[i-1,j-1]+(x[i-1] != y[j-1]))
if i and j and x[i-1]==y[j-2] and x[i-2]==y[j-1]:
D[i,j] = min( D[(i,j)], D[i-2,j-2]+1)
print (D[len(x),len(y)])
return 0
'''