- python>=3.10
- openai==1.2.0
- ltlf2dfa
- tqdm
- argparse
- collections
We use datasets generated by SPOT in our experiments.
Atomic Propositions Numbers: 8
LTL Formula Length: {[5,20),[20-40),[40-60),[60-80),[80-100)}
We use random/gpt-4 in our experiments.
git clone https://github.com/sysulic/ITG.git
cd ITG/src
pip install -r requirements.txt
See https://platform.openai.com/docs/quickstart?context=python
python *.py
* for different methods of our experiments:
- simple_io
- CoT_node
- CoT_tree
- CoT_SC
- Ours
Here are some arguments for choosing different dataset or backend:
'--backend', default='gpt-3.5-turbo', type=str
'--temperature', default=0.0, type=float
'--src', default='../data/little/', type=str
'--file', default='A8_40_60-test.json', type=str
'--s1',default=0,type=int
'--s2',default=100,type=int
'--log', default='test', type=str
'--K', default=4, type=int
'--rpt', default=50, type=int
Please consider citing the following paper if you find our codes helpful. Thank you!