diff --git a/your-code/main.ipynb b/your-code/main.ipynb
index 0fc1af6..28953bd 100644
--- a/your-code/main.ipynb
+++ b/your-code/main.ipynb
@@ -18,10 +18,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
-   "source": []
+   "source": [
+    "import numpy as np\n",
+    "import pandas as pd"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -32,7 +35,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -41,10 +44,33 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 14,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0     5.7\n",
+       "1    75.2\n",
+       "2    74.4\n",
+       "3    84.0\n",
+       "4    66.5\n",
+       "5    66.3\n",
+       "6    55.8\n",
+       "7    75.7\n",
+       "8    29.1\n",
+       "9    43.7\n",
+       "dtype: float64"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "pd.Series(lst)"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -57,10 +83,23 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 8,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "74.4"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "pd.Series(lst)[2]"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -71,7 +110,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -89,10 +128,146 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 33,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "\n",
+       "
\n",
+       "  \n",
+       "    \n",
+       "       | \n",
+       "      0 | \n",
+       "      1 | \n",
+       "      2 | \n",
+       "      3 | \n",
+       "      4 | \n",
+       "    
\n",
+       "  \n",
+       "  \n",
+       "    \n",
+       "      | 0 | \n",
+       "      53.1 | \n",
+       "      95.0 | \n",
+       "      67.5 | \n",
+       "      35.0 | \n",
+       "      78.4 | \n",
+       "    
\n",
+       "    \n",
+       "      | 1 | \n",
+       "      61.3 | \n",
+       "      40.8 | \n",
+       "      30.8 | \n",
+       "      37.8 | \n",
+       "      87.6 | \n",
+       "    
\n",
+       "    \n",
+       "      | 2 | \n",
+       "      20.6 | \n",
+       "      73.2 | \n",
+       "      44.2 | \n",
+       "      14.6 | \n",
+       "      91.8 | \n",
+       "    
\n",
+       "    \n",
+       "      | 3 | \n",
+       "      57.4 | \n",
+       "      0.1 | \n",
+       "      96.1 | \n",
+       "      4.2 | \n",
+       "      69.5 | \n",
+       "    
\n",
+       "    \n",
+       "      | 4 | \n",
+       "      83.6 | \n",
+       "      20.5 | \n",
+       "      85.4 | \n",
+       "      22.8 | \n",
+       "      35.9 | \n",
+       "    
\n",
+       "    \n",
+       "      | 5 | \n",
+       "      49.0 | \n",
+       "      69.0 | \n",
+       "      0.1 | \n",
+       "      31.8 | \n",
+       "      89.1 | \n",
+       "    
\n",
+       "    \n",
+       "      | 6 | \n",
+       "      23.3 | \n",
+       "      40.7 | \n",
+       "      95.0 | \n",
+       "      83.8 | \n",
+       "      26.9 | \n",
+       "    
\n",
+       "    \n",
+       "      | 7 | \n",
+       "      27.6 | \n",
+       "      26.4 | \n",
+       "      53.8 | \n",
+       "      88.8 | \n",
+       "      68.5 | \n",
+       "    
\n",
+       "    \n",
+       "      | 8 | \n",
+       "      96.6 | \n",
+       "      96.4 | \n",
+       "      53.4 | \n",
+       "      72.4 | \n",
+       "      50.1 | \n",
+       "    
\n",
+       "    \n",
+       "      | 9 | \n",
+       "      73.7 | \n",
+       "      39.0 | \n",
+       "      43.2 | \n",
+       "      81.6 | \n",
+       "      34.7 | \n",
+       "    
\n",
+       "  \n",
+       "
\n",
+       "
 "
+      ],
+      "text/plain": [
+       "      0     1     2     3     4\n",
+       "0  53.1  95.0  67.5  35.0  78.4\n",
+       "1  61.3  40.8  30.8  37.8  87.6\n",
+       "2  20.6  73.2  44.2  14.6  91.8\n",
+       "3  57.4   0.1  96.1   4.2  69.5\n",
+       "4  83.6  20.5  85.4  22.8  35.9\n",
+       "5  49.0  69.0   0.1  31.8  89.1\n",
+       "6  23.3  40.7  95.0  83.8  26.9\n",
+       "7  27.6  26.4  53.8  88.8  68.5\n",
+       "8  96.6  96.4  53.4  72.4  50.1\n",
+       "9  73.7  39.0  43.2  81.6  34.7"
+      ]
+     },
+     "execution_count": 33,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# syntax: DataFrame(data=None, index=None, columns=None, dtype=None, copy=None)\n",
+    "\n",
+    "pd.DataFrame(data = b)"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -103,7 +278,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 34,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -112,10 +287,145 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 35,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "\n",
+       "
\n",
+       "  \n",
+       "    \n",
+       "       | \n",
+       "      Score_1 | \n",
+       "      Score_2 | \n",
+       "      Score_3 | \n",
+       "      Score_4 | \n",
+       "      Score_5 | \n",
+       "    
\n",
+       "  \n",
+       "  \n",
+       "    \n",
+       "      | 0 | \n",
+       "      53.1 | \n",
+       "      95.0 | \n",
+       "      67.5 | \n",
+       "      35.0 | \n",
+       "      78.4 | \n",
+       "    
\n",
+       "    \n",
+       "      | 1 | \n",
+       "      61.3 | \n",
+       "      40.8 | \n",
+       "      30.8 | \n",
+       "      37.8 | \n",
+       "      87.6 | \n",
+       "    
\n",
+       "    \n",
+       "      | 2 | \n",
+       "      20.6 | \n",
+       "      73.2 | \n",
+       "      44.2 | \n",
+       "      14.6 | \n",
+       "      91.8 | \n",
+       "    
\n",
+       "    \n",
+       "      | 3 | \n",
+       "      57.4 | \n",
+       "      0.1 | \n",
+       "      96.1 | \n",
+       "      4.2 | \n",
+       "      69.5 | \n",
+       "    
\n",
+       "    \n",
+       "      | 4 | \n",
+       "      83.6 | \n",
+       "      20.5 | \n",
+       "      85.4 | \n",
+       "      22.8 | \n",
+       "      35.9 | \n",
+       "    
\n",
+       "    \n",
+       "      | 5 | \n",
+       "      49.0 | \n",
+       "      69.0 | \n",
+       "      0.1 | \n",
+       "      31.8 | \n",
+       "      89.1 | \n",
+       "    
\n",
+       "    \n",
+       "      | 6 | \n",
+       "      23.3 | \n",
+       "      40.7 | \n",
+       "      95.0 | \n",
+       "      83.8 | \n",
+       "      26.9 | \n",
+       "    
\n",
+       "    \n",
+       "      | 7 | \n",
+       "      27.6 | \n",
+       "      26.4 | \n",
+       "      53.8 | \n",
+       "      88.8 | \n",
+       "      68.5 | \n",
+       "    
\n",
+       "    \n",
+       "      | 8 | \n",
+       "      96.6 | \n",
+       "      96.4 | \n",
+       "      53.4 | \n",
+       "      72.4 | \n",
+       "      50.1 | \n",
+       "    
\n",
+       "    \n",
+       "      | 9 | \n",
+       "      73.7 | \n",
+       "      39.0 | \n",
+       "      43.2 | \n",
+       "      81.6 | \n",
+       "      34.7 | \n",
+       "    
\n",
+       "  \n",
+       "
\n",
+       "
 "
+      ],
+      "text/plain": [
+       "  Score_1 Score_2 Score_3 Score_4 Score_5\n",
+       "0    53.1    95.0    67.5    35.0    78.4\n",
+       "1    61.3    40.8    30.8    37.8    87.6\n",
+       "2    20.6    73.2    44.2    14.6    91.8\n",
+       "3    57.4     0.1    96.1     4.2    69.5\n",
+       "4    83.6    20.5    85.4    22.8    35.9\n",
+       "5    49.0    69.0     0.1    31.8    89.1\n",
+       "6    23.3    40.7    95.0    83.8    26.9\n",
+       "7    27.6    26.4    53.8    88.8    68.5\n",
+       "8    96.6    96.4    53.4    72.4    50.1\n",
+       "9    73.7    39.0    43.2    81.6    34.7"
+      ]
+     },
+     "execution_count": 35,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_b = pd.DataFrame(data = b, columns = [colnames]) # could also do pd.Dataframe(b).columns = colnames\n",
+    "df_b"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -126,10 +436,123 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 36,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "\n",
+       "
\n",
+       "  \n",
+       "    \n",
+       "       | \n",
+       "      Score_1 | \n",
+       "      Score_3 | \n",
+       "      Score_5 | \n",
+       "    
\n",
+       "  \n",
+       "  \n",
+       "    \n",
+       "      | 0 | \n",
+       "      53.1 | \n",
+       "      67.5 | \n",
+       "      78.4 | \n",
+       "    
\n",
+       "    \n",
+       "      | 1 | \n",
+       "      61.3 | \n",
+       "      30.8 | \n",
+       "      87.6 | \n",
+       "    
\n",
+       "    \n",
+       "      | 2 | \n",
+       "      20.6 | \n",
+       "      44.2 | \n",
+       "      91.8 | \n",
+       "    
\n",
+       "    \n",
+       "      | 3 | \n",
+       "      57.4 | \n",
+       "      96.1 | \n",
+       "      69.5 | \n",
+       "    
\n",
+       "    \n",
+       "      | 4 | \n",
+       "      83.6 | \n",
+       "      85.4 | \n",
+       "      35.9 | \n",
+       "    
\n",
+       "    \n",
+       "      | 5 | \n",
+       "      49.0 | \n",
+       "      0.1 | \n",
+       "      89.1 | \n",
+       "    
\n",
+       "    \n",
+       "      | 6 | \n",
+       "      23.3 | \n",
+       "      95.0 | \n",
+       "      26.9 | \n",
+       "    
\n",
+       "    \n",
+       "      | 7 | \n",
+       "      27.6 | \n",
+       "      53.8 | \n",
+       "      68.5 | \n",
+       "    
\n",
+       "    \n",
+       "      | 8 | \n",
+       "      96.6 | \n",
+       "      53.4 | \n",
+       "      50.1 | \n",
+       "    
\n",
+       "    \n",
+       "      | 9 | \n",
+       "      73.7 | \n",
+       "      43.2 | \n",
+       "      34.7 | \n",
+       "    
\n",
+       "  \n",
+       "
\n",
+       "
 "
+      ],
+      "text/plain": [
+       "  Score_1 Score_3 Score_5\n",
+       "0    53.1    67.5    78.4\n",
+       "1    61.3    30.8    87.6\n",
+       "2    20.6    44.2    91.8\n",
+       "3    57.4    96.1    69.5\n",
+       "4    83.6    85.4    35.9\n",
+       "5    49.0     0.1    89.1\n",
+       "6    23.3    95.0    26.9\n",
+       "7    27.6    53.8    68.5\n",
+       "8    96.6    53.4    50.1\n",
+       "9    73.7    43.2    34.7"
+      ]
+     },
+     "execution_count": 36,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_b_subset = df_b[[\"Score_1\", \"Score_3\", \"Score_5\"]]\n",
+    "df_b_subset"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -140,10 +563,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 37,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Score_3    56.95\n",
+       "dtype: float64"
+      ]
+     },
+     "execution_count": 37,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_b[\"Score_3\"].mean()"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -154,10 +591,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 38,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Score_4    88.8\n",
+       "dtype: float64"
+      ]
+     },
+     "execution_count": 38,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_b[\"Score_4\"].max()"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -168,10 +619,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 39,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Score_2    40.75\n",
+       "dtype: float64"
+      ]
+     },
+     "execution_count": 39,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_b[\"Score_2\"].median()"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -182,7 +647,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 42,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -203,10 +668,134 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 43,
    "metadata": {},
-   "outputs": [],
-   "source": []
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "\n",
+       "
\n",
+       "  \n",
+       "    \n",
+       "       | \n",
+       "      Description | \n",
+       "      Quantity | \n",
+       "      UnitPrice | \n",
+       "      Revenue | \n",
+       "    
\n",
+       "  \n",
+       "  \n",
+       "    \n",
+       "      | 0 | \n",
+       "      LUNCH BAG APPLE DESIGN | \n",
+       "      1 | \n",
+       "      1.65 | \n",
+       "      1.65 | \n",
+       "    
\n",
+       "    \n",
+       "      | 1 | \n",
+       "      SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+       "      24 | \n",
+       "      0.55 | \n",
+       "      13.20 | \n",
+       "    
\n",
+       "    \n",
+       "      | 2 | \n",
+       "      RIBBON REEL STRIPES DESIGN | \n",
+       "      1 | \n",
+       "      1.65 | \n",
+       "      1.65 | \n",
+       "    
\n",
+       "    \n",
+       "      | 3 | \n",
+       "      WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+       "      2880 | \n",
+       "      0.18 | \n",
+       "      518.40 | \n",
+       "    
\n",
+       "    \n",
+       "      | 4 | \n",
+       "      PLAYING CARDS JUBILEE UNION JACK | \n",
+       "      2 | \n",
+       "      1.25 | \n",
+       "      2.50 | \n",
+       "    
\n",
+       "    \n",
+       "      | 5 | \n",
+       "      POPCORN HOLDER | \n",
+       "      7 | \n",
+       "      0.85 | \n",
+       "      5.95 | \n",
+       "    
\n",
+       "    \n",
+       "      | 6 | \n",
+       "      BOX OF VINTAGE ALPHABET BLOCKS | \n",
+       "      1 | \n",
+       "      11.95 | \n",
+       "      11.95 | \n",
+       "    
\n",
+       "    \n",
+       "      | 7 | \n",
+       "      PARTY BUNTING | \n",
+       "      4 | \n",
+       "      4.95 | \n",
+       "      19.80 | \n",
+       "    
\n",
+       "    \n",
+       "      | 8 | \n",
+       "      JAZZ HEARTS ADDRESS BOOK | \n",
+       "      10 | \n",
+       "      0.19 | \n",
+       "      1.90 | \n",
+       "    
\n",
+       "    \n",
+       "      | 9 | \n",
+       "      SET OF 4 SANTA PLACE SETTINGS | \n",
+       "      48 | \n",
+       "      1.25 | \n",
+       "      60.00 | \n",
+       "    
\n",
+       "  \n",
+       "
\n",
+       "
 "
+      ],
+      "text/plain": [
+       "                          Description  Quantity  UnitPrice  Revenue\n",
+       "0              LUNCH BAG APPLE DESIGN         1       1.65     1.65\n",
+       "1  SET OF 60 VINTAGE LEAF CAKE CASES         24       0.55    13.20\n",
+       "2         RIBBON REEL STRIPES DESIGN          1       1.65     1.65\n",
+       "3   WORLD WAR 2 GLIDERS ASSTD DESIGNS      2880       0.18   518.40\n",
+       "4    PLAYING CARDS JUBILEE UNION JACK         2       1.25     2.50\n",
+       "5                      POPCORN HOLDER         7       0.85     5.95\n",
+       "6      BOX OF VINTAGE ALPHABET BLOCKS         1      11.95    11.95\n",
+       "7                       PARTY BUNTING         4       4.95    19.80\n",
+       "8            JAZZ HEARTS ADDRESS BOOK        10       0.19     1.90\n",
+       "9       SET OF 4 SANTA PLACE SETTINGS        48       1.25    60.00"
+      ]
+     },
+     "execution_count": 43,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_orders = pd.DataFrame(orders)\n",
+    "df_orders"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -217,10 +806,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 46,
    "metadata": {},
    "outputs": [],
-   "source": []
+   "source": [
+    "total_quantity = df_orders[\"Quantity\"].sum()\n",
+    "\n",
+    "revenue = df_orders[\"Revenue\"].sum()"
+   ]
   },
   {
    "cell_type": "markdown",
@@ -229,6 +822,27 @@
     "### 12. Obtain the prices of the most expensive and least expensive items ordered and print the difference."
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": 47,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "11.77\n"
+     ]
+    }
+   ],
+   "source": [
+    "most_expensive = df_orders[\"UnitPrice\"].max()\n",
+    "\n",
+    "least_expensive = df_orders[\"UnitPrice\"].min()\n",
+    "\n",
+    "print(most_expensive - least_expensive)"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -239,7 +853,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -253,7 +867,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.6.8"
+   "version": "3.10.10"
   }
  },
  "nbformat": 4,