diff --git a/your-code/main.ipynb b/your-code/main.ipynb
index 0fc1af6..78a0d60 100644
--- a/your-code/main.ipynb
+++ b/your-code/main.ipynb
@@ -18,10 +18,13 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd"
+ ]
},
{
"cell_type": "markdown",
@@ -32,19 +35,44 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
- "lst = [5.7, 75.2, 74.4, 84.0, 66.5, 66.3, 55.8, 75.7, 29.1, 43.7]"
+ "lst = [5.7, 75.2, 74.4, 84.0, 66.5, 66.3, 55.8, 75.7, 29.1, 43.7]\n"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 9,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pdseries = pd.Series(lst)\n",
+ "\n",
+ "pdseries\n"
+ ]
},
{
"cell_type": "markdown",
@@ -57,10 +85,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "74.4"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pdseries[2]"
+ ]
},
{
"cell_type": "markdown",
@@ -71,7 +112,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -89,10 +130,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 13,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7\n"
+ ]
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(b)\n",
+ "\n",
+ "print(df)"
+ ]
},
{
"cell_type": "markdown",
@@ -103,7 +166,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
@@ -112,10 +175,146 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 17,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_2 | \n",
+ " Score_3 | \n",
+ " Score_4 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 0.869224 | \n",
+ " 0.746609 | \n",
+ " 0.584444 | \n",
+ " 0.038943 | \n",
+ " 0.222773 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 0.406937 | \n",
+ " 0.274400 | \n",
+ " 0.688071 | \n",
+ " 0.525683 | \n",
+ " 0.180013 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 0.487606 | \n",
+ " 0.564185 | \n",
+ " 0.928030 | \n",
+ " 0.115601 | \n",
+ " 0.429130 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 0.963187 | \n",
+ " 0.891227 | \n",
+ " 0.329746 | \n",
+ " 0.092960 | \n",
+ " 0.276190 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 0.171703 | \n",
+ " 0.796789 | \n",
+ " 0.908236 | \n",
+ " 0.527824 | \n",
+ " 0.888977 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 0.875052 | \n",
+ " 0.623937 | \n",
+ " 0.206036 | \n",
+ " 0.649553 | \n",
+ " 0.747086 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 0.968347 | \n",
+ " 0.613830 | \n",
+ " 0.824405 | \n",
+ " 0.788321 | \n",
+ " 0.879799 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 0.493284 | \n",
+ " 0.555293 | \n",
+ " 0.065843 | \n",
+ " 0.511444 | \n",
+ " 0.745148 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 0.408545 | \n",
+ " 0.844277 | \n",
+ " 0.634540 | \n",
+ " 0.172246 | \n",
+ " 0.321879 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 0.944799 | \n",
+ " 0.285153 | \n",
+ " 0.191065 | \n",
+ " 0.086497 | \n",
+ " 0.368352 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_2 Score_3 Score_4 Score_5\n",
+ "0 0.869224 0.746609 0.584444 0.038943 0.222773\n",
+ "1 0.406937 0.274400 0.688071 0.525683 0.180013\n",
+ "2 0.487606 0.564185 0.928030 0.115601 0.429130\n",
+ "3 0.963187 0.891227 0.329746 0.092960 0.276190\n",
+ "4 0.171703 0.796789 0.908236 0.527824 0.888977\n",
+ "5 0.875052 0.623937 0.206036 0.649553 0.747086\n",
+ "6 0.968347 0.613830 0.824405 0.788321 0.879799\n",
+ "7 0.493284 0.555293 0.065843 0.511444 0.745148\n",
+ "8 0.408545 0.844277 0.634540 0.172246 0.321879\n",
+ "9 0.944799 0.285153 0.191065 0.086497 0.368352"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(np.random.random((10,5)), columns=colnames)\n",
+ "\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -126,10 +325,122 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 19,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Score_1 | \n",
+ " Score_3 | \n",
+ " Score_5 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 0.869224 | \n",
+ " 0.584444 | \n",
+ " 0.222773 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 0.406937 | \n",
+ " 0.688071 | \n",
+ " 0.180013 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 0.487606 | \n",
+ " 0.928030 | \n",
+ " 0.429130 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 0.963187 | \n",
+ " 0.329746 | \n",
+ " 0.276190 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 0.171703 | \n",
+ " 0.908236 | \n",
+ " 0.888977 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 0.875052 | \n",
+ " 0.206036 | \n",
+ " 0.747086 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 0.968347 | \n",
+ " 0.824405 | \n",
+ " 0.879799 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 0.493284 | \n",
+ " 0.065843 | \n",
+ " 0.745148 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 0.408545 | \n",
+ " 0.634540 | \n",
+ " 0.321879 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 0.944799 | \n",
+ " 0.191065 | \n",
+ " 0.368352 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Score_1 Score_3 Score_5\n",
+ "0 0.869224 0.584444 0.222773\n",
+ "1 0.406937 0.688071 0.180013\n",
+ "2 0.487606 0.928030 0.429130\n",
+ "3 0.963187 0.329746 0.276190\n",
+ "4 0.171703 0.908236 0.888977\n",
+ "5 0.875052 0.206036 0.747086\n",
+ "6 0.968347 0.824405 0.879799\n",
+ "7 0.493284 0.065843 0.745148\n",
+ "8 0.408545 0.634540 0.321879\n",
+ "9 0.944799 0.191065 0.368352"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[['Score_1','Score_3','Score_5']]"
+ ]
},
{
"cell_type": "markdown",
@@ -140,10 +451,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 20,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.5360416639606794"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['Score_3'].mean()"
+ ]
},
{
"cell_type": "markdown",
@@ -154,10 +478,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 21,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.7883206597298037"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['Score_4'].max()"
+ ]
},
{
"cell_type": "markdown",
@@ -168,10 +505,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 22,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.6188833649256493"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['Score_2'].median()"
+ ]
},
{
"cell_type": "markdown",
@@ -182,7 +532,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
@@ -203,10 +553,135 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 26,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Quantity | \n",
+ " UnitPrice | \n",
+ " Revenue | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " LUNCH BAG APPLE DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " SET OF 60 VINTAGE LEAF CAKE CASES | \n",
+ " 24 | \n",
+ " 0.55 | \n",
+ " 13.20 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " RIBBON REEL STRIPES DESIGN | \n",
+ " 1 | \n",
+ " 1.65 | \n",
+ " 1.65 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " WORLD WAR 2 GLIDERS ASSTD DESIGNS | \n",
+ " 2880 | \n",
+ " 0.18 | \n",
+ " 518.40 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " PLAYING CARDS JUBILEE UNION JACK | \n",
+ " 2 | \n",
+ " 1.25 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " POPCORN HOLDER | \n",
+ " 7 | \n",
+ " 0.85 | \n",
+ " 5.95 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " BOX OF VINTAGE ALPHABET BLOCKS | \n",
+ " 1 | \n",
+ " 11.95 | \n",
+ " 11.95 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " PARTY BUNTING | \n",
+ " 4 | \n",
+ " 4.95 | \n",
+ " 19.80 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " JAZZ HEARTS ADDRESS BOOK | \n",
+ " 10 | \n",
+ " 0.19 | \n",
+ " 1.90 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " SET OF 4 SANTA PLACE SETTINGS | \n",
+ " 48 | \n",
+ " 1.25 | \n",
+ " 60.00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(orders)\n",
+ "\n",
+ "df"
+ ]
},
{
"cell_type": "markdown",
@@ -217,10 +692,25 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 30,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Quantity ordered : 2978\n",
+ "Revenue Generated : 637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "print(\"Quantity ordered : \", df['Quantity'].sum())\n",
+ "print(\"Revenue Generated : \", df['Revenue'].sum())\n",
+ "\n",
+ "\n"
+ ]
},
{
"cell_type": "markdown",
@@ -231,15 +721,29 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 36,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Most expensive : 11.95\n",
+ "Least expensive : 0.18\n",
+ "The diference between both : 11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Most expensive : \" , df['UnitPrice'].max())\n",
+ "print(\"Least expensive : \" , df['UnitPrice'].min())\n",
+ "print(\"The diference between both : \", df['UnitPrice'].max() - df['UnitPrice'].min() )"
+ ]
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -253,7 +757,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.8"
+ "version": "3.9.13"
}
},
"nbformat": 4,