diff --git a/your-code/main.ipynb b/your-code/main.ipynb index 0fc1af6..78a0d60 100644 --- a/your-code/main.ipynb +++ b/your-code/main.ipynb @@ -18,10 +18,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] }, { "cell_type": "markdown", @@ -32,19 +35,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ - "lst = [5.7, 75.2, 74.4, 84.0, 66.5, 66.3, 55.8, 75.7, 29.1, 43.7]" + "lst = [5.7, 75.2, 74.4, 84.0, 66.5, 66.3, 55.8, 75.7, 29.1, 43.7]\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "0 5.7\n", + "1 75.2\n", + "2 74.4\n", + "3 84.0\n", + "4 66.5\n", + "5 66.3\n", + "6 55.8\n", + "7 75.7\n", + "8 29.1\n", + "9 43.7\n", + "dtype: float64" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pdseries = pd.Series(lst)\n", + "\n", + "pdseries\n" + ] }, { "cell_type": "markdown", @@ -57,10 +85,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "74.4" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pdseries[2]" + ] }, { "cell_type": "markdown", @@ -71,7 +112,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -89,10 +130,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 1 2 3 4\n", + "0 53.1 95.0 67.5 35.0 78.4\n", + "1 61.3 40.8 30.8 37.8 87.6\n", + "2 20.6 73.2 44.2 14.6 91.8\n", + "3 57.4 0.1 96.1 4.2 69.5\n", + "4 83.6 20.5 85.4 22.8 35.9\n", + "5 49.0 69.0 0.1 31.8 89.1\n", + "6 23.3 40.7 95.0 83.8 26.9\n", + "7 27.6 26.4 53.8 88.8 68.5\n", + "8 96.6 96.4 53.4 72.4 50.1\n", + "9 73.7 39.0 43.2 81.6 34.7\n" + ] + } + ], + "source": [ + "df = pd.DataFrame(b)\n", + "\n", + "print(df)" + ] }, { "cell_type": "markdown", @@ -103,7 +166,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -112,10 +175,146 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Score_1Score_2Score_3Score_4Score_5
00.8692240.7466090.5844440.0389430.222773
10.4069370.2744000.6880710.5256830.180013
20.4876060.5641850.9280300.1156010.429130
30.9631870.8912270.3297460.0929600.276190
40.1717030.7967890.9082360.5278240.888977
50.8750520.6239370.2060360.6495530.747086
60.9683470.6138300.8244050.7883210.879799
70.4932840.5552930.0658430.5114440.745148
80.4085450.8442770.6345400.1722460.321879
90.9447990.2851530.1910650.0864970.368352
\n", + "
" + ], + "text/plain": [ + " Score_1 Score_2 Score_3 Score_4 Score_5\n", + "0 0.869224 0.746609 0.584444 0.038943 0.222773\n", + "1 0.406937 0.274400 0.688071 0.525683 0.180013\n", + "2 0.487606 0.564185 0.928030 0.115601 0.429130\n", + "3 0.963187 0.891227 0.329746 0.092960 0.276190\n", + "4 0.171703 0.796789 0.908236 0.527824 0.888977\n", + "5 0.875052 0.623937 0.206036 0.649553 0.747086\n", + "6 0.968347 0.613830 0.824405 0.788321 0.879799\n", + "7 0.493284 0.555293 0.065843 0.511444 0.745148\n", + "8 0.408545 0.844277 0.634540 0.172246 0.321879\n", + "9 0.944799 0.285153 0.191065 0.086497 0.368352" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.DataFrame(np.random.random((10,5)), columns=colnames)\n", + "\n", + "df" + ] }, { "cell_type": "markdown", @@ -126,10 +325,122 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Score_1Score_3Score_5
00.8692240.5844440.222773
10.4069370.6880710.180013
20.4876060.9280300.429130
30.9631870.3297460.276190
40.1717030.9082360.888977
50.8750520.2060360.747086
60.9683470.8244050.879799
70.4932840.0658430.745148
80.4085450.6345400.321879
90.9447990.1910650.368352
\n", + "
" + ], + "text/plain": [ + " Score_1 Score_3 Score_5\n", + "0 0.869224 0.584444 0.222773\n", + "1 0.406937 0.688071 0.180013\n", + "2 0.487606 0.928030 0.429130\n", + "3 0.963187 0.329746 0.276190\n", + "4 0.171703 0.908236 0.888977\n", + "5 0.875052 0.206036 0.747086\n", + "6 0.968347 0.824405 0.879799\n", + "7 0.493284 0.065843 0.745148\n", + "8 0.408545 0.634540 0.321879\n", + "9 0.944799 0.191065 0.368352" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[['Score_1','Score_3','Score_5']]" + ] }, { "cell_type": "markdown", @@ -140,10 +451,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "0.5360416639606794" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Score_3'].mean()" + ] }, { "cell_type": "markdown", @@ -154,10 +478,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "0.7883206597298037" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Score_4'].max()" + ] }, { "cell_type": "markdown", @@ -168,10 +505,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "0.6188833649256493" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Score_2'].median()" + ] }, { "cell_type": "markdown", @@ -182,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -203,10 +553,135 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DescriptionQuantityUnitPriceRevenue
0LUNCH BAG APPLE DESIGN11.651.65
1SET OF 60 VINTAGE LEAF CAKE CASES240.5513.20
2RIBBON REEL STRIPES DESIGN11.651.65
3WORLD WAR 2 GLIDERS ASSTD DESIGNS28800.18518.40
4PLAYING CARDS JUBILEE UNION JACK21.252.50
5POPCORN HOLDER70.855.95
6BOX OF VINTAGE ALPHABET BLOCKS111.9511.95
7PARTY BUNTING44.9519.80
8JAZZ HEARTS ADDRESS BOOK100.191.90
9SET OF 4 SANTA PLACE SETTINGS481.2560.00
\n", + "
" + ], + "text/plain": [ + " Description Quantity UnitPrice Revenue\n", + "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n", + "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n", + "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n", + "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n", + "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n", + "5 POPCORN HOLDER 7 0.85 5.95\n", + "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n", + "7 PARTY BUNTING 4 4.95 19.80\n", + "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n", + "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.DataFrame(orders)\n", + "\n", + "df" + ] }, { "cell_type": "markdown", @@ -217,10 +692,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Quantity ordered : 2978\n", + "Revenue Generated : 637.0\n" + ] + } + ], + "source": [ + "\n", + "print(\"Quantity ordered : \", df['Quantity'].sum())\n", + "print(\"Revenue Generated : \", df['Revenue'].sum())\n", + "\n", + "\n" + ] }, { "cell_type": "markdown", @@ -231,15 +721,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Most expensive : 11.95\n", + "Least expensive : 0.18\n", + "The diference between both : 11.77\n" + ] + } + ], + "source": [ + "print(\"Most expensive : \" , df['UnitPrice'].max())\n", + "print(\"Least expensive : \" , df['UnitPrice'].min())\n", + "print(\"The diference between both : \", df['UnitPrice'].max() - df['UnitPrice'].min() )" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -253,7 +757,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.9.13" } }, "nbformat": 4,