-
Notifications
You must be signed in to change notification settings - Fork 211
/
Copy pathProgrammer.ino
252 lines (211 loc) · 5.2 KB
/
Programmer.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*
AT89C2051/Programmer
Based on https://github.com/piotrb5e3/AT89C2051_programmer but with modifications for charge pump control.
For info and circuit diagrams see https://github.com/tardate/LittleArduinoProjects/tree/master/8051/AT89C2051/Programmer
*/
#include <stdint.h>
#include "rst_vpp.h"
#define CMD_ERASE 'X'
#define CMD_READ_FULL 'R'
#define CMD_WRITE_FULL 'W'
#define CMD_READ_SIGNATURE 'S'
#define COMM_STATUS_OK '$'
#define COMM_STATUS_ERR '^'
#define COMM_STATUS_CHUNK_OK '%'
#define XTAL1_PIN (A1)
#define P32_PIN (A2)
#define P33_PIN (A3)
#define P34_PIN (A4)
#define P35_PIN (A5)
#define P37_PIN (12)
const uint8_t DATA_PINS_SIZE = 8;
uint8_t DATA_PINS[] = {
2, //P1.0
4, //P1.1
5, //P1.2
6, //P1.3
7, //P1.4
8, //P1.5
9, //P1.6
10, //P1.7
};
uint8_t hex2int(char c) {
if(c >= '0' && c<= '9') {
return c - '0';
} else if(c >= 'a' && c<= 'f') {
return c - 'a' + 10;
} else if(c >= 'A' && c<= 'F') {
return c - 'A' + 10;
} else return 0;
}
uint8_t serial_get_byte() {
uint8_t ret = 0;
while(!Serial.available());
ret = 16*hex2int(Serial.read());
while(!Serial.available());
ret += hex2int(Serial.read());
return ret;
}
void serial_write_byte(uint8_t b) {
char str[3];
sprintf(str, "%.2X\0", b);
Serial.print(str);
}
uint8_t read_byte() {
for(uint8_t i = 0; i<DATA_PINS_SIZE; i++)
pinMode(DATA_PINS[i], INPUT);
uint8_t r = 0;
for(uint8_t i = 0; i<DATA_PINS_SIZE; i++)
r |= digitalRead(DATA_PINS[i]) << i;
return r;
}
void put_byte(uint8_t dt) {
for(uint8_t i = 0; i<DATA_PINS_SIZE; i++)
pinMode(DATA_PINS[i], OUTPUT);
for(uint8_t i = 0; i<DATA_PINS_SIZE; i++)
digitalWrite(DATA_PINS[i],dt & (1 << i));
}
void advance_counter() {
digitalWrite(XTAL1_PIN, HIGH);
delayMicroseconds(1);
digitalWrite(XTAL1_PIN, LOW);
}
void init_prog() {
digitalWrite(XTAL1_PIN, LOW);
// Reset the internal address counter to 000H by bringing RST from "L" to "H".
// So, we have to push RST low, and wait for it to settle low, then only go high.
RST_VPP::setVoltage(0);
delay(1);
RST_VPP::setVoltage(5);
digitalWrite(P32_PIN, HIGH);
delay(1);
}
void setProgrammingMode(int p33, int p34, int p35, int p37) {
digitalWrite(P33_PIN, p33);
digitalWrite(P34_PIN, p34);
digitalWrite(P35_PIN, p35);
digitalWrite(P37_PIN, p37);
}
void read_signature() {
init_prog();
setProgrammingMode(LOW, LOW, LOW, LOW);
delay(1);
serial_write_byte(read_byte());
advance_counter();
serial_write_byte(read_byte());
advance_counter();
Serial.write(COMM_STATUS_OK);
}
void chip_erase() {
init_prog();
setProgrammingMode(HIGH, LOW, LOW, LOW);
RST_VPP::setVoltage(12);
digitalWrite(P32_PIN, LOW);
delay(12);
digitalWrite(P32_PIN, HIGH);
RST_VPP::setVoltage(0);
Serial.write(COMM_STATUS_OK);
}
void read_flash(int count) {
init_prog();
setProgrammingMode(LOW, LOW, HIGH, HIGH);
for(int i = 0; i < count; i++) {
delay(1);
serial_write_byte(read_byte());
advance_counter();
}
}
void chip_read() {
uint8_t hi = serial_get_byte();
uint8_t lo = serial_get_byte();
uint16_t count = hi * 256 + lo;
Serial.write(COMM_STATUS_OK);
read_flash(count);
Serial.write(COMM_STATUS_OK);
}
void write_next(uint8_t dat) {
//Set byte
put_byte(dat);
delayMicroseconds(2);
//Pulse to start write
digitalWrite(P32_PIN, LOW);
delayMicroseconds(2);
digitalWrite(P32_PIN, HIGH);
//Wait for the write cycle to complete
delayMicroseconds(2500);
advance_counter();
delayMicroseconds(15);
}
void start_write() {
setProgrammingMode(LOW, HIGH, HIGH, HIGH);
RST_VPP::setVoltage(12);
delayMicroseconds(1500);
}
void stop_write() {
RST_VPP::setVoltage(0);
setProgrammingMode(LOW, LOW, LOW, LOW);
}
void chip_write() {
uint16_t chunksize = 256;
uint8_t data[256];
uint8_t hi = serial_get_byte();
uint8_t lo = serial_get_byte();
uint16_t count = hi * 256 + lo;
init_prog();
Serial.write(COMM_STATUS_OK);
start_write();
for(uint16_t i = 0; i<count;) {
uint16_t ct = 0;
for(;ct<chunksize && i<count; i++,ct++) {
uint8_t tmp = serial_get_byte();
data[ct] = tmp;
}
for(uint16_t j = 0; j<ct;j++) {
write_next(data[j]);
}
Serial.write(COMM_STATUS_CHUNK_OK);
}
stop_write();
Serial.write(COMM_STATUS_OK);
}
void setup() {
Serial.begin(9600);
pinMode(P32_PIN, OUTPUT);
pinMode(P33_PIN, OUTPUT);
pinMode(P34_PIN, OUTPUT);
pinMode(P35_PIN, OUTPUT);
pinMode(P37_PIN, OUTPUT);
pinMode(XTAL1_PIN, OUTPUT);
for(uint8_t i = 0; i<DATA_PINS_SIZE; i++)
pinMode(DATA_PINS[i], INPUT);
digitalWrite(P32_PIN, LOW);
digitalWrite(P33_PIN, LOW);
digitalWrite(P34_PIN, LOW);
digitalWrite(P35_PIN, LOW);
digitalWrite(P37_PIN, LOW);
digitalWrite(XTAL1_PIN, LOW);
RST_VPP::setup();
RST_VPP::setVoltage(0);
Serial.println("Device ready");
Serial.write(COMM_STATUS_OK);
}
void loop() {
while(!Serial.available());
switch(Serial.read()) {
case CMD_ERASE:
chip_erase();
break;
case CMD_READ_FULL:
chip_read();
break;
case CMD_WRITE_FULL:
chip_write();
break;
case CMD_READ_SIGNATURE:
read_signature();
break;
default:
Serial.println("Unknown cmd");
Serial.write(COMM_STATUS_ERR);
}
}