-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspectral_embedding.py
92 lines (73 loc) · 3.15 KB
/
spectral_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python3
# coding: utf-8
"""
Created on Thu Sep 13 2018
Authors:
Thomas Bonald <[email protected]>
Nathan De Lara <[email protected]>
Spectral embedding by decomposition of the normalized graph Laplacian.
"""
import numpy as np
from scipy import sparse, errstate, sqrt, isinf
from scipy.sparse import csgraph
from scipy.sparse.linalg import eigsh
class SpectralEmbedding:
"""Spectral embedding of a graph
Attributes
----------
embedding_ : array, shape = (n_nodes, embedding_dimension)
Embedding matrix of the nodes
eigenvalues_ : array, shape = (embedding_dimension)
Smallest eigenvalues of the training matrix
References
----------
* Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, M. Belkin, P. Niyogi
"""
def __init__(self, embedding_dimension=10):
"""
Parameters
----------
embedding_dimension : int, optional
Dimension of the embedding space (default=10)
"""
self.embedding_dimension = embedding_dimension
self.embedding_ = None
self.eigenvalues_ = None
def fit(self, adjacency_matrix):
"""Fits the model from data in adjacency_matrix
Parameters
----------
adjacency_matrix : Scipy csr matrix or numpy ndarray
Adjacency matrix of the graph
node_weights : {'uniform', 'degree', array of length n_nodes with positive entries}
Node weights
"""
if type(adjacency_matrix) == sparse.csr_matrix:
adj_matrix = adjacency_matrix
elif sparse.isspmatrix(adjacency_matrix) or type(adjacency_matrix) == np.ndarray:
adj_matrix = sparse.csr_matrix(adjacency_matrix)
else:
raise TypeError(
"The argument must be a NumPy array or a SciPy Sparse matrix.")
n_nodes, m_nodes = adj_matrix.shape
if n_nodes != m_nodes:
raise ValueError("The adjacency matrix must be a square matrix.")
#if csgraph.connected_components(adj_matrix, directed=False)[0] > 1:
#raise ValueError("The graph must be connected.")
if (adj_matrix != adj_matrix.maximum(adj_matrix.T)).nnz != 0:
raise ValueError("The adjacency matrix is not symmetric.")
# builds standard laplacian
degrees = adj_matrix.dot(np.ones(n_nodes))
degree_matrix = sparse.diags(degrees, format='csr')
laplacian = degree_matrix - adj_matrix
# applies normalization by node weights
with errstate(divide='ignore'):
degrees_inv_sqrt = 1.0 / sqrt(degrees)
degrees_inv_sqrt[isinf(degrees_inv_sqrt)] = 0
weight_matrix = sparse.diags(degrees_inv_sqrt, format='csr')
laplacian = weight_matrix.dot(laplacian.dot(weight_matrix))
# spectral decomposition
eigenvalues, eigenvectors = eigsh(laplacian, min(self.embedding_dimension + 1, n_nodes - 1), which='SM')
self.eigenvalues_ = eigenvalues[1:]
self.embedding_ = np.array(weight_matrix.dot(eigenvectors[:, 1:]))
return self