-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain_bert.py
147 lines (113 loc) · 4.89 KB
/
train_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
## Author: Thomas Capelle, Soumik Rakshit
## Mail: [email protected], [email protected]
""""Benchmarking apple M1Pro with Tensorflow
@wandbcode{apple_m1_pro}"""
import wandb, argparse
from types import SimpleNamespace
from time import perf_counter
import tensorflow as tf
from tensorflow.keras import losses
from tensorflow.keras import mixed_precision
from tensorflow.keras.optimizers import legacy as legacy_optimizers
from transformers import TFAutoModelForSequenceClassification, AutoTokenizer, DefaultDataCollator
from datasets import load_dataset
import wandb
from wandb.keras import WandbCallback
from utils import get_apple_gpu_name
PROJECT = "pytorch-M1Pro"
ENTITY = "capecape"
GROUP = "tf"
config_defaults = SimpleNamespace(
batch_size=4,
epochs=1,
num_experiments=1,
learning_rate=1e-3,
model_name="bert-base-cased",
dataset="yelp_review_full",
device="mps",
gpu_name=get_apple_gpu_name(),
num_workers=0,
mixed_precision=False,
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=config_defaults.batch_size)
parser.add_argument('--epochs', type=int, default=config_defaults.epochs)
parser.add_argument('--num_experiments', type=int, default=config_defaults.num_experiments)
parser.add_argument('--learning_rate', type=float, default=config_defaults.learning_rate)
parser.add_argument('--model_name', type=str, default=config_defaults.model_name)
parser.add_argument('--dataset', type=str, default=config_defaults.dataset)
parser.add_argument('--device', type=str, default=config_defaults.device)
parser.add_argument('--gpu_name', type=str, default=config_defaults.gpu_name)
parser.add_argument('--num_workers', type=int, default=config_defaults.num_workers)
parser.add_argument('--inference_only', action="store_true")
parser.add_argument('--mixed_precision', action="store_true")
return parser.parse_args()
class SamplesSec(tf.keras.callbacks.Callback):
def __init__(self, batch_size=1, drop=5):
self.batch_size = batch_size
self.drop = drop
def on_train_begin(self, logs={}):
self.epoch_times = []
self.samples_s = 0.
def on_epoch_begin(self, epoch, logs={}):
self.batch_times = []
def on_train_batch_begin(self, batch, logs={}):
self.batch_train_start = perf_counter()
def on_train_batch_end(self, batch, logs={}):
t = perf_counter() - self.batch_train_start
wandb.log({"samples_per_sec": self.batch_size/t})
def get_dls(model_name="bert-base-cased", dataset_name="yelp_review_full", batch_size=8, num_workers=0, sample_size=100):
# download and prepare cc_news dataset
dataset = load_dataset(dataset_name)
# get bert and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
# tokenize the dataset
tokenized_datasets = dataset.map(tokenize_function, batched=True)
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(sample_size))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(sample_size))
default_data_collator = DefaultDataCollator(return_tensors="tf")
train = small_train_dataset.to_tf_dataset(
columns=["input_ids", "token_type_ids", "attention_mask"],
label_cols=["labels"],
batch_size=batch_size,
shuffle=False,
collate_fn=default_data_collator,
)
validation = small_eval_dataset.to_tf_dataset(
columns=["input_ids", "token_type_ids", "attention_mask"],
label_cols=["labels"],
batch_size=batch_size,
shuffle=False,
collate_fn=default_data_collator,
)
return train, validation
def get_model(model_name="bert-base-cased", num_labels=5):
return TFAutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
def train_bert(config):
train_ds, _ = get_dls(
model_name=config.model_name,
batch_size=config.batch_size,
num_workers=config.num_workers)
if config.mixed_precision:
mixed_precision.set_global_policy('mixed_float16')
optimizer = legacy_optimizers.Adam(learning_rate=config.learning_rate)
model = get_model(config.model_name)
model.compile(
loss=losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=optimizer,
metrics=["accuracy"],
)
with wandb.init(project=PROJECT, entity=ENTITY, group=GROUP, config=config):
model.fit(
train_ds,
epochs=config.epochs,
callbacks=[WandbCallback(save_model=False),
SamplesSec(config.batch_size)],
)
if __name__ == "__main__":
args = parse_args()
for _ in range(args.num_experiments):
train_bert(config=args)