-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain_pets.py
259 lines (222 loc) · 7.9 KB
/
train_pets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
## Author: Thomas Capelle, Soumik Rakshit
## Mail: [email protected], [email protected]
""""Benchmarking apple M1Pro with Tensorflow
@wandbcode{apple_m1_pro}"""
import re
import subprocess
import os
import platform
import argparse
from time import perf_counter
from glob import glob
from typing import List
from pathlib import Path
from typing import Callable, List
from types import SimpleNamespace
from sklearn.model_selection import train_test_split
import wandb
from wandb.keras import WandbCallback
import tensorflow as tf
from tensorflow.keras.optimizers import legacy as legacy_optimizers
from tensorflow.keras import Input, Model
from tensorflow.keras import mixed_precision
from tensorflow.keras import layers, losses, applications
from utils import get_apple_gpu_name
PROJECT = "Pytorch-M1Pro"
ENTITY = "capecape"
GROUP = "tf"
config_defaults = SimpleNamespace(
batch_size=64,
epochs=1,
num_experiments=1,
learning_rate=1e-3,
validation_split=0.0,
image_size=128,
model_name="resnet50",
dataset="PETS",
artifact_address="capecape/pytorch-M1Pro/PETS:v3",
gpu_name=get_apple_gpu_name(),
mixed_precision=False,
optimizer="Adam", # currently an issue forced to legacy optim
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--entity", type=str, default=ENTITY)
parser.add_argument("--image_size", type=int, default=config_defaults.image_size)
parser.add_argument("--batch_size", type=int, default=config_defaults.batch_size)
parser.add_argument("--epochs", type=int, default=config_defaults.epochs)
parser.add_argument(
"--num_experiments", type=int, default=config_defaults.num_experiments
)
parser.add_argument(
"--validation_split", type=float, default=config_defaults.validation_split
)
parser.add_argument(
"--learning_rate", type=float, default=config_defaults.learning_rate
)
parser.add_argument("--model_name", type=str, default=config_defaults.model_name)
parser.add_argument('--dataset', type=str, default=config_defaults.dataset)
parser.add_argument("--artifact_address", type=str, default=config_defaults.artifact_address)
parser.add_argument("--gpu_name", type=str, default=config_defaults.gpu_name)
parser.add_argument('--optimizer', type=str, default=config_defaults.optimizer)
parser.add_argument("--mixed_precision", type=int, default=config_defaults.mixed_precision)
return parser.parse_args()
AUTOTUNE = tf.data.AUTOTUNE
BACKBONE_DICT = {
"resnet50": {
"model": applications.ResNet50,
"preprocess_fn": applications.resnet50.preprocess_input,
}
}
VOCAB = [
"Abyssinian",
"Bengal",
"Birman",
"Bombay",
"British_Shorthair",
"Egyptian_Mau",
"Maine_Coon",
"Persian",
"Ragdoll",
"Russian_Blue",
"Siamese",
"Sphynx",
"american_bulldog",
"american_pit",
"basset_hound",
"beagle",
"boxer",
"chihuahua",
"english_cocker",
"english_setter",
"german_shorthaired",
"great_pyrenees",
"havanese",
"japanese_chin",
"keeshond",
"leonberger",
"miniature_pinscher",
"newfoundland",
"pomeranian",
"pug",
"saint_bernard",
"samoyed",
"scottish_terrier",
"shiba_inu",
"staffordshire_bull",
"wheaten_terrier",
"yorkshire_terrier",
]
class SamplesSec(tf.keras.callbacks.Callback):
def __init__(self, batch_size=1, drop=5):
self.batch_size = batch_size
self.drop = drop
def on_train_begin(self, logs={}):
self.epoch_times = []
self.samples_s = 0.
def on_epoch_begin(self, epoch, logs={}):
self.batch_times = []
def on_train_batch_begin(self, batch, logs={}):
self.batch_train_start = perf_counter()
def on_train_batch_end(self, batch, logs={}):
t = perf_counter() - self.batch_train_start
wandb.log({"samples_per_sec": self.batch_size/t})
class PetsDataLoader:
def __init__(
self,
artifact_address: str,
preprocess_fn: Callable,
image_size: int,
batch_size: int,
vocab: List[str]=VOCAB,
):
self.artifact_address = artifact_address
self.dataset_path = self.get_pets()
self.preprocess_fn = preprocess_fn
print(self.preprocess_fn)
self.image_size = image_size
self.batch_size = batch_size
self.pattern = r"(^[a-zA-Z]+_*[a-zA-Z]+)"
self.vocab_map = {v: i for i, v in enumerate(vocab)}
self.image_files = glob(os.path.join(self.dataset_path, "images", "*.jpg"))
self.labels = [
self.vocab_map[re.match(self.pattern, Path(image_file).name)[0]]
for image_file in self.image_files
]
def __len__(self):
return len(self.image_files)
def get_pets(self):
api = wandb.Api()
at = api.artifact(self.artifact_address, type="dataset")
dataset_path = at.download()
return dataset_path
def map_fn(self, image_file, label):
image = tf.io.read_file(image_file)
image = tf.image.decode_png(image, channels=3)
image.set_shape([None, None, 3])
image = tf.image.resize(image, [self.image_size, self.image_size])
image = self.preprocess_fn(image)
return image, label
def build_dataset(self, images, labels):
dataset = tf.data.Dataset.from_tensor_slices((images, labels))
dataset = dataset.map(self.map_fn, num_parallel_calls=AUTOTUNE)
dataset = dataset.batch(self.batch_size, drop_remainder=True)
return dataset
def get_datasets(self, val_split: float):
if val_split>0:
train_images, val_images, train_labels, val_labels = train_test_split(
self.image_files, self.labels, test_size=val_split
)
train_dataset = self.build_dataset(train_images, train_labels)
val_dataset = self.build_dataset(val_images, val_labels)
else:
train_dataset = self.build_dataset(self.image_files, self.labels)
val_dataset = None
return train_dataset, val_dataset
def get_model(image_size: int, model_name: str, vocab: List[str]) -> Model:
input_shape = [image_size, image_size, 3]
input_tensor = Input(shape=input_shape)
backbone_out = BACKBONE_DICT[model_name]["model"](
include_top=False, input_tensor=input_tensor
)(input_tensor)
x = layers.GlobalAveragePooling2D()(backbone_out)
output = layers.Dense(len(vocab))(x)
return Model(input_tensor, output)
def train(args):
with wandb.init(project=PROJECT, entity=args.entity, group=GROUP, config=args):
config = wandb.config
if args.mixed_precision:
mixed_precision.set_global_policy('mixed_float16')
loader = PetsDataLoader(
artifact_address=config.artifact_address,
preprocess_fn=BACKBONE_DICT[config.model_name]["preprocess_fn"],
image_size=config.image_size,
batch_size=config.batch_size,
)
print("Dataset Size:", len(loader))
train_dataset, val_dataset = loader.get_datasets(
val_split=config.validation_split
)
model = get_model(
image_size=config.image_size,
model_name=config.model_name,
vocab=VOCAB,
)
model.summary()
optimizer = getattr(legacy_optimizers, config.optimizer)
model.compile(
loss=losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=optimizer(learning_rate=config.learning_rate),
metrics=["accuracy"],
)
model.fit(
train_dataset,
validation_data=val_dataset,
epochs=config.epochs,
callbacks=[WandbCallback(save_model=False),
SamplesSec(config.batch_size)],
)
if __name__ == "__main__":
args = parse_args()
for _ in range(args.num_experiments):
train(args=args)