-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmain.py
74 lines (69 loc) · 3.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from argparse import ArgumentParser
from attrdict import AttrDict
from experiment import Experiment
from common import Task, GNN_TYPE, STOP
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--task", dest="task", default=Task.NEIGHBORS_MATCH, type=Task.from_string, choices=list(Task),
required=False)
parser.add_argument("--type", dest="type", default=GNN_TYPE.GCN, type=GNN_TYPE.from_string, choices=list(GNN_TYPE),
required=False)
parser.add_argument("--dim", dest="dim", default=32, type=int, required=False)
parser.add_argument("--depth", dest="depth", default=3, type=int, required=False)
parser.add_argument("--num_layers", dest="num_layers", default=None, type=int, required=False)
parser.add_argument("--train_fraction", dest="train_fraction", default=0.8, type=float, required=False)
parser.add_argument("--max_epochs", dest="max_epochs", default=50000, type=int, required=False)
parser.add_argument("--eval_every", dest="eval_every", default=100, type=int, required=False)
parser.add_argument("--batch_size", dest="batch_size", default=1024, type=int, required=False)
parser.add_argument("--accum_grad", dest="accum_grad", default=1, type=int, required=False)
parser.add_argument("--stop", dest="stop", default=STOP.TRAIN, type=STOP.from_string, choices=list(STOP),
required=False)
parser.add_argument("--patience", dest="patience", default=20, type=int, required=False)
parser.add_argument("--loader_workers", dest="loader_workers", default=0, type=int, required=False)
parser.add_argument('--last_layer_fully_adjacent', action='store_true')
parser.add_argument('--no_layer_norm', action='store_true')
parser.add_argument('--no_activation', action='store_true')
parser.add_argument('--no_residual', action='store_true')
parser.add_argument('--unroll', action='store_true', help='use the same weights across GNN layers')
args = parser.parse_args()
Experiment(args).run()
def get_fake_args(
task=Task.NEIGHBORS_MATCH,
type=GNN_TYPE.GCN,
dim=32,
depth=3,
num_layers=None,
train_fraction=0.8,
max_epochs=50000,
eval_every=100,
batch_size=1024,
accum_grad=1,
patience=20,
stop=STOP.TRAIN,
loader_workers=0,
last_layer_fully_adjacent=False,
no_layer_norm=False,
no_activation=False,
no_residual=False,
unroll=False,
):
return AttrDict({
'task': task,
'type': type,
'dim': dim,
'depth': depth,
'num_layers': num_layers,
'train_fraction': train_fraction,
'max_epochs': max_epochs,
'eval_every': eval_every,
'batch_size': batch_size,
'accum_grad': accum_grad,
'stop': stop,
'patience': patience,
'loader_workers': loader_workers,
'last_layer_fully_adjacent': last_layer_fully_adjacent,
'no_layer_norm': no_layer_norm,
'no_activation': no_activation,
'no_residual': no_residual,
'unroll': unroll,
})