-
Notifications
You must be signed in to change notification settings - Fork 287
/
Copy pathkeras_attention_layer.py
66 lines (50 loc) · 2.74 KB
/
keras_attention_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import tensorflow as tf
from tensorflow.python import keras
from tensorflow.python.keras.layers import Layer
from tensorflow.python.keras import backend as K
from typing import Optional
class AttentionLayer(Layer):
def __init__(self, **kwargs):
super(AttentionLayer, self).__init__(**kwargs)
def build(self, inputs_shape):
inputs_shape = inputs_shape if isinstance(inputs_shape, list) else [inputs_shape]
if len(inputs_shape) < 1 or len(inputs_shape) > 2:
raise ValueError("AttentionLayer expect one or two inputs.")
# The first (and required) input is the actual input to the layer
input_shape = inputs_shape[0]
# Expected input shape consists of a triplet: (batch, input_length, input_dim)
if len(input_shape) != 3:
raise ValueError("Input shape for AttentionLayer should be of 3 dimension.")
self.input_length = int(input_shape[1])
self.input_dim = int(input_shape[2])
attention_param_shape = (self.input_dim, 1)
self.attention_param = self.add_weight(
name='attention_param',
shape=attention_param_shape,
initializer='uniform',
trainable=True,
dtype=tf.float32)
super(AttentionLayer, self).build(input_shape)
def call(self, inputs, **kwargs):
inputs = inputs if isinstance(inputs, list) else [inputs]
if len(inputs) < 1 or len(inputs) > 2:
raise ValueError("AttentionLayer expect one or two inputs.")
actual_input = inputs[0]
mask = inputs[1] if len(inputs) > 1 else None
if mask is not None and not (((len(mask.shape) == 3 and mask.shape[2] == 1) or len(mask.shape) == 2)
and mask.shape[1] == self.input_length):
raise ValueError("`mask` should be of shape (batch, input_length) or (batch, input_length, 1) "
"when calling an AttentionLayer.")
assert actual_input.shape[-1] == self.attention_param.shape[0]
# (batch, input_length, input_dim) * (input_dim, 1) ==> (batch, input_length, 1)
attention_weights = K.dot(actual_input, self.attention_param)
if mask is not None:
if len(mask.shape) == 2:
mask = K.expand_dims(mask, axis=2) # (batch, input_length, 1)
mask = K.log(mask)
attention_weights += mask
attention_weights = K.softmax(attention_weights, axis=1) # (batch, input_length, 1)
result = K.sum(actual_input * attention_weights, axis=1) # (batch, input_length) [multiplication uses broadcast]
return result, attention_weights
def compute_output_shape(self, input_shape):
return input_shape[0], input_shape[2] # (batch, input_dim)