-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontent_analyzer.py
50 lines (41 loc) · 1.91 KB
/
content_analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
from typing import Tuple
# Potential libraries for text extraction and classification
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
class ContentAnalyzer:
def __init__(self):
# Initialize the model pipeline
self.model = make_pipeline(TfidfVectorizer(), MultinomialNB())
def train_model(self, data, target):
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)
# Train the model
self.model.fit(X_train, y_train)
# Evaluate the model
predictions = self.model.predict(X_test)
print(classification_report(y_test, predictions))
def classify_content(self, text: str) -> str:
# Predict the category of the given text
return self.model.predict([text])[0]
def extract_text(self, file_path: str) -> str:
# Placeholder method for extracting text from various file types
# This will need to be expanded to handle different file formats
return "Extracted text from the file."
def main():
# Example usage of the ContentAnalyzer class
analyzer = ContentAnalyzer()
# Example: Training the model with dummy data
# This section will need to be replaced with actual data loading and preprocessing
data = ["Text from document 1", "Text from document 2"]
target = ["Category1", "Category2"]
analyzer.train_model(data, target)
# Example classification
example_text = "An example text that needs classification."
category = analyzer.classify_content(example_text)
print(f"The category of the text: {category}")
if __name__ == "__main__":
main()